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Abstract

Statistical machine learning algorithms deal with the problem of selecting an appropriate

statistical model from a model space Θ based on a training set {xi}N
i=1

⊂ X or {(xi, yi)}N
i=1

⊂
X × Y. In doing so they either implicitly or explicitly make assumptions on the geometries

of the model space Θ and the data space X . Such assumptions are crucial to the success of

the algorithms as different geometries are appropriate for different models and data spaces.

By studying these assumptions we are able to develop new theoretical results that enhance our

understanding of several popular learning algorithms. Furthermore, using geometrical reasoning

we are able to adapt existing algorithms such as radial basis kernels and linear margin classifiers

to non-Euclidean geometries. Such adaptation is shown to be useful when the data space does

not exhibit Euclidean geometry. In particular, we focus in our experiments on the space of text

documents that is naturally associated with the Fisher information metric on corresponding

multinomial models.
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Geoffrey J. Gordon, Michael I. Jordan, Larry Wasserman
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Mathematical Notation

Following is a list of the most frequent mathematical notations in the thesis.

X Set/manifold of data points

Θ Set/manifold of statistical models

X × Y Cartesian product of sets/manifold

Xk The Cartesian product of X with itself k times

‖ · ‖ The Euclidean norm

〈·, ·〉 Euclidean dot product between two vectors

p(x ; θ) A probability model for x parameterized by θ

p(y|x ; θ) A probability model for y, conditioned on x and parameterized by θ

D(·, ·),Dr(·, ·) I-divergence between two models

TxM The tangent space to the manifold M at x ∈M
gx(u, v) A Riemannian metric at x associated with the tangent vectors u, v ∈ TxM
{∂i}n

i=1, {ei}n
i=1 The standard basis associated with the vector space TxM∼= Rn

G(x) The Gram matrix of the metric g, [G(x)]ij = gx(ei, ej)

Jθ(u, v) The Fisher information metric at the model θ associated with the vectors u, v

δx(u, v) The induced Euclidean local metric δx(u, v) = 〈u, v〉
δx,y Kronecker’s delta δx,y = 1 if x = y and 0 otherwise

ι : A→ X The inclusion map ι(x) = x from A ⊂ X to X.

N,Q,R The natural, rational and real numbers respectively

R+ The set of positive real numbers

Rk×m The set of real k ×m matrices

[A]i The i-row of the matrix A

{∂ab}k,m
a,b=1 The standard basis associated with TxRk×m

X The topological closure of X

Hn The upper half plane {x ∈ Rn : xn ≥ 0}
Sn The n-sphere Sn = {x ∈ Rn+1 :

∑
i x

2
i = 1}

Sn
+ The positive orthant of the n-sphere Sn

+ = {x ∈ Rn+1
+ :

∑
i x

2
i = 1}

Pn The n-simplex Pn = {x ∈ Rn+1
+ :

∑
i xi = 1}

f ◦ g Function composition f ◦ g(x) = f(g(x))

C∞(M,N ) The set of infinitely differentiable functions from M to N
f∗u The push-forward map f∗ : TxM→ Tf(x)N of u associated with f : M→N
f∗g The pull-back metric on M associated with (N , g) and f : M→N
dg(·, ·), d(·, ·) The geodesic distance associated with the metric g

dvol g(θ) The volume element of the metric gθ, dvol g(θ) =
√

det gθ =
√

detG(θ)

∇XY The covariant derivative of the vector field Y in the direction

of the vector field X associated with the connection ∇
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ℓ(θ) The log-likelihood function

E(θ) The AdaBoost.M2 exponential loss function

p̃ Empirical distribution associated with a training set D ⊂ X × Y
û The L2 normalized version of the vector u

d(x, S) The distance from a point to a set d(x, S) = infy∈S d(x, y)
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1 Introduction

There are two fundamental spaces in machine learning. The first space X consists of data points

and the second space Θ consists of possible learning models. In statistical learning, Θ is usually a

space of statistical models, {p(x ; θ) : θ ∈ Θ} in the generative case or {p(y |x ; θ) : θ ∈ Θ} in the

discriminative case. The space Θ can be either a low dimensional parametric space as in parametric

statistics, or the space of all possible models as in non-parametric statistics.

Learning algorithms select a model θ ∈ Θ based on a training sample {xi}n
i=1 ⊂ X in the

generative case or {(xi, yi)}n
i=1 ⊂ X×Y in the discriminative case. In doing so they, either implicitly

or explicitly, make certain assumptions about the geometries of X and Θ. In the supervised case,

we focus on the classification setting, where Y = {y1, . . . , yk} is a finite set of unordered classes.

By this we mean that the space

X × Y = X × · · · × X = X k

has the product geometry over X . This is a common assumption that makes sense in many practical

situations, where there is no clear relation or hierarchy between the classes. As a result, we will

mostly ignore the role of Y and restrict our study of data spaces to X .

Data and model spaces are rarely Euclidean spaces. In data space, there is rarely any meaning

to adding or subtracting two data points or multiplying a data point by a real scalar. For example,

most representations of text documents as vectors are non-negative and multiplying them by a

negative scalar does not yield another document. Similarly, images I are usually represented as

matrices whose entries are in some bounded interval of the real line I ∈ [a, b]k×m and there is

no meaning to matrices with values outside that range that are obtained by addition or scalar

multiplication. The situation is similar in model spaces. For example, typical parametric families

such as normal, exponential, Dirichlet or multinomial, as well as the set of non-negative, normalized

distributions are not Euclidean spaces.

In addition to the fact that data and model spaces are rarely Rn as topological spaces, the

geometric structure of Euclidean spaces, expressed through the Euclidean distance

‖x− y‖ def
=

√∑

i

|xi − yi|2

is artificial on most data and model spaces. This holds even in many cases when the data or models

are real vectors. To study the geometry of X and Θ, it is essential to abandon the realm of Euclidean

geometry in favor of a new, more flexible class of geometries. The immediate generalization of

Euclidean spaces, Banach and Hilbert spaces, are still vector spaces, and by the arguments above,

are not a good model for X and Θ. Furthermore, the geometries of Banach and Hilbert spaces are

quite restricted, as is evident from the undesirable linear scaling of the distance

dE(cx, cy) = |c| dE(x, y) ∀c ∈ R.
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Despite the fact that most data and model spaces are not Euclidean, they share two important

properties: they are smooth and they are locally Euclidean. Manifolds are the natural generaliza-

tion of Euclidean spaces to locally Euclidean spaces and differentiable manifolds are their smooth

counterparts. Riemannian geometry is a mathematical theory of geometries on such smooth, locally

Euclidean spaces. In this framework, the geometry of a space is specified by a local inner product

gx(·, ·), x ∈ X between tangent vectors called the Riemannian metric. This inner product translates

into familiar geometric quantities such as distance, curvature and angles. Using the Riemannian

geometric approach to study the geometries of X and Θ allows us to draw upon the vast mathe-

matical literature in this topic. Furthermore, it is an adequate framework as it encompasses most

commonly used geometries in machine learning. For example, Euclidean geometry on X = Rn is

achieved by setting the local metric gx(u, v), x ∈ X to be the Euclidean inner product

δx(u, v)
def
= 〈u, v〉 def

=
n∑

i=1

uivi.

