
FORMAL LANGUAGES,
AUTOMATA AND
COMPUTABILITY

15-453

Space Complexity: Savitch's

Theorem and PSPACE-
Completeness

Tuesday April 15

MEASURING SPACE COMPLEXITY

We measure space complexity by looking at the
furthest tape cell reached during the computation

FINITE
STATE
CONTROL

 1 2 3 4 5 6 7 8 9 10 …

I N P U T …

Let M = deterministic TM that halts on all inputs.

Definition: The space complexity of M is the
function s : N→ N, where s(n) is the furthest
tape cell reached by M on any input of length n.

Let N be a non-deterministic TM that halts on all
inputs in all of its possible branches.

Definition: The space complexity of N is the
function s : N → N, where s(n) is the furthest
tape cell reached by M, on any branch if its
computation, on any input of length n.

{ L | L is a language decided by a O(s(n))
space non-deterministic Turing Machine }

Definition: SPACE(s(n)) =

Definition: NSPACE(t(n)) =

{ L | L is a language decided by a O(s(n))
space deterministic Turing Machine }

PSPACE = SPACE(nk) ∪
k ∈ N

NPSPACE = NSPACE(nk) ∪
k ∈ N

3SAT ∈ SPACE(n) ⊂ PSPACE

x y

(x ∨ y ¬ ∨ x) (y ∨ x ∨ y)

(x ∨ y ¬ ∨ x) (y ∨ x ∨ y)

x 0 y 0 (x ∨ y ¬ ∨ x) (y ∨ x ∨ y)

x 0 y 1 (x ∨ y ¬ ∨ x) (y ∨ x ∨ y)

x 1 y 0 (x ∨ y ¬ ∨ x) (y ∨ x ∨ y)

Assume a deterministic Turing machine that
halts on all inputs runs in space s(n)

Question: What’s an upper bound on the
number of time steps for this machine?

A configuration gives a head position, state, and
tape contents. Number of configurations is at most:

s(n) |Q| |Γ|s(n) = 2O(s(n))

S(n)

s(n) |Q| |Γ|s(n) = 2O(s(n))
Number of Configurations

cstart

caccept

cm
2

O (s(n))

MORAL:
Space S computations can be

simulated in at most 2O(S) time steps

PSPACE ⊆ EXPTIME

EXPTIME = TIME(2) ∪
k ∈ N

nk

SAVITCH’S THEOREM

Is NTIME(t(n)) ⊆ TIME(t(n))?

Is NTIME(t(n)) ⊆ TIME(t(n)k) for some k > 1?

We don’t know in general!

If the answer is yes, then P = NP…
What about the space-bounded setting?

NSPACE(s(n)) ⊆ SPACE(s(n)2)
 s(n) ≥ n

SAVITCH’S THEOREM

Is NTIME(t(n)) ⊆ TIME(t(n))?

Is NTIME(t(n)) ⊆ TIME(t(n)k) for some k > 1?

We don’t know in general!

If the answer is yes, then P = NP…
What about the space-bounded setting?

therefore NPSPACE ⊆ PSPACE

SAVITCH’S THEOREM

Is NTIME(t(n)) ⊆ TIME(t(n))?

Is NTIME(t(n)) ⊆ TIME(t(n)k) for some k > 1?

We don’t know in general!

If the answer is yes, then P = NP…
What about the space-bounded setting?

therefore PSPACE = NPSPACE

SAVITCH’S THEOREM

Theorem: For functions s(n) where s(n) ≥ n

NSPACE(s(n)) ⊆ SPACE(s(n)2)
Proof Try:

Let N be a non-deterministic TM with
space complexity s(n)

Construct a deterministic machine M that tries
every possible branch of N

Since each branch of N uses space at most s(n),
then M uses space at most s(n) for each branch ..

SAVITCH’S THEOREM

Theorem: For functions s(n) where s(n) ≥ n

NSPACE(s(n)) ⊆ SPACE(s(n)2)
Proof Try:

Let N be a non-deterministic TM with
space complexity s(n)

Construct a deterministic machine M that tries
every possible branch of N

Since each branch of N uses space at most s(n),
then M uses space at most s(n) for each branch ..

