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Motivation

• Generative statistical learning

Select p(x ; θ), θ ∈ Θ based on x1, . . . , xn ⊂ X

• Conditional statistical learning

Select p(y|x ; θ), θ ∈ Θ based on (x1, y1) . . . , (xn, yn) ⊂ X × Y

• Ignore Y by assumption: Y = {y1, . . . , yc},X × Y ∼= X c
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• Θ,X are often continuous, differentiable and locally Euclidean

(manifolds)

• Learning algorithms make implicit or explicit assumptions

about the geometry of Θ,X

– For example, MLE for logistic regression assumes Θ has

Fisher geometry and X is Euclidean (not trivial!)
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Thesis Goals:

• Analyze the geometric properties of statistical learning algo-

rithms

• Adapt learning algorithms to alternative geometries obtained

through

– expert knowledge

– axiomatic system

– unsupervised adaption to data
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Geometric Formalism

Θ,X are

• often continuous and differentiable spaces

• often locally Euclidean

• but not always vector spaces (θ1 − θ2, −3x1?)

⇒ Use Riemannian geometry formalism, which includes as special

case Euclidean geometry and Fisher geometry
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Riemannian Geometry

• A manifold Θ is a continuous and differentiable set of points

that is locally equivalent to Rn (e.g. open subsets of Rn)

• Every point θ ∈ Θ is equipped with an n-dimensional vector

space TθΘ called the tangent space.

• Geometry is determined by a local inner product between

tangent vectors gθ(u, v), u, v ∈ TθΘ
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• Length of tangent vectors u ∈ TθΘ defined by

‖u‖ =
√

gθ(u, u)

• Length of paths c : [a, b] → Θ defined by

L(c) =

∫ b

a
‖ċ(t)‖ dt

• Distance defined by length of shortest connecting path

d(x, y) = inf
c
L(c) = inf

c

∫

√

gc(t)(ċ(t), ċ(t)) dt
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Geometry of Finite Dimensional Probability Spaces

• The space of positive probability distributions over X , |X | =

m+ 1, is the m-simplex

Pm =







x ∈ R
m+1 : xi > 0,

∑

i

xi = 1







• Similarly, the space of all positive conditional models for

X , |X | = k and Y, |Y| = m+ 1 is

– Pm × · · · × Pm = Pkm (normalized)

– R
m+1×k
+ (non-normalized)
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• Fisher geometry is given by the metric

gθ(u, v) =
n
∑

i=1

n
∑

j=1

uivj

∫

p(x ; θ)
∂ log p(x ; θ)

∂θi

∂ log p(x ; θ)

∂θj
dx

• Resulting distance is

d(p(x ; θ), p(x ; η)) = d(θ, η) = 2arccos(
∑

√

θiηi)
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Previous Work (milestones)

• Connections between asymptotic statistics and Fisher geom-

etry on Θ (Rao ’45, Efron ’75, Dawid ’75)

• Axiomatic derivation of the Fisher geometry (Čencov ’82,

Campbell ’86)

• Relations between I-divergence, KL-divergence, Hellinger dis-

tance and distance under Fisher geometry (Kullback ’68,

Csiszár ’75, ’91)
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• Majority of research traditionally focused on a new interpre-

tation of existing results from asymptotic statistics

• However, some recent algorithmic research, for which the

geometric viewpoint is crucial

– Natural gradient (Amari ’98)

– Fisher kernel (Jaakkola & Haussler, ’98)

– Spherical subfamily regression (Gous, ’98)
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Contributions, Part I:

Geometry of Spaces of Conditional Models

Θ = P
k
m and Θ = R

m+1×k
+

• Geometry of Conditional Exponential Models and AdaBoost

• Axiomatic Geometry for Conditional Models
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Geometry of Conditional Exponential Models

and AdaBoost

• By using the concept of non-normalized conditional models

we can view both algorithms in the same framework

qmle(y|x ; θ) =
1

Z
e〈f(x,y),θ〉 qada(y|x ; θ) = e〈f(x,y),θ〉

• Several connections shown between MLE for logistic regres-

sion and AdaBoost (Friedman et al. ’00, Collins et al. ’02)

F We show the strongest connection yet: both problem min-

imize the I-divergence subject to expectation constraints,

except that AdaBoost requires the model to be normalized.
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F(p̃, f) =







p ∈ R
k×m
+ :