The information geometry on a space of statistical models Θ ⊂ Rn is achieved by setting the metric

gθ(u, v), θ ∈ Θ to be the Fisher information Jθ(u, v)

Jθ(u, v)
def
=

n∑

i=1

n∑

j=1

uivj

∫
p(x ; θ)

∂

∂θi
log p(x ; θ)

∂

∂θj
log p(x ; θ) dx (1)

where the above integral is replaced with a sum if X is discrete.

This thesis is concerned with applying tools from Riemannian geometry to study the relationship

between statistical learning algorithms and different geometries of X and Θ. As a result, we

gain considerable insight into current learning algorithms and we are able to design powerful new

techniques that often outperform the current state-of-the-art.

We start the thesis with Section 2 that contains background from Riemannian geometry that is

relevant to most subsequent sections. Additional background that is relevant to a specific section

will appear in that section alone. The treatment in Section 2 is short and often not rigorous. For a

more complete description most textbooks in Riemannian geometry will suffice. Section 3 gives an

overview of relevant research in the interface of machine learning and statistics, and Riemannian

geometry and Section 4 applies the mathematical theory of Section 2 to spaces of probability

models.

In Section 5 we study the geometry of the space Θ of conditional models underlying the algorithms

logistic regression and AdaBoost. We prove the surprising result that both algorithms solve the

same primal optimization problem with the only difference being that AdaBoost lacks normalization

constraints, hence resulting in non-normalized models. Furthermore, we show that both algorithms

implicitly minimize the conditional I-divergence

D(p, q) =
n∑

i=1

∑

y

(
p(y|xi) log

p(y|xi)

q(y|xi)
− p(y|xi) + q(y|xi)

)

8



to a uniform model q. Despite the fact that the I-divergence is not a metric distance function,

it is related to a distance under a specific geometry on Θ. This geometry is the product Fisher

information geometry whose study is pursued in Section 6.

By generalizing the theorems of Čencov and Campbell, Section 6 shows that the only geometry

on the space of conditional distributions consistent with a basic set of axioms is the product

Fisher information. The results of Sections 5 and 6, provide an axiomatic characterization of the

geometries underlying logistic regression and AdaBoost. Apart from providing a substantial new

understanding of logistic regression and AdaBoost, this analysis provides, for the first time a theory

of information geometry for conditional models.

The axiomatic framework mentioned above provides a natural geometry on the space of dis-

tributions Θ. It is less clear what should be an appropriate geometry for the data space X . A

common pitfall shared by many classifiers is to assume that X should be endowed with a Euclidean

geometry. Many algorithms, such as radial basis machines and Euclidean k-nearest neighbor, make

this assumption explicit. On the other hand, Euclidean geometry is implicitly assumed in linear

classifiers such as logistic regression, linear support vector machines, boosting and the perceptron.

Careful selection of an appropriate geometry for X and designing classifiers that respect it should

produce better results than the naive Euclidean approach.

In Section 7 we propose the following principle to obtain a natural geometry on the data space.

By assuming the data is generated by statistical models in the space M, we embed data points

x ∈ X into M and thus obtain a natural geometry on the data space – namely the Fisher geometry

on M. For example, consider the data space X of text documents in normalized term frequency

(tf) representation embedded in the space of all multinomial models M. Assuming the documents

are generated from multinomial distributions we obtain the maximum likelihood embedding θ̂MLE :

X →M which is equivalent to the inclusion map

ι : X →֒ M, ι(x) = x.

Turning to Čencov’s theorem and selecting the Fisher geometry on M we obtain a natural geometry

on the closure of the data space X = M.

The embedding principle leads to a general framework for adapting existing algorithms to the

Fisher geometry. In Section 9 we generalize the notion of linear classifiers to non-Euclidean geome-

tries and derive in detail the multinomial analogue of logistic regression. Similarly, in Section 8

we generalize radial basis kernel to non-Euclidean geometries by approximating the solution of the

geometric diffusion equation. In both cases, the resulting non-Euclidean generalizations outperform

its Euclidean counterpart, as measured by classification accuracy in several text classification tasks.

The Fisher geometry is a natural choice if the only known information is the statistical family

that generates the data. In the presence of actual data {x1, . . . , xn} ⊂ X it may be possible to

induce a geometry that is better suited for it. In Section 10 we formulate a learning principle for
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the geometry of X that is based on maximizing the inverse volume of the given training set. When

applied to the space of text documents in tf representation, the learned geometry is similar to, but

outperforms the popular tf-idf geometry.

We conclude with a discussion in Section 11. The first two appendices contain technical infor-

mation relevant to Sections 5 and 10. Appendix D contains a summary of the major contributions

included in this thesis, along with relevant publications.

2 Relevant Concepts from Riemannian Geometry

In this section we describe concepts from Riemannian geometry that are relevant to most of the

thesis, with the possible exception of Section 5. Other concepts from Riemannian geometry that

are useful only for a specific section will be introduced later in the thesis as needed. For more

details refer to any textbook discussing Riemannian geometry. Milnor (1963) and Spivak (1975)

are particularly well known classics and Lee (2002) is a well-written contemporary textbook.

Riemannian manifolds are built out of three layers of structure. The topological layer is suitable

for treating topological notions such as continuity and convergence. The differentiable layer allows

extending the notion of differentiability to the manifold and the Riemannian layer defines rigid

geometrical quantities such as distances, angles and curvature on the manifold. In accordance with

this philosophy, we start below with the definition of topological manifold and quickly proceed to

defining differentiable manifolds and Riemannian manifolds.

2.1 Topological and Differentiable Manifolds

A homeomorphism between two topological spaces X and Y is a bijection φ : X → Y for which both

φ and φ−1 are continuous. We then say that X and Y are homeomorphic and essentially equivalent

from a topological perspective. An n-dimensional topological manifold M is a topological subspace

of Rm,m ≥ n that is locally equivalent to Rn i.e. for every point x ∈ M there exists an open

neighborhood U ⊂ M that is homeomorphic to Rn. The local homeomorphisms in the above

definition φU : U ⊂ M → Rn are usually called charts. Note that this definition of a topological

manifold makes use of an ambient Euclidean space Rm. While sufficient for our purposes, such a

reference to Rm is not strictly necessary and may be discarded at the cost of certain topological

assumptions1 (Lee, 2000). Unless otherwise noted, for the remainder of this section we assume that

all manifolds are of dimension n.