There are 2^(O(2^O(s))) branches to keep track of!

We need to simulate a
non-deterministic computation and

save as much space as possible

IDEA: Given two configurations C1 and C2 of an s(n) space
machine N, and a number t, determine if N can get from C1
to C2 within t steps

Procedure CANYIELD(C1, C2, t):

If t = 0 then accept iff C1 = C2
If t = 1 then accept iff C1 yields C2 within one step.

If t > 1, then Accept if and only if
for some configuration Cm of size s(n), both
CANYIELD(C1,Cm ,t/2) and CANYIELD(Cm,C2, t/2) accept

 Use transition map of N to check [uses space O(s(n))]

IDEA: Given two configurations C1 and C2 of an s(n) space
machine N, and a number t, determine if N can get from C1
to C2 within t steps

Procedure CANYIELD(C1, C2, t):

If t = 0 then accept iff C1 = C2
If t = 1 then accept iff C1 yields C2 within one step.

If t > 1, then Accept if and only if
for some configuration Cm of size s(n), both
CANYIELD(C1,Cm ,t/2) and CANYIELD(Cm,C2, t/2) accept

 Use transition map of N to check [uses space O(s(n))]

CANYIELD(C1, C2, t) has log(t) levels of recursion.
Each level of recursion uses O(s(n)) additional space to store Cm.
So CANYIELD(C1, C2, t) uses O(s(n) log(t)) space.

S(n)

s(n) |Q| |Γ|s(n) = 2O(s(n))
Number of Configurations

cstart

caccept

cm
2

O (s(n))

IDEA: Given two configurations C1 and C2 of an s(n) space
machine N, and a number t, determine if N can get from C1
to C2 within t steps

Procedure CANYIELD(C1, C2, t):

If t = 0 then accept iff C1 = C2
If t = 1 then accept iff C1 yields C2 within one step.

If t > 1, then Accept if and only if
for some configuration Cm of size s(n), both
CANYIELD(C1,Cm ,t/2) and CANYIELD(Cm,C2, t/2) accept

 Use transition map of N to check [uses space O(s(n))]

CANYIELD(C1, C2, t) has log(t) levels of recursion.
Each level of recursion uses O(s(n)) additional space to store Cm.
So CANYIELD(C1, C2, t) uses O(s(n) log(t)) space.

IDEA: Given two configurations C1 and C2 of an s(n) space
machine N, and a number t, determine if N can get from C1
to C2 within t steps

If t = 0 then accept iff C1 = C2
If t = 1 then accept iff C1 yields C2 within one step.

If t > 1, then Accept if and only if
for some configuration Cm of size s(n), both
CANYIELD(C1,Cm ,t/2) and CANYIELD(Cm,C2, t/2) accept

 Use transition map of N to check [uses space O(s(n))]

M: On input w,
Output the result of CANYIELD(cstart, caccept, 2ds(n))
CANYIELD(C1, C2, 2ds(n)) uses O(s(n) log(2ds(n))) space.

Procedure CANYIELD(C1, C2, t):

IDEA: Given two configurations C1 and C2 of an s(n) space
machine N, and a number t, determine if N can get from C1
to C2 within t steps

Procedure CANYIELD(C1, C2, t):

If t = 0 then accept iff C1 = C2
If t = 1 then accept iff C1 yields C2 within one step.

