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Motivation

e Generative statistical learning
Select p(x;60),0 € © based on z1,...,zp C X

e Conditional statistical learning
Select p(y|z;60),0 € © based on (z1,y1) ..., (@n,yn) C X xX Y

e Ignore Y by assumption: Y = {y1,...,yc}, X x Y = X¢

e ©,X are often continuous, differentiable and locally Euclidean
(manifolds)

e Learning algorithms make implicit or explicit assumptions
about the geometry of ©,X

— For example, MLE for logistic regression assumes © has
Fisher geometry and X is Euclidean (not trivial!)




Thesis Goals:

e Analyze the geometric properties of statistical learning algo-
rithms

e Adapt learning algorithms to alternative geometries obtained
through
— expert knowledge
— axiomatic system

— unsupervised adaption to data

Geometric Formalism

©,X are

e often continuous and differentiable spaces

e often locally Euclidean

e but not always vector spaces (61 — 6, —3x17)

= Use Riemannian geometry formalism, which includes as special
case Euclidean geometry and Fisher geometry

Riemannian Geometry

e A manifold © is a continuous and differentiable set of points
that is locally equivalent to R" (e.g. open subsets of R™)

e Every point 6 € © is equipped with an n-dimensional vector
space Ty© called the tangent space.

o Geometry is determined by a local inner product between
tangent vectors gy(u,v), u,v € Ty©

e Length of tangent vectors u € Ty© defined by

l[ull = v/ g9(u, w)

e Length of paths c: [a,b] — © defined by

L) = [ e

e Distance defined by length of shortest connecting path

d(e,y) = inf L(e) = inf [ /o @0, &) dt




ToM

Geometry of Finite Dimensional Probability Spaces

e The space of positive probability distributions over X, |X| =
m =+ 1, is the m-simplex

P, = {CCERm+1 in>o,Zmi= 1}

)

e Similarly, the space of all positive conditional models for
X, | X|=kand Y,|Y|=m+1is

= P X --- X Py, = Pk (normalized)

- RZTHX}C (non-normalized)

e Fisher geometry is given by the metric

LR dlogp(x;0) dlogp(x;0)
,V) = Vs ;6 d
o) = 32 3w [ i) =200 o, o

e Resulting distance is

d(p(z; 6), p(z;n)) = d(6,1) = 2arccos(Y_ \/0:n;)
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Previous Work (milestones)

e Connections between asymptotic statistics and Fisher geom-
etry on © (Rao '45, Efron '75, Dawid '75)

e Axiomatic derivation of the Fisher geometry (Cencov ’'82,
Campbell '86)

e Relations between I-divergence, KL-divergence, Hellinger dis-
tance and distance under Fisher geometry (Kullback '68,
Csiszar '75, '91)
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e Majority of research traditionally focused on a new interpre-
tation of existing results from asymptotic statistics

e However, some recent algorithmic research, for which the
geometric viewpoint is crucial
— Natural gradient (Amari '98)
— Fisher kernel (Jaakkola & Haussler, '98)

— Spherical subfamily regression (Gous, '98)
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Contributions, Part I:

Geometry of Spaces of Conditional Models
© =P}, and © =R}

e Geometry of Conditional Exponential Models and AdaBoost

e Axiomatic Geometry for Conditional Models
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Geometry of Conditional Exponential Models
and AdaBoost

e By using the concept of non-normalized conditional models
we can view both algorithms in the same framework

dmie(ylz;0) = %e“(rvy)@ Gada(ylz; 0) = e/ @90

e Several connections shown between MLE for logistic regres-
sion and AdaBoost (Friedman et al. '00, Collins et al. '02)