An n-dimensional topological manifold with a boundary is defined similarly to an n-dimensional

topological manifold, except that each point has a neighborhood that is homeomorphic to an open

subset of the upper half plane

Hn def
= {x ∈ Rn : xn ≥ 0} .

1The general definition, that uses the Hausdorff and second countability properties, is equivalent to the ambient

Euclidean space definition by Whitney’s embedding theorem. Nevertheless, it is considerably more elegant to do

away with the excess baggage of an ambient space.

10



M
x

y H2

Figure 1: A 2-dimensional manifold with a boundary. The boundary ∂M is marked by a black

contour. For example, x is a boundary point x ∈ ∂M while y ∈ IntM is an interior point.

It is possible to show that in this case some points x ∈ M have neighborhoods homeomorphic to

U ⊂ Hn such that ∀y ∈ U, yn > 0 while other points are homeomorphic to a subset U ⊂ Hn that

intersects the line yn = 0. These two sets of points are disjoint and are called the interior and

boundary of the manifold M and are denoted by IntM and ∂M respectively (Lee, 2000).

Figure 1 illustrates the concepts associated with a manifold with a boundary. Note that a

manifold is a manifold with a boundary but the converse does not hold in general. However, if M
is an n-dimensional manifold with a boundary then IntM is an n dimensional manifold and ∂M is

an n − 1 dimensional manifold. The above definition of boundary and interior of a manifold may

differ from the topological notions of boundary and interior, associated with an ambient topological

space. When in doubt, we will specify whether we refer to the manifold or topological interior and

boundary. We return to manifolds with boundary at the end of this Section.

We are now in a position to introduce the differentiable structure. First recall that a mapping

between two open sets of Euclidean spaces f : U ⊂ Rk → V ⊂ Rl is infinitely differentiable, denoted

by f ∈ C∞(Rk,Rl) if f has continuous partial derivatives of all orders. If for every pair of charts

φU , φV the transition function defined by

ψ : φV (U ∩ V ) ⊂ Rn → Rn, ψ = φU ◦ φ−1
V

(when U ∩ V 6= ∅) is a C∞(Rn,Rn) differentiable map then M is called an n-dimensional differen-

tiable manifold. The charts and transition function for a 2-dimensional manifold are illustrated in

Figure 2.

Differentiable manifolds of dimensions 1 and 2 may be visualized as smooth curves and surfaces

in Euclidean space. Examples of n-dimensional differentiable manifolds are the Euclidean space

Rn, the n-sphere

Sn def
=

{
x ∈ Rn+1 :

n∑

i=1

x2
i = 1

}
, (2)
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M

φV : V → R2

φU : U → R2

domψ = φV (U ∩ V )

ψ = φU ◦ φ−1
V

U
V

rangeψ = φU (U ∩ V )

Figure 2: Two neighborhoods U, V in a 2-dimensional manifold M, the coordinate charts φU , φV

and the transition function ψ between them.

its positive orthant

Sn
+

def
=

{
x ∈ Rn+1 :

n∑

i=1

x2
i = 1, ∀i xi > 0

}
, (3)

and the n-simplex

Pn
def
=

{
x ∈ Rn+1 :

n∑

i=1

xi = 1, ∀i xi > 0

}
. (4)

We will keep these examples in mind as they will keep appearing throughout the thesis.

Using the charts, we can extend the definition of differentiable maps to real valued functions on

manifolds f : M → R and functions from one manifold to another f : M → N . A continuous

function f : M → R is said to be C∞(M,R) differentiable if for every chart φU the function

f ◦ φ−1
U ∈ C∞(Rn,R). A continuous mapping between two differentiable manifolds f : M→ N is

said to be C∞(M,N ) differentiable if

∀r ∈ C∞(N ,R), r ◦ f ∈ C∞(M,R).

A diffeomorphism between two manifoldsM,N is a bijection f : M→N such that f ∈ C∞(M,N )

and f−1 ∈ C∞(N ,M).
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P2

S2

TxP2

TxS2

Figure 3: Tangent spaces of the 2-simplex TxP2 and the 2-sphere TxS2.

2.2 The Tangent Space

For every point x ∈ M, we define an n-dimensional real vector space TxM, isomorphic to Rn,

called the tangent space. The elements of the tangent space, the tangent vectors v ∈ TxM, are

usually defined as directional derivatives at x operating on C∞(M,R) differentiable functions or

as equivalence classes of curves having the same velocity vectors at x (Spivak, 1975; Lee, 2002).

Intuitively, tangent spaces and tangent vectors are a generalization of geometric tangent vectors and

spaces for smooth curves and two dimensional surfaces in the ambient R3. For an n-dimensional

manifold M embedded in an ambient Rm the tangent space TxM is a copy of Rn translated so that

its origin is positioned at x. See Figure 3 for an illustration of this concept for two dimensional

manifolds in R3.

In many cases the manifold M is a submanifold of an m-dimensional manifold N , m ≥ n.

Considering M and its ambient space Rm,m ≥ n is one special case of this phenomenon. For

example, both Pn and Sn defined in (2),(4) are submanifolds of Rn+1. In these cases, the tangent

space of the submanifold TxM is a vector subspace of TxN ∼= Rm and we may represent tangent

vectors v ∈ TxM in the standard basis {∂i}m
i=1 of the embedding tangent space TxRm as v =∑m

i=1 vi∂i. For example, for the simplex and the sphere we have (see Figure 3)

TxPn =

{
v ∈ Rn+1 :

n+1∑

i=1

vi = 0

}
TxSn =

{
v ∈ Rn+1 :

n+1∑

i=1

vixi = 0

}
. (5)
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A C∞ vector field2 X on M is a smooth assignment of tangent vectors to each point of M. We

denote the set of vector fields on M as X(M) and Xp is the value of the vector field X at p ∈M.

Given a function f ∈ C∞(M,R) we define the action of X ∈ X(M) on f as

Xf ∈ C∞(M,R) (Xf)(p) = Xp(f)

in accordance with our definition of tangent vectors as directional derivatives of functions.