∑

x
p̃(x)

∑

y
p(y|x)

(

fj(x, y)−Ep̃[fj|x]
)

= 0, ∀j







D(p, q) =
n
∑

i=1

∑

y

(

p(y|xi) log
p(y|xi)

q(y|xi)
− p(y|xi) + q(y|xi)

)

AdaBoost Logistic Regression

primal

minp D(p, q0)

subject to p ∈ F(p̃, f)

minp D(p, q0)

subject to p ∈ F(p̃, f)

p ∈ Pkm−1

dual min exp loss for e〈f(x,y),θ〉 MLE for 1
Ze

〈f(x,y),θ〉
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F Both problems minimize the I-divergence, which approxi-

mates the distance under the product Fisher geometry

F By allowing soft-constraints, the boosting analogue of MAP

with Gaussian prior is obtained

minp D(p, q0) + U(c)

subject to p ∈ F(p̃, f, c)
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Axiomatic Geometry for Conditional Models

• The only geometry invariant under sufficient statistics trans-

forms is the Fisher geometry (Čencov, ’82)

• Extension to non-normalized models (Campbell ’86)

We extend Čencov and Campbell’s theorems to the conditional

case, for both normalized and non-normalized models
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F A set of axioms that corresponds to sufficient statistics trans-

formation is derived

F A set of metrics on R
k×m
+ that satisfies the axioms is identified

F If the conditional models are normalized, the metrics above

reduce to the product Fisher geometry

F Using the fact that the I-divergence approximates the dis-

tance under the product Fisher geometry we now have an

axiomatic framework for conditional exponential models and

AdaBoost
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Contributions, Part 2:

Geometry of Data Spaces X

• Diffusion Kernels on Statistical Manifolds

• Hyperplane Classifiers on the Multinomial Manifold

• Unsupervised Learning of Metrics
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The Embedding Principle

What is the appropriate geometry for X?

F Embed the data in a manifold of statistical models and use

the axiomatic Fisher geometry

• Embedding θ̂ : X → Θ replaces a data point by a model that

is likely to generate it

• Example: multinomial MLE or MAP embeds text documents

(tf) in the multinomial simplex. Such embedding is dense

θ̂(X) = Pn.
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Diffusion Kernels

• The heat kernel on a Riemannian manifold is a natural choice

for a kernel that incorporates the Riemannian metric to mea-

sure proximity between points

• f(θ, t) =
∫

Kt(θ, η)u(η) dη is the solution to the heat (diffu-

sion) equation ∂f
∂t

=M f with initial condition u

• Kt(θ1, θ2) is the amount of heat arriving at θ1 after time t if

the initial heat distribution is concentrated on θ2

F Construct the heat kernel for the Fisher geometry of the

embedding space Kt(x, y) = Kt(θ̂(x), θ̂(y))
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• In some cases, the heat kernel has a closed form (spherical

normal parameter space)

• If closed form not available but distance is known, approxi-

mate the heat kernel with parametrix approximation

Kt(x, y) ≈ exp

(

−
d2(θ̂(x), θ̂(y))

4t

)

ψ0(θ̂(x), θ̂(y))

• Squared distance d2(x, y) may be further approximated as KL

divergence D(x, y)
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F Approximated diffusion kernel Kt(θ̂(x), θ̂(y)) for text classifi-

cation outperforms other standard kernels (SVM)

F Obtain generalization error bounds based on eigenvalue bounds

in differentiable geometry
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F Points in Rn may be embedded as spherical normal models

using Dirichlet Process Mixture Model

F Kernel computed by averaging posterior samples

K̃(x1, x2) =
1

N

N
∑

i=1

K(θ(i)(x1), θ
(i)(x2)), θ

(i) ∼ p(θ1, . . . , θm|x1, . . . , xm)
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Hyperplane Classifiers on the Multinomial Manifold

• Linear Classifiers - algebraic form

ŷ(x) = sign





∑

i

wixi



 = sign(〈w, x〉) ∈ {−1,+1}

• Geometrically, the decision surface is a hyperplane or an

affine subspace

{x ∈ R
n : 〈x,w〉 = 0}

• Examples: support vector machine, AdaBoost, logistic re-

gression, perceptron etc.
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Arguments for Linearity