If t > 1, then Accept if and only if
for some configuration Cm of size s(n), both
CANYIELD(C1,Cm ,t/2) and CANYIELD(Cm,C2, t/2) accept

M: On input w,
Output the result of CANYIELD(cstart, caccept, 2ds(n))
Here d > 0 is chosen so that 2ds(|w|) upper bounds the
number of configurations of N(w)

 Use transition map of N to check [uses space O(s(n))]

Theorem: For a function s where s(n) ≥ n

NSPACE(s(n)) ⊆ SPACE(s(n)2)
Proof:
Let N be a nondeterministic TM using s(n) space

Modify N so that when it accepts, it goes to a special state
qs, clears its tape, and moves its head to the leftmost cell

N has a UNIQUE accepting configuration: Cacc = qs…

Theorem: For a function s where s(n) ≥ n

NSPACE(s(n)) ⊆ SPACE(s(n)2)
Proof:
Let N be a nondeterministic TM using s(n) space

Modify N so that when it accepts, it goes to a special state
qs, clears its tape, and moves its head to the leftmost cell

Construct a deterministic M that on input w,
runs CANYIELD(C0, Cacc, 2ds(|w|))

Here d > 0 is chosen so that 2d s(|w|) upper bounds the
number of configurations of N(w)
=> 2ds(|w|) is an upper bound on the running time of N(w).

N has a UNIQUE accepting configuration: Cacc = qs…

Theorem: For a function s where s(n) ≥ n

Proof:
Let N be a nondeterministic TM using s(n) space

Modify N so that when it accepts, it goes to a special state
qs, clears its tape, and moves its head to the leftmost cell

Why does it take only s(n)2 space?

NSPACE(s(n)) ⊆ SPACE(s(n)2)

N has a UNIQUE accepting configuration: Cacc = qs…

Construct a deterministic M that on input w,
runs CANYIELD(C0, Cacc, 2ds(|w|))

Theorem: For a function s where s(n) ≥ n

Proof:
Let N be a nondeterministic TM using s(n) space

Modify N so that when it accepts, it goes to a special state
qs, clears its tape, and moves its head to the leftmost cell

Uses log(2d s(|w|)) recursions. Each level of recursion uses
O(s(n)) extra space. Therefore uses O(s(n)2) space!

NSPACE(s(n)) ⊆ SPACE(s(n)2)

N has a UNIQUE accepting configuration: Cacc = qs…

Construct a deterministic M that on input w,
runs CANYIELD(C0, Cacc, 2ds(|w|))

PSPACE = SPACE(nk) ∪
k ∈ N

NPSPACE = NSPACE(nk) ∪
k ∈ N

PSPACE = NPSPACE

P NP PSPACE

EXPTIME EXPTIME

NPSPACE

P ⊆ NP ⊆ PSPACE ⊆ EXPTIME

P ≠ EXPTIME

 TIME HIERARCHY THEOREM

Intuition: If you have more TIME to work with,
then you can solve strictly more problems!

 TIME HIERARCHY THEOREM

Theorem: For functions f, g where g(n)/(f(n))2 → �

TIME(g(n)) ⊄ TIME(f(n))

So, for all k, since 2n/n2k → � ,

TIME(2n) ⊄ TIME(nk)

Therefore, TIME(2n) ⊄ P

Intuition: If you have more TIME to work with,
then you can solve strictly more problems!

 TIME HIERARCHY THEOREM

Theorem: For functions f, g where g(n)/(f(n))2 → �

TIME(g(n)) ⊄ TIME(f(n))
Proof IDEA: Diagonalization
Make a machine M that works in g(n) time and
“does the opposite” of all f(n) time machines
on at least one input

So L(M) is in TIME(g(n)) but not TIME(f(n))

Intuition: If you have more TIME to work with,
then you can solve strictly more problems!

 TIME HIERARCHY THEOREM

Theorem: For functions f, g where g(n)/(f(n))2 → �

TIME(g(n)) ⊄ TIME(f(n))
Proof IDEA: Diagonalization
Need g(n) >> f(n)2 to ensure that you can simulate
an arbitrary machine running in f(n) time with a
single machine that runs in g(n) time.

So L(M) is in TIME(g(n)) but not TIME(f(n))

Definition: Language B is PSPACE-complete if:

1. B ∈ PSPACE
2. Every A in PSPACE is poly-time reducible to B

(i.e. B is PSPACE-hard)

WWW.FLAC.WS

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34