2.3 Riemannian Manifolds

A Riemannian manifold (M, g) is a differentiable manifold M equipped with a Riemannian metric

g. The metric g is defined by a local inner product on tangent vectors

gx(·, ·) : TxM× TxM→ R, x ∈M

that is symmetric, bi-linear and positive definite

gx(u, v) = gx(v, u)

gx

(
n∑

i=1

ui,
n∑

i=1

vi

)
=

n∑

i=1

n∑

j=1

gx(ui, vj)

gx(u, u) ≥ 0

gx(u, u) = 0 ⇔ u = 0

and is also C∞ differentiable in x. By the bi-linearity of the inner product g, for every u, v ∈ TxM

gx(v, u) =

n∑

i=1

n∑

j=1

viujgx(∂i, ∂j)

and gx is completely described by {gx(∂i, ∂j) : 1 ≤ i, j ≤ n} – the set of inner products between the

basis elements {∂i}n
i=1 of TxM. The Gram matrix [G(x)]ij = gx(∂i, ∂j) is a symmetric and positive

definite matrix that completely describes the metric gx.

The metric enables us to define lengths of tangent vectors v ∈ TxM by
√
gx(v, v) and lengths of

curves γ : [a, b] →M by

L(γ) =

∫ b

a

√
gx(γ̇(t), γ̇(t))dt

where γ̇(t) is the velocity vector of the curve γ at time t. Using the above definition of lengths of

curves, we can define the distance dg(x, y) between two points x, y ∈M as

dg(x, y) = inf
γ∈Γ(x,y)

∫ b

a

√
gx(γ̇(t), γ̇(t))dt

2The precise definition of a C
∞ vector field requires the definition of the tangent bundle. We do not give this

definition since it is somewhat technical and does not contribute much to our discussion.
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where Γ(x, y) is the set of piecewise differentiable curves connecting x and y. The distance dg is

called geodesic distance and the minimal curve achieving it is called a geodesic curve3. Geodesic

distance satisfies the usual requirements of a distance and is compatible with the topological struc-

ture of M as a topological manifold. If the manifold in question is clear from the context, we will

remove the subscript and use d for the geodesic distance.

A manifold is said to be geodesically complete if any geodesic curve c(t), t ∈ [a, b], can be

extended to be defined for all t ∈ R. It can be shown, that the following are equivalent

• (M, g) is geodesically complete

• dg is a complete metric on M

• closed and bounded subsets of M are compact.

In particular, compact manifolds are geodesically complete. The Hopf-Rinow theorem asserts that

if M is geodesically complete, then any two points can be joined by a geodesic.

Given two Riemannian manifolds (M, g), (N , h) and a diffeomorphism between them f : M→N
we define the push-forward and pull-back maps below4

Definition 1. The push-forward map f∗ : TxM → Tf(x)N , associated with the diffeomorphism

f : M→N is the mapping that satisfies

v(r ◦ f) = (f∗v)r, ∀r ∈ C∞(N ,R).

The push-forward is none other than a coordinate free version of the Jacobian matrix J or the

total derivative operator associated with the local chart representation of f . In other words, if we

define the coordinate version of f : M→N

f̃ = φ ◦ f ◦ ψ−1 : Rn → Rm

where φ,ψ are local charts of N ,M then the push-forward map is

f∗u = Ju =
∑

i



∑

j

∂f̃i

∂xj
uj


 ei

where J is the Jacobian of f̃ and f̃i is the i-component function of f̃ : Rm → Rn. Intuitively, as

illustrated in Figure 4, the push-forward transforms velocity vectors of curves γ to velocity vectors

of transformed curves f(γ).

Definition 2. Given (N , h) and a diffeomorphism f : M → N we define a metric f∗h on M
called the pull-back metric by the relation

(f∗h)x(u, v) = hf(x)(f∗u, f∗v).

3It is also common to define geodesics as curves satisfying certain differential equations. The above definition,

however, is more intuitive and appropriate for our needs.
4The push-forward and pull-back maps may be defined more generally using category theory as covariant and

contravariant functors (Lee, 2000).
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M N

fTxM
Tf(x)N

Figure 4: The map f : M→ N defines a push forward map f∗ : TxM→ Tf(x)N that transforms

velocity vectors of curves to velocity vectors of the transformed curves.

Definition 3. An isometry is a diffeomorphism f : M→ N between two Riemannian manifolds

(M, g), (N , h) for which

gx(u, v) = (f∗h)x(u, v) ∀x ∈M, ∀u, v ∈ TxM.

Isometries, as defined above, identify two Riemannian manifolds as identical in terms of their

Riemannian structure. Accordingly, isometries preserve all the geometric properties including the

geodesic distance function dg(x, y) = dh(f(x), f(y)). Note that the above definition of an isometry

is defined through the local metric in contrast to the global definition of isometry in other branches

of mathematical analysis.

A smooth and Riemannian structure may be defined over a topological manifold with a boundary

as well. The definition is a relatively straightforward extension using the notion of differentiability

of maps between non-open sets in Rn (Lee, 2002). Manifolds with a boundary are important for

integration and boundary value problems; our use of them will be restricted to Section 8.

In the following section we discuss some previous work and then proceed to examine manifolds

of probability distributions and their Fisher geometry.

3 Previous Work

Connections between statistics and Riemannian geometry have been discovered and studied for over

fifty years. We give below a roughly chronological overview of this line of research. The overview

presented here is not exhaustive. It is intended to review some of the influential research that is

closely related to this thesis. For more information on this research area consult the monographs

(Murray & Rice, 1993; Kass & Voss, 1997; Amari & Nagaoka, 2000). Additional previous work

that is related to a specific section of this thesis will be discussed inside that section.
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Rao (1945) was the first to point out that a statistical family can be considered as a Riemannian

manifold with the metric determined by the Fisher information quantity. Efron (1975) found a

relationship between the geometric curvature of a statistical model and Fisher and Rao’s theory

of second order efficiency. In this sense, a model with small curvature enjoys nice asymptotic

properties and a model with high curvature implies a break-down of these properties. Since Efron’s

result marks a historic breakthrough of geometry in statistics we describe it below in some detail.

Recall that by Cramér-Rao lower bound, the variance of unbiased estimators is bounded from

below by the inverse Fisher information. More precisely, in matrix form we have that ∀θ, V (θ)−
G−1(θ) is positive semi-definite, where V is the covariance matrix of the estimator and G is the

Fisher information matrix5. Estimators that achieve this bound asymptotically, for all θ, are called

asymptotically efficient, or first order efficient. The prime example for such estimators, assuming

some regularity conditions, is the maximum likelihood estimator. The most common example of

statistical families for which the regularity conditions hold is the exponential family. Furthermore,

in this case, the MLE is a sufficient statistic. These nice properties of efficiency and sufficiency of

the MLE do not hold in general for non-exponential families.