% We show the strongest connection yet: both problem min-
imize the I-divergence subject to expectation constraints,
except that AdaBoost requires the model to be normalized.
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F@, f) = {p e R 3 (@) Y. pyle) (£5(x,y) — Bjlflal) =0, vj}
x Y

n

D) = 3 % <p<y|a:i> jog P _ iy + q<y|asz->)
Y

i=1 q(ylz;)
AdaBoost Logistic Regression
miny  D(p, q0) miny D(p, q0)
primal subject to p € F(p, f) subject to p € F(p, f)
pePr 4
dual min exp loss for e{f(z).0) MLE for Lel/(z4).0)
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% Both problems minimize the I-divergence, which approxi-
mates the distance under the product Fisher geometry

% By allowing soft-constraints, the boosting analogue of MAP
with Gaussian prior is obtained

min, D(p,q0) + U(c)
subject to  p € F(p, f, ¢)
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Axiomatic Geometry for Conditional Models

e The only geometry invariant under sufficient statistics trans-
forms is the Fisher geometry (Cencov, '82)

e Extension to non-normalized models (Campbell '86)

We extend Cencov and Campbell’'s theorems to the conditional
case, for both normalized and non-normalized models
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% A set of axioms that corresponds to sufficient statistics trans-
formation is derived

% A set of metrics on R’fi_xm that satisfies the axioms is identified

% If the conditional models are normalized, the metrics above
reduce to the product Fisher geometry

% Using the fact that the I-divergence approximates the dis-
tance under the product Fisher geometry we now have an
axiomatic framework for conditional exponential models and
AdaBoost
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Contributions, Part 2:

Geometry of Data Spaces X

e Diffusion Kernels on Statistical Manifolds

e Hyperplane Classifiers on the Multinomial Manifold

e Unsupervised Learning of Metrics
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The Embedding Principle

What is the appropriate geometry for X'?

% Embed the data in a manifold of statistical models and use
the axiomatic Fisher geometry

e Embedding 0 : X — © replaces a data point by a model that
is likely to generate it

e Example: multinomial MLE or MAP embeds text documents
(tf) in the multinomial simplex. Such embedding is dense
0(x) =Py.
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Diffusion Kernels

e The heat kernel on a Riemannian manifold is a natural choice
for a kernel that incorporates the Riemannian metric to mea-
sure proximity between points

e f(0,t) = [ Kt(e,?)u(n) dn is the solution to the heat (diffu-
sion) equation % =A f with initial condition u

e Ki(61,05) is the amount of heat arriving at 6, after time ¢ if
the initial heat distribution is concentrated on 65

% Construct the heat kernel for the Fisher geometry of the
embedding space K;(z,y) = K:(8(x),0(y))
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e In some cases, the heat kernel has a closed form (spherical
normal parameter space)

e If closed form not available but distance is known, approxi-
mate the heat kernel with parametrix approximation

d>(8(x),6(y))

Ki(x,y) ~exp | —
o) exp ()

) $o(0(), 9(y))

e Squared distance d2?(z,y) may be further approximated as KL
divergence D(xz,y)
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% Approximated diffusion kernel K:(8(x),0(y)) for text classifi-
cation outperforms other standard kernels (SVM)

% Obtain generalization error bounds based on eigenvalue bounds
in differentiable geometry

% Points in R® may be embedded as spherical normal models
using Dirichlet Process Mixture Model

% Kernel computed by averaging posterior samples

_ 1 N ) ) .
R(z1,20) = = 3 KO (21),00(22)), 09 ~p(61,...,0m|z1,...,2m)
N

=1
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Hyperplane Classifiers on the Multinomial Manifold

e Linear Classifiers - algebraic form

g(x) = sign (Zwlxz) = sign({(w,z)) € {-1,+1}

e Geometrically, the decision surface is a hyperplane or an
affine subspace

{z e R": (z,w) = 0}

e Examples: support vector machine, AdaBoost, logistic re-
gression, perceptron etc.
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Arguments for Linearity

To avoid overfitting in choosing a classifier f € § based on the
training data, the candidate family § has to be

