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MEASURING SPACE COMPLEXITY 

We measure space complexity by looking at the 
furthest tape cell reached during the computation 

FINITE 
STATE 
CONTROL 

  1     2     3     4     5     6     7     8     9    10   …  

I N P U T …  



Let M = deterministic TM that halts on all inputs.  
 
Definition: The space complexity of M is the 
function s :  N→ N, where s(n) is the furthest 
tape cell reached by M on any input of length n. 

Let N be a non-deterministic TM that halts on all 
inputs in all of its possible branches. 
 
Definition: The space complexity of N is the 
function s : N → N, where s(n) is the furthest 
tape cell reached by M, on any branch if its 
computation, on any input of length n. 



              
{ L | L is a language decided by a O(s(n)) 
space non-deterministic Turing Machine } 

Definition: SPACE(s(n)) = 

Definition: NSPACE(t(n)) = 

           
{ L | L is a language decided by a O(s(n)) 
space deterministic Turing Machine } 



PSPACE =        SPACE(nk) ∪ 
k ∈ N 

NPSPACE =        NSPACE(nk) ∪ 
k ∈ N 



3SAT ∈ SPACE(n) ⊂ PSPACE     

#  x      y 

( x ∨ y ¬ ∨ x ) ( y ∨ x ∨ y ) 

( x ∨ y ¬ ∨ x ) ( y ∨ x ∨ y ) 

#  x  0  y  0 ( x ∨ y ¬ ∨ x ) ( y ∨ x ∨ y ) 

#  x  0  y  1 ( x ∨ y ¬ ∨ x ) ( y ∨ x ∨ y ) 

#  x  1  y  0 ( x ∨ y ¬ ∨ x ) ( y ∨ x ∨ y ) 



Assume a deterministic Turing machine that 
halts on all inputs runs in space s(n) 

Question: What’s an upper bound on the 
number of time steps for this machine? 

A configuration gives a head position, state, and  
tape contents. Number of configurations is at most: 

s(n) |Q| |Γ|s(n) = 2O(s(n)) 



S(n) 

s(n) |Q| |Γ|s(n) = 2O(s(n)) 
Number of Configurations 

cstart 

caccept 

cm 
2 

O (s(n)) 



MORAL:  
Space S computations can be  

simulated in at most 2O(S) time steps 

PSPACE ⊆ EXPTIME 

EXPTIME =        TIME(2   ) ∪ 
k ∈ N 

nk 



SAVITCH’S THEOREM 

Is NTIME(t(n)) ⊆ TIME(t(n))? 
 
Is NTIME(t(n)) ⊆ TIME(t(n)k) for some k > 1? 
 

We don’t know in general! 
 
If the answer is yes, then P = NP… 
What about the space-bounded setting? 
  

NSPACE(s(n)) ⊆ SPACE(s(n)2) 
                           s(n) ≥ n 
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We don’t know in general! 
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SAVITCH’S THEOREM 

Theorem: For functions s(n) where s(n) ≥ n 

NSPACE(s(n)) ⊆ SPACE(s(n)2) 
Proof Try: 

Let N be a non-deterministic TM with 
space complexity s(n) 

Construct a deterministic machine M that tries 
every possible branch of N  

Since each branch of N uses space at most s(n), 
then M uses space at most s(n) for each branch .. 



SAVITCH’S THEOREM 

Theorem: For functions s(n) where s(n) ≥ n 

NSPACE(s(n)) ⊆ SPACE(s(n)2) 
Proof Try: 

Let N be a non-deterministic TM with 
space complexity s(n) 

Construct a deterministic machine M that tries 
every possible branch of N  

Since each branch of N uses space at most s(n), 
then M uses space at most s(n) for each branch .. 

There are 2^(O(2^O(s))) branches to keep track of! 



We need to simulate a  
non-deterministic computation and 

save as much space as possible 



IDEA: Given two configurations C1 and C2 of an s(n) space 
machine N, and a number t, determine if N can get from C1 
to C2 within t steps 

Procedure CANYIELD(C1, C2, t): 

If t = 0 then accept iff C1 = C2  
If t = 1 then accept iff C1 yields C2 within one step.  

If t > 1, then Accept if and only if   
for some configuration Cm of size s(n), both 
CANYIELD(C1,Cm ,t/2) and CANYIELD(Cm,C2, t/2) accept 

 Use transition map of N to check [ uses space O(s(n)) ] 



IDEA: Given two configurations C1 and C2 of an s(n) space 
machine N, and a number t, determine if N can get from C1 
to C2 within t steps 

Procedure CANYIELD(C1, C2, t): 

If t = 0 then accept iff C1 = C2  
If t = 1 then accept iff C1 yields C2 within one step.  

If t > 1, then Accept if and only if   
for some configuration Cm of size s(n), both 
CANYIELD(C1,Cm ,t/2) and CANYIELD(Cm,C2, t/2) accept 

 Use transition map of N to check [ uses space O(s(n)) ] 

CANYIELD(C1, C2, t) has log(t) levels of recursion.  
Each level of recursion uses O(s(n)) additional space to store Cm.  
So CANYIELD(C1, C2, t) uses O(s(n) log(t)) space. 
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IDEA: Given two configurations C1 and C2 of an s(n) space 
machine N, and a number t, determine if N can get from C1 
to C2 within t steps 

If t = 0 then accept iff C1 = C2  
If t = 1 then accept iff C1 yields C2 within one step.  