The term second order efficiency was coined by Rao, and refers to a subset of consistent and first

order efficient estimators θ̂(x1, . . . , xn) that attain equality in the following general inequality

lim
n→∞

n(i(θtrue)− i(θ̂(x1, . . . , xn))) ≥ i(θtrue)γ2(θtrue) (6)

where i is the one-dimensional Fisher information and γ some function that depends on θ. Here

x1, . . . , xn are sampled iid from p(x ; θtrue) and θ̂(x1, . . . , xn) is an estimate of θtrue generated by

the estimator θ̂. The left hand side of (6) may be interpreted as the asymptotic rate of the loss of

information incurred by using the estimated parameter rather than the true parameter. It turns

out that the only consistent asymptotically efficient estimator that achieves equality in (6) is the

MLE, thereby giving it a preferred place among the class of first order efficient estimators.

The significance of Efron’s result is that he identified the function γ in (6) as the Riemannian

curvature of the statistical manifold with respect to the exponential connection. Under this con-

nection, exponential families are flat and their curvature is 0. For non-exponential families the

curvature γ may be interpreted as measuring the breakdown of asymptotic properties which is

surprisingly similar to the interpretation of curvature as measuring the deviation from flatness,

expressing in our case an exponential family. Furthermore, Efron showed that the variance of the

MLE in non-exponential families exceeds the Cramér-Rao lower bound in approximate proportion

to γ2(θ).

Dawid (1975) points out that Efron’s notion of curvature is based on a connection that is not

the natural one with respect to the Fisher geometry. A similar notion of curvature may be defined

for other connections, and in particular for the Riemannian connection that is compatible with the

5The matrix form of the Cramér-Rao lower bound may be written as V (θ) − G
−1(θ) � 0 with equality V (θ) =

G
−1(θ) if the bound is attained.
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Fisher information metric. Dawid’s comment about the possible statistical significance of curvature

with respect to the metric connection remains a largely open question, although some results were

obtained by Brody and Houghston (1998). Čencov (1982) introduced a family of connections,

later parameterized by α, that include as special cases the exponential connection and the metric

connection. Using Amari’s parametrization of this family, α = 1 corresponds to the exponential

connection, α = 0 corresponds to the metric connection and the α = −1 corresponds to the mixture

connection, under which mixture families enjoy 0 curvature (Amari & Nagaoka, 2000).

Čencov (1982) proved that the Fisher information metric is the only Riemannian metric that

is preserved under basic probabilistic transformations. These transformations, called congruent

embeddings by a Markov morphism, represent transformations of the event space that is equivalent

to extracting a sufficient statistic. Later on, Campbell (1986) extended Čencov’s result to non-

normalized positive models, thus axiomatically characterizing a set of metrics on the positive cone

Rn
+.

In his short note Dawid (1977) extended these ideas to infinite dimensional manifolds representing

non-parametric sets of densities. More rigorous studies include (Lafferty, 1988) that models the

manifold of densities on a Hilbert space and (Pistone & Sempi, 1995) that models the same manifold

on non-reflexive Banach spaces called Orlicz spaces. This latter approach, that does not admit a

Riemannian structure, was further extended by Pistone and his collaborators and by Grasselli

(2001).

Additional research by Barndorff-Nielsen and others considered the connection between geom-

etry and statistics from a different angle. Below is a brief description of some these results. In

(Barndorff-Nilsen, 1986) the expected Fisher information is replaced with the observed Fisher infor-

mation to provide an alternative geometry for a family of statistical models. The observed geometry

metric is useful in obtaining approximate expansion of the distribution of the MLE, conditioned on

an ancillary statistic. This result continues previous research by Efron and Amari that provides a

geometric interpretation for various terms appearing in the Edgeworth expansion of the distribution

of the MLE for curved exponential models. Barndorff-Nilsen and Blæsild (1983) studied the rela-

tion between certain partitions of an exponential family of models and geometric constructs. The

partitions, termed affine dual foliations, refers to a geometric variant of the standard division of Rn

into copies of Rn−1. Based on differential geometry, Barndorff-Nilsen and Blæsild (1993) define a

set of models called orthogeodesic models that enjoy nice higher-order asymptotic properties. Or-

thogeodesic models include exponential models with dual affine foliations as well as transformation

models and provides an abstract unifying framework for such models.

The geodesic distance under the Fisher metric has been examined in various statistical studies.

It is used in statistical testing and estimation as an alternative to Kullback Leibler or Jeffreys

divergence (Atkinson & Mitchell, 1981). It is also essentially equivalent to the popular Hellinger

distance (Beran, 1977) that plays a strong role in the field of statistical robustness (Tamura &

Boos, 1986; Lindsay, 1994; Cutler & Cordero-Brana, 1996).
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In a somewhat different line of research, Csiszár (1975) studied the geometry of probability

distributions through the notion of I-divergence. In a later paper Csiszár (1991) showed that I-

divergence estimation, along with least squares, enjoy nice axiomatic frameworks. While not a

distance measure, the I-divergence bears close connection to the geodesic distance under the Fisher

information metric (Kullback, 1968). This fact, together with the prevalence of the I-divergence

and its special case the Kullback-Leibler divergence, brings these research directions together under

the umbrella of information geometry. Amari and Nagaoka (2000) contains some further details on

the connection between I-divergence and Fisher geometry.

Information geometry arrived somewhat later in the machine learning literature. Most of the

studies in this context were done by Amari’s group. Amari examines several geometric learning

algorithms for neural networks (Amari, 1995) and shows how to adapt the gradient descent algo-

rithm to information geometry in the context of neural networks (Amari, 1998) and independent

component analysis (ICA) (Amari, 1999). Ikeda et al. (2004) interprets several learning algorithms

in graphical models such as belief propagation using information geometry and introduces new

variations on them. Further information on Amari’s effort in different applications including infor-

mation theory and quantum estimation theory may be obtained from (Amari & Nagaoka, 2000).

Saul and Jordan (1997) interpolates between different models based on differential geometric prin-

ciples and Jaakkola and Haussler (1998) use the Fisher information to enhance a discriminative

classifier with generative qualities. Gous (1998) and Hall and Hofmann (2000) use information

geometry to represent text documents by affine subfamilies of multinomial models.

In the next section we apply the mathematical framework developed in Section 2 to manifolds

of probability models.