1. rich enough to allow a good description of the data

2. simple enough to avoid overfitting

This is a fundamental tradeoff in which the class of linear decision
surfaces strikes a good balance.
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Distinguishing Properties of a Hyperplane

The set of points equidistant from z,y € R™

Optimal classifier between N(u1,%) and N(up,X)

Isometric to a reduced dimension version of the space

A union of distance minimizing curves (geodesics)

Euclidean geometry is implicit in all the arguments above
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Objections to Euclidean Geometry

Data is often embedded in a Euclidean geometry without careful
considerations

e Topological Objection: Discrete data is only artificially viewed
as a subset of R™

e Geometric Objection: Distances between objects are often
not Euclidean

We dgeneralize the idea of margin based hyperplane clas-
sifiers to Riemannian manifolds. We treat in detail the
analogue of logistic regression in the multinomial manifold
with the Fisher geometry.
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Hyperplanes and Margins in Riemannian Manifolds

Definition: A hyperplane in a manifold M is an autoparallel
submanifold N such that M \ N has two connected components

The first condition guarantees flatness of the hyperplane and the
second guarantees that it is a decision boundary

Definition: The margin of x € M with respect to a hyperplane
N is d(z, N) = inf ey d(z,y)

In the general case hyperplanes may not exist and the margin
may be difficult to compute
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Logistic Regression on the Multinomial Manifold

Logistic regression may be re-parameterized as

p(ylz;0) o exp(y(z,0)) = exp (y]|6]|(x,0))
= exp (ya sign({(z,0))d(x, H )
= p(ylz;0,a)
where Hg is the hyperplane specified by the unit vector 8.

% replace d(z, H;) with a geometry-dependent margin
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MLE for Euclidean and multinomial logistic regression
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% Linear classifiers based on margin arguments may be gener-
alized to non-Euclidean geometries

% Logistic regression based on multinomial geometry compares
favorably to Euclidean logistic regression in text classification

e Generalization to other geometries is not straightforward and
remains an open question
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Metric Learning

e The axiomatic framework motivates the Fisher geometry if
no information other than the parametric family is known.

e If (unlabeled) data is provided, the geometry of X may be fit
by choosing a metric g from a restricted family of metrics G
e Alternative approaches
— Learning a kernel matrix (Lanckriet et al. '02)

— Learning a global distance function (Xing et al. '03)
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% A parametric family of metrics {g)‘ : A € A} defines a para-

metric family of models
-1
(\/detg%>

NI+

p(z;A) =

e If g* is the Fisher information the numerator is the inverse
Jeffreys prior

e The MLE model will have high metric ‘volume’ in regions
that are sparsely populated, hence geodesics will tend to
pass along populated regions.
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The Parametric Family of Metrics

% The following Lie group of diffeomorphisms
A A
FA:PR_)PTL F/\(.Z')z x117 aM )
T-A T A
acts on the simplex by increasing the components of = with
high \; values while remaining in the simplex.
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F\ acting on P, for A = (%,1%,13—0) (left) and F/\_l (right)
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% The parametric family is the set of pull-back metrics of the
Fisher metric through F)
G ={FJ : X €Pyp}.
% The resulting geodesics (under FYJ) are

n+1
d(z,y) = arccos 2
(z,v) (i;\/m./\ Vo

e Note the similarity of the geodesic distance to tfidf cosine
similarity. The learned X fill a role similar to idf weights.
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% To obtain a tfidf like effect we compute the MLE metric
(quite complicated) and take its Lie-group inverse

% Resulting weights are similar to tfidf, yet outperform it, when
used with nearest neighbor classifier for text classification
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Summary

% A geometric analysis of log. regression and AdaBoost [NIPS'02]

% Axiomatic framework for geometry of spaces of conditional
models [UAI'04, IEEE Trans. Information Theory]

% Embedding principle allows geometric variants of
% RBF (heat) kernels [NIPS'03, JMLR]

% logistic regression [ICML'04]

% Unsupervised learning of metrics [UAI'03]
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