If t > 1, then Accept if and only if   
for some configuration Cm of size s(n), both 
CANYIELD(C1,Cm ,t/2) and CANYIELD(Cm,C2, t/2) accept 

 Use transition map of N to check [ uses space O(s(n)) ] 

M:  On input w,  
Output the result of CANYIELD(cstart, caccept, 2ds(n) ) 
CANYIELD(C1, C2, 2ds(n) ) uses O(s(n) log(2ds(n) )) space. 
 

Procedure CANYIELD(C1, C2, t): 



IDEA: Given two configurations C1 and C2 of an s(n) space 
machine N, and a number t, determine if N can get from C1 
to C2 within t steps 

Procedure CANYIELD(C1, C2, t): 

If t = 0 then accept iff C1 = C2  
If t = 1 then accept iff C1 yields C2 within one step.  

If t > 1, then Accept if and only if   
for some configuration Cm of size s(n), both 
CANYIELD(C1,Cm ,t/2) and CANYIELD(Cm,C2, t/2) accept 

M:  On input w,  
Output the result of CANYIELD(cstart, caccept, 2ds(n) ) 
Here d > 0 is chosen so that 2ds(|w|) upper bounds the 
number of configurations of N(w) 
 

 Use transition map of N to check [ uses space O(s(n)) ] 



Theorem: For a function s where s(n) ≥ n 

NSPACE(s(n)) ⊆ SPACE(s(n)2)  
Proof: 
Let N be a nondeterministic TM using s(n) space 

Modify N so that when it accepts, it goes to a special state 
qs, clears its tape, and moves its head to the leftmost cell 

N has a UNIQUE accepting configuration: Cacc = qs… 



Theorem: For a function s where s(n) ≥ n 

NSPACE(s(n)) ⊆ SPACE(s(n)2)  
Proof: 
Let N be a nondeterministic TM using s(n) space 

Modify N so that when it accepts, it goes to a special state 
qs, clears its tape, and moves its head to the leftmost cell 

Construct a deterministic M that on input w,  
runs CANYIELD(C0, Cacc, 2ds(|w|)) 

Here d > 0 is chosen so that 2d s(|w|) upper bounds the 
number of configurations of N(w) 
=> 2ds(|w|)  is an upper bound on the running time of N(w). 

N has a UNIQUE accepting configuration: Cacc = qs… 



Theorem: For a function s where s(n) ≥ n 

Proof: 
Let N be a nondeterministic TM using s(n) space 

Modify N so that when it accepts, it goes to a special state 
qs, clears its tape, and moves its head to the leftmost cell 

Why does it take only s(n)2 space? 

NSPACE(s(n)) ⊆ SPACE(s(n)2)  

N has a UNIQUE accepting configuration: Cacc = qs… 

Construct a deterministic M that on input w,  
runs CANYIELD(C0, Cacc, 2ds(|w|)) 



Theorem: For a function s where s(n) ≥ n 

Proof: 
Let N be a nondeterministic TM using s(n) space 

Modify N so that when it accepts, it goes to a special state 
qs, clears its tape, and moves its head to the leftmost cell 

Uses log(2d s(|w|)) recursions. Each level of recursion uses 
O(s(n)) extra space. Therefore uses O(s(n)2) space! 

NSPACE(s(n)) ⊆ SPACE(s(n)2)  

N has a UNIQUE accepting configuration: Cacc = qs… 

Construct a deterministic M that on input w,  
runs CANYIELD(C0, Cacc, 2ds(|w|)) 



PSPACE =        SPACE(nk) ∪ 
k ∈ N 

NPSPACE =        NSPACE(nk) ∪ 
k ∈ N 

PSPACE = NPSPACE 



P NP PSPACE 

EXPTIME EXPTIME 

NPSPACE 



P ⊆ NP ⊆ PSPACE ⊆ EXPTIME 

P ≠ EXPTIME 

 TIME HIERARCHY THEOREM 



Intuition: If you have more TIME to work with, 
then you can solve strictly more problems! 

 TIME HIERARCHY THEOREM 

Theorem: For functions f, g where g(n)/(f(n))2 → �  

TIME(g(n)) ⊄  TIME(f(n)) 

So, for all k, since 2n/n2k → � , 

TIME(2n) ⊄  TIME(nk) 
 

Therefore, TIME(2n) ⊄ P 



Intuition: If you have more TIME to work with, 
then you can solve strictly more problems! 

 TIME HIERARCHY THEOREM 

Theorem: For functions f, g where g(n)/(f(n))2 → �  

TIME(g(n)) ⊄  TIME(f(n)) 
Proof IDEA: Diagonalization 
Make a machine M that works in g(n) time and  
“does the opposite” of all f(n) time machines  
on at least one input 
 
So L(M) is in TIME(g(n)) but not TIME(f(n)) 



Intuition: If you have more TIME to work with, 
then you can solve strictly more problems! 

 TIME HIERARCHY THEOREM 

Theorem: For functions f, g where g(n)/(f(n))2 → �  

TIME(g(n)) ⊄  TIME(f(n)) 
Proof IDEA: Diagonalization 
Need g(n) >> f(n)2 to ensure that you can simulate 
an arbitrary machine running in f(n) time with a  
single machine that runs in g(n) time. 
 
So L(M) is in TIME(g(n)) but not TIME(f(n)) 



Definition: Language B is PSPACE-complete if: 

1. B ∈ PSPACE 
2. Every A in PSPACE is poly-time reducible to B 

(i.e. B is PSPACE-hard) 
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