4 Geometry of Spaces of Probability Models

Parametric inference in statistics is concerned with a parametric family of distributions {p(x ; θ) :

θ ∈ Θ ⊂ Rn} over the event space X . If the parameter space Θ is a differentiable manifold and the

mapping θ 7→ p(x ; θ) is a diffeomorphism we can identify statistical models in the family as points

on the manifold Θ. The Fisher information matrix E{ss⊤} where s is the gradient of the score

[s]i = ∂ log p(x ; θ)/∂θi may be used to endow Θ with the following Riemannian metric

Jθ(u, v)
def
=
∑

i,j

uivj

∫
p(x ; θ)

∂

∂θi
log p(x ; θ)

∂

∂θj
log p(x ; θ)dx

=
∑

i,j

uivj E

{
∂ log p(x ; θ)

∂θi

∂ log p(x ; θ)

∂θj

}
. (7)
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If X is discrete the above integral is replaced with a sum. An equivalent form of (7) for normalized

distributions that is sometimes easier to compute is

Jθ(u, v) = Jθ(u, v) −
∑

ij

uivj
∂2

∂θi∂θj

∫
p(x ; θ)dx

=
∑

ij

uivj

∫
p(x ; θ)

((
1

p(x | θ)
∂p(x ; θ)

∂θj

)(
1

p(x | θ)
∂p(x ; θ)

∂θi

)
− 1

p(x ; θ)

∂2

∂θi∂θj
p(x ; θ)

)
dx

= −
∑

ij

uivj

∫
p(x ; θ)

∂

∂θj

1

p(x | θ)
∂p(x ; θ)

∂θi
dx

= −
∑

ij

uivj

∫
p(x ; θ)

∂2

∂θj∂θi
log p(x ; θ) dx

=
∑

ij

uivjE

{
− ∂2

∂θj∂θi
log p(x ; θ)

}
(8)

assuming that we can change the order of the integration and differentiation operators.

In the remainder of this section we examine in detail a few important Fisher geometries. The

Fisher geometries of finite dimensional non-parametric space, finite dimensional conditional non-

parametric space and spherical normal space are studied next.

4.1 Geometry of Non-Parametric Spaces

In the finite non-parametric setting, the event space X is a finite set with |X | = n and Θ =

Pn−1, defined in (4), which represents the manifold of all positive probability models over X . The

positivity constraint is necessary for Θ = Pn−1 to be a manifold. If zero probabilities are admitted,

the appropriate framework for the parameter space Θ = Pn−1 is a manifold with corners (Lee, 2002).

Note that the above space Θ is precisely the parametric space of the multinomial family. Hence,

the results of this section may be interpreted with respect to the space of all positive distributions

on a finite event space, or with respect to the parametric space of the multinomial distribution.

The finiteness of X is necessary for Θ to be a finite dimensional manifold. Relaxing the finite-

ness assumption results in a manifold where each neighborhood is homeomorphic to an infinite

dimensional vector space called the model space. Such manifolds are called Frechet, Banach or

Hilbert manifolds (depending on the model space) and are the topic of a branch of geometry called

global analysis (Lang, 1999). Dawid (1977) remarked that an infinite dimensional non-parametric

space may be endowed with multinomial geometry leading to spherical geometry on a Hilbert man-

ifold. More rigorous modeling attempts were made by Lafferty (1988) that models the manifold

of densities on a Hilbert space and by Pistone and Sempi (1995) that model it on a non-reflexive

Banach space. See also the brief discussion on infinite dimensional manifolds representing densities

by Amari and Nagaoka (2000) pp. 44-45.

Considering Pn−1 as a submanifold of Rn, we represent tangent vectors v ∈ TθPn−1 in the

standard basis of TθR
n. As mentioned earlier (5), this results in the following representation of
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v ∈ TθPn−1

v =

n∑

i=1

vi∂i subject to

n∑

i=1

vi = 0.

Using this representation, the loglikelihood and its derivatives are

log p(x ; θ) =

n∑

i=1

xi log θi

∂ log p(x ; θ)

∂θi
=
xi

θi

∂2 log p(x ; θ)

∂θi∂θj
= −xi

θ2
i

δij

and using equation (8) the Fisher information metric on Pn−1 becomes

Jθ(u, v) = −
n∑

i=1

n∑

j=1

uivjE

[
∂2 log p(x | θ)

∂θi∂θj

]
= −

n∑

i=1

uiviE
{
−xi/θ

2
i

}
=

n∑

i=1

uivi

θi

since Exi = θi. Note that the Fisher metric emphasizes coordinates that correspond to low prob-

abilities. The fact that the metric Jθ(u, v) → ∞ when θi → 0 is not problematic since length of

curves that involves integrals over g converge.

While geodesic distances are difficult to compute in general, in the present case we can easily

compute the geodesics by observing that the standard Euclidean metric on the surface of the

positive n-sphere is the pull-back of the Fisher information metric on the simplex. More precisely,

the transformation F (θ1, . . . , θn+1) = (2
√
θ1, . . . , 2

√
θn+1) is a diffeomorphism of the n-simplex Pn

onto the positive portion of the n-sphere of radius 2

S̃n
+ =

{
θ ∈ Rn+1 :

n+1∑

i=1

θ2
i = 4, θi > 0

}
.

The inverse transformation is

F−1 : S̃n
+ → Pn, F−1(θ) =

(
θ2
1

4
, . . . ,

θ2
n+1

4

)

and its push-forward is

F−1
∗ (u) =

(u1

2
, . . . ,

un+1

2

)
.

The metric on S̃n
+ obtained by pulling back the Fisher information on Pn through F−1 is

hθ(u, v) = Jθ2/4

(
F−1
∗

n+1∑

k=1

ukek, F
−1
∗

n+1∑

l=1

vlel

)
=

n+1∑

k=1

n+1∑

l=1

ukvl gθ2/4(F
−1
∗ ek, F

−1
∗ el)

=

n+1∑

k=1

n+1∑

l=1

ukvl

∑

i

4

θ2
i

(F−1
∗ ek)i (F−1

∗ el)i =

n+1∑

k=1

n+1∑

l=1

ukvl

∑

i

4

θ2
i

θkδki

2

θlδli
2

=

n+1∑

i=1

uivi

= δθ(u, v)

the Euclidean metric on S̃n
+ inherited from the embedding Euclidean space Rn+1.
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(1, 0, 0)

(0, 1, 0)

(0, 0, 1)

Figure 5: The 2-simplex P2 may be visualized as a surface in R3 (left) or as a triangle in R2 (right).

Since the transformation F : (Pn,J ) → (S̃n
+, δ) is an isometry, the geodesic distance dJ (θ, θ′)

on Pn may be computed as the shortest curve on S̃n
+ connecting F (θ) and F (θ′). These shortest

curves are portions of great circles – the intersection of a two dimensional subspace and S̃n
+ whose

lengths are

dJ (θ, θ′) = dδ(F (θ), F (θ′)) = 2 arccos

(
n+1∑

i=1

√
θi θ′i

)
. (9)

We illustrate these geodesic distances in Figures 5-6. Figure 5 shows how to picture P2 as a triangle

in R2 and Figure 6 shows the equal distant contours for both Euclidean and Fisher geometries. Will

often ignore the factor of 2 in (9) to obtain a more compact notation for the geodesic distance.