To avoid overfitting in choosing a classifier f ∈ F based on the

training data, the candidate family F has to be

1. rich enough to allow a good description of the data

2. simple enough to avoid overfitting

This is a fundamental tradeoff in which the class of linear decision

surfaces strikes a good balance.
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Distinguishing Properties of a Hyperplane

• The set of points equidistant from x, y ∈ R
n

• Optimal classifier between N(µ1,Σ) and N(µ2,Σ)

• Isometric to a reduced dimension version of the space

• A union of distance minimizing curves (geodesics)

Euclidean geometry is implicit in all the arguments above
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Objections to Euclidean Geometry

Data is often embedded in a Euclidean geometry without careful

considerations

• Topological Objection: Discrete data is only artificially viewed

as a subset of Rn

• Geometric Objection: Distances between objects are often

not Euclidean

We generalize the idea of margin based hyperplane clas-

sifiers to Riemannian manifolds. We treat in detail the

analogue of logistic regression in the multinomial manifold

with the Fisher geometry.
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Hyperplanes and Margins in Riemannian Manifolds

Definition: A hyperplane in a manifold M is an autoparallel

submanifold N such that M \N has two connected components

The first condition guarantees flatness of the hyperplane and the

second guarantees that it is a decision boundary

Definition: The margin of x ∈ M with respect to a hyperplane

N is d(x,N) = infy∈N d(x, y)

In the general case hyperplanes may not exist and the margin

may be difficult to compute
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Logistic Regression on the Multinomial Manifold

Logistic regression may be re-parameterized as

p(y|x ; θ) ∝ exp(y〈x, θ〉) = exp
(

y‖θ‖〈x, θ̂〉
)

= exp
(

y α sign(〈x, θ̂〉)d(x,Hθ̂)
)

= p(y|x ; θ̂, α)

where Hθ̂ is the hyperplane specified by the unit vector θ̂.

F replace d(x,Hû) with a geometry-dependent margin
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MLE for Euclidean and multinomial logistic regression
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F Linear classifiers based on margin arguments may be gener-

alized to non-Euclidean geometries

F Logistic regression based on multinomial geometry compares

favorably to Euclidean logistic regression in text classification

• Generalization to other geometries is not straightforward and

remains an open question
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Metric Learning

• The axiomatic framework motivates the Fisher geometry if

no information other than the parametric family is known.

• If (unlabeled) data is provided, the geometry of X may be fit

by choosing a metric g from a restricted family of metrics G

• Alternative approaches

– Learning a kernel matrix (Lanckriet et al. ’02)

– Learning a global distance function (Xing et al. ’03)
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F A parametric family of metrics {gλ : λ ∈ Λ} defines a para-

metric family of models

p(x ;λ) =
1

Z

(
√

det gλx

)−1

• If gλ is the Fisher information the numerator is the inverse

Jeffreys prior

• The MLE model will have high metric ‘volume’ in regions

that are sparsely populated, hence geodesics will tend to

pass along populated regions.
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The Parametric Family of Metrics

F The following Lie group of diffeomorphisms

Fλ : Pn → Pn Fλ(x) =

(

x1λ1

x · λ
, . . . ,

xn+1λn+1

x · λ

)

,

acts on the simplex by increasing the components of x with

high λi values while remaining in the simplex.
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Fλ acting on P2 for λ = ( 2
10,

5
10,

3
10) (left) and F−1

λ (right)
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F The parametric family is the set of pull-back metrics of the

Fisher metric through Fλ

G = {F ∗λJ : λ ∈ Pn}.

F The resulting geodesics (under F ∗λJ ) are

d(x, y) = arccos





n+1
∑

i=1

√

xiλi

x · λ

√

yiλi

y · λ



 .

• Note the similarity of the geodesic distance to tfidf cosine

similarity. The learned λ fill a role similar to idf weights.
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F To obtain a tfidf like effect we compute the MLE metric

(quite complicated) and take its Lie-group inverse

F Resulting weights are similar to tfidf, yet outperform it, when

used with nearest neighbor classifier for text classification
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Summary

F A geometric analysis of log. regression and AdaBoost [NIPS’02]

F Axiomatic framework for geometry of spaces of conditional

models [UAI’04, IEEE Trans. Information Theory]

F Embedding principle allows geometric variants of

F RBF (heat) kernels [NIPS’03, JMLR]

F logistic regression [ICML’04]

F Unsupervised learning of metrics [UAI’03]
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