The geodesic distances dJ (θ, θ′) under the Fisher geometry and the Kullback-Leibler divergence

D(θ, θ′) agree up to second order as θ → θ′ (Kullback, 1968). Similarly, the Hellinger distance

(Beran, 1977)

dH(θ, θ′) =

√√√√∑

i

(√
θi −

√
θ′i

)2

(10)

is related to dJ (θ, θ′) by

dH(θ, θ′) = 2 sin
(
dJ (θ, θ′)/4

)
(11)

and thus also agrees with the distance up to second order as θ′ → θ.

4.2 Geometry of Non-Parametric Conditional Spaces

Given two finite event sets X ,Y of sizes k and m respectively, a conditional probability model

p(y|x) reduces to an element of Pm−1 for each x ∈ X . We may thus identify the space of conditional

probability models associated with X and Y as the product space

Pm−1 × · · · × Pm−1 = Pk
m−1.
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Figure 6: Equal distance contours on P2 from the upper right edge (top row), the center (center row),

and lower right corner (bottom row). The distances are computed using the Fisher information

metric (left column) or the Euclidean metric (right column).
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For our purposes, it will be sometimes more convenient to work with the more general case of

positive non-normalized conditional models. Dropping the normalization constraints
∑

i p(yi|xj) =

1 we obtain conditional models in the cone of k × m matrices with positive entries, denoted by

Rk×m
+ . Since a normalized conditional model is also a non-normalized one, we can consider Pk

m−1 to

be a subset of Rk×m
+ . Results obtained for non-normalized models apply then to normalized models

as a special case. In addition, some of the notation and formulation is simplified by working with

non-normalized models.

In the interest of simplicity, we will often use matrix notation instead of the standard probabilistic

notation. A conditional model (either normalized or non-normalized) is described by a positive

matrix M such that Mij = p(yj |xi). Matrices that correspond to normalized models are (row)

stochastic matrices. We denote tangent vectors to Rk×m
+ using the standard basis

TMRk×m
+ = span{∂ij : i = 1, . . . , k, j = 1, . . . ,m}.

Tangent vectors to Pk
m−1, when expressed using the basis of the embedding tangent space TMRk×m

+

are linear combinations of {∂ij} such that the sums of the combination coefficients over each row

are 0, e.g.

1

2
∂11 +

1

2
∂12 − ∂13 +

1

3
∂21 −

1

3
∂22 ∈ TMP3

2

1

2
∂11 +

1

2
∂12 − ∂13 +

1

3
∂21 −

1

2
∂22 6∈ TMP3

2.

The identification of the space of conditional models as a product of simplexes demonstrates

the topological and differentiable structure. In particular, we do not assume that the metric has a

product form. However, it is instructive to consider as a special case the product Fisher information

metric on Pk
n−1 and Rk×m

+ . Using the above representation of tangent vectors u, v ∈ TMRk×m
+ or

u, v ∈ TMPk
m−1 the product Fisher information

J k
M (u1 ⊕ · · · ⊕ uk, v1 ⊕ · · · ⊕ vk)

def
= (J ⊗ · · · ⊗ J )M (u1 ⊕ · · · ⊕ uk, v1 ⊕ · · · ⊕ vk)

def
=

k∑

i=1

J[M ]i(ui, vi),

where [A]i is the i-row of the matrix A, ⊗ is the tensor product and ⊕ is the direct sum decompo-

sition of vectors, reduces to

J k
M (u, v) =

k∑

i=1

m∑

j=1

uijvij

Mij
. (12)

A different way of expressing (12) is by specifying the values of the metric on pairs of basis elements

gM (∂ab, ∂cd) = δacδbd
1

Mab
(13)

where δab = 1 if a = b and 0 otherwise.
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4.3 Geometry of Spherical Normal Spaces

Given a restricted parametric family Θ ⊂ Pn the Fisher information metric on Θ agrees with the

induced metric from the Fisher information metric on Pn. When X is infinite and Θ is a finite

dimensional parametric family, we can still define the Fisher information metric J on Θ, however

without a reference to an embedding non-parametric space. We use this approach to consider the

Fisher geometry of the spherical normal distributions on X = Rn−1

{N (µ, σI) : µ ∈ Rn−1, σ ∈ R+}

parameterized by the upper half plane Θ = Hn ∼= Rn−1 × R+.

To compute the Fisher information metric for this family, it is convenient to use the expression

given by equation (8). Then simple calculations yield, for 1 ≤ i, j ≤ n− 1

[G(θ)]ij = −
∫

Rn−1

∂2

∂µi∂µj

(
−

n−1∑

k=1

(xk − µk)
2

2σ2

)
p(x | θ) dx =

1

σ2
δij

[G(θ)]ni = −
∫

Rn−1

∂2

∂σ∂µi

(
−

n−1∑

k=1

(xk − µk)
2

2σ2

)
p(x | θ) dx =

2

σ3

∫

Rn−1

(xi − µi) p(x | θ) dx = 0

[G(θ)]nn = −
∫

Rn−1

∂2

∂σ∂σ

(
−

n−1∑

k=1

(xk − µk)
2

2σ2
− (n− 1) log σ

)
p(x | θ) dx

=
3

σ4

∫

Rn−1

n−1∑

k=1

(xk − µk)
2 p(x | θ) dx− n− 1

σ2
=

2(n− 1)

σ2
.

Letting θ′ be new coordinates defined by θ′i = µi for 1 ≤ i ≤ n− 1 and θ′n =
√

2(n − 1) σ, we see

that the Gram matrix is given by

[G(θ′)]ij =
1

σ2
δij (14)

and the Fisher information metric gives the spherical normal manifold a hyperbolic geometry6. It

is shown by Kass and Voss (1997) that any location-scale family of densities

p(x ;µ, σ) =
1

σ
f

(
x− µ

σ

)
(µ, σ) ∈ R× R+ f : R → R

have a similar hyperbolic geometry. The geodesic curves in the two dimensional hyperbolic space

are circles whose centers lie on the line x2 = 0 or vertical lines (considered as circles whose centers

lie on the line x2 = 0 with infinite radius) (Lee, 1997). An illustration of these curves appear

in Figure 7. To compute the geodesic distance on Hn we transform points in Hn to an isometric

manifold known as Poincaré’s ball. We first define the sphere inversion of x with respect to a sphere

S with center a and radius r as

IS(x) =
r2

‖x− a‖2 (x− a) + a.

6The manifold Hn with with hyperbolic geometry is often referred to as Poincaré’s upper half plane and is a space

of constant negative curvature.
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Figure 7: Geodesic curves in H2 with the hyperbolic metric are circles whose centers lie on the line

x2 = 0 or vertical lines.

The Cayley transform is the sphere inversion with respect to a sphere with center (0, . . . , 0,−1)

and radius
√

2. We denote by η the inverse of the Cayley’s transform that maps the hyperbolic

half plane to Poincaré’s ball.

η(x) = −IS′(−x) x ∈ Hn

where S′ is a sphere with center at (0, . . . , 0, 1) and radius
√

2. The geodesic distance in Hn is then

given by

d(x, y) = acosh

(
1 + 2

‖η(x) − η(y)‖2
(1 − ‖η(x)‖2)(1− ‖η(y)‖2)

)
x, y ∈ Hn. (15)

For more details see (Bridson & Haefliger, 1999) pages 86–90.

The following sections describe the main contributions of the thesis. The next two sections deal

with the geometry of the model space Θ in the context of estimation of conditional models. The

later sections study the geometry of the data space X .

5 Geometry of Conditional Exponential Models and AdaBoost

Several recent papers in statistics and machine learning have been devoted to the relationship

between boosting and more standard statistical procedures such as logistic regression. In spite of

this activity, an easy-to-understand and clean connection between these different techniques has

not emerged. Friedman et al. (2000) note the similarity between boosting and stepwise logistic

regression procedures, and suggest a least-squares alternative, but view the loss functions of the two
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problems as different, leaving the precise relationship between boosting and maximum likelihood

unresolved. Kivinen and Warmuth (1999) note that boosting is a form of “entropy projection,”

and Lafferty (1999) suggests the use of Bregman distances to approximate the exponential loss.

Mason et al. (1999) consider boosting algorithms as functional gradient descent and Duffy and

Helmbold (2000) study various loss functions with respect to the PAC boosting property. More

recently, Collins et al. (2002) show how different Bregman distances precisely account for boosting

and logistic regression, and use this framework to give the first convergence proof of AdaBoost.

However, in this work the two methods are viewed as minimizing different loss functions. Moreover,

the optimization problems are formulated in terms of a reference distribution consisting of the zero

vector, rather than the empirical distribution of the data, making the interpretation of this use of

Bregman distances problematic from a statistical point of view.

In this section we present a very basic connection between boosting and maximum likelihood for

exponential models through a simple convex optimization problem. In this setting, it is seen that the

only difference between AdaBoost and maximum likelihood for exponential models, in particular

logistic regression, is that the latter requires the model to be normalized to form a probability

distribution. The two methods minimize the same I-divergence objective function subject to the

same feature constraints. Using information geometry, we show that projecting the exponential

loss model onto the simplex of conditional probability distributions gives precisely the maximum

likelihood exponential model with the specified sufficient statistics. In many cases of practical

interest, the resulting models will be identical; in particular, as the number of features increases to

fit the training data the two methods will give the same classifiers. We note that throughout the

thesis we view boosting as a procedure for minimizing the exponential loss, using either parallel

or sequential update algorithms as presented by Collins et al. (2002), rather than as a forward

stepwise procedure as presented by Friedman et al. (2000) and Freund and Schapire (1996).

Given the recent interest in these techniques, it is striking that this connection has gone unob-

served until now. However in general, there may be many ways of writing the constraints for a

convex optimization problem, and many different settings of the Lagrange multipliers that repre-

sent identical solutions. The key to the connection we present here lies in the use of a particular

non-standard presentation of the constraints. When viewed in this way, there is no need for special-

purpose Bregman divergence as in (Collins et al., 2002) to give a unified account of boosting and

maximum likelihood, and we only make use of the standard I-divergence. But our analysis gives

more than a formal framework for understanding old algorithms; it also leads to new algorithms for

regularizing AdaBoost, which is required when the training data is noisy. In particular, we derive a

regularization procedure for AdaBoost that directly corresponds to penalized maximum likelihood

using a Gaussian prior. Experiments on UCI data support our theoretical analysis, demonstrate

the effectiveness of the new regularization method, and give further insight into the relationship

between boosting and maximum likelihood exponential models.

The next section describes an axiomatic characterization of metrics over the space of conditional

models and the relationship between the characterized metric and the I-divergence. In this sense

this section and the next one should be viewed as one unit as they provide an axiomatic character-
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ization of the geometry underlying conditional exponential models such as logistic regression and

AdaBoost.

5.1 Definitions

Let X and Y be finite sets of sizes k and m and Pk
m−1,R

k×m
+ be the sets of normalized and non-

normalized conditional models as defined in Section 4. Their closures Pk
m−1,R

k×m
+ represent the

sets of non-negative conditional models. Let

f = (f1, . . . , fl), fj : X × Y → R

be a sequence functions, which we will refer to as a feature vector. These functions correspond

to the weak learners in boosting, and to the sufficient statistics in an exponential model. The

empirical distribution associated with a training set {(xi, yi)}n
i=1 is p̃(x, y) = 1

n

∑n
i=1 δxi,x δyi,y.

Based on p̃(x, y) we define marginal and conditional distributions p̃(x), p̃(y|x) as usual. We assume

that p̃(x) > 0 and that for all x there is a unique y ∈ Y, denoted by ỹ(x), for which p̃(y |x) > 0.

This assumption, referred to as the consistent data assumption, is made to obtain notation that

corresponds to the conventions used to present boosting algorithms; it is not essential to the

correspondence between AdaBoost and conditional exponential models presented here. We will

use the notation f(x, y) to represent the real vector (f1(x, y), . . . , fl(x, y)) and 〈·, ·〉 to be the usual

scalar or dot product between real vectors.

The conditional exponential model q(y |x ; θ) associated with the feature vector f is defined by

q(y |x ; θ) =
e〈θ,f(x,y)〉

∑
y e

〈θ,f(x,y)〉 θ ∈ Rl (16)

where 〈·, ·〉 denotes the standard scalar product between two vectors. The maximum likelihood es-

timation problem is to determine a parameter vector θ that maximize the conditional log-likelihood

ℓ(θ)
def
=
∑

x,y

p̃(x, y) log q(y |x ; θ).

The objective function to be minimized in the multi-label boosting algorithm AdaBoost.M2

(Collins et al., 2002) is the exponential loss given by

E(θ)
def
=

n∑

i=1

∑

y 6=yi

e 〈θ,f(xi,y)−f(xi,yi)〉. (17)

In the binary case Y = {−1,+1} and taking fj(x, y) = 1
2yfj(x) the exponential loss becomes

E(θ) =
n∑

i=1

e−yi〈θ,f(xi)〉, (18)

the conditional exponential model becomes the logistic model

q(y |x ; θ) =
1

1 + e−y〈θ,f(x)〉 , (19)
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for which the maximum likelihood problem becomes equivalent to minimizing the logistic loss

function

−ℓ(θ) =
n∑

i=1

log
(
1 + e−yi〈θ,f(xi)〉

)
. (20)

As has been often noted, the log-loss (20) and the exponential loss (18) are qualitatively different.

The exponential loss (18) grows exponentially with increasing negative margin −y 〈θ, f(x)〉, while

the log-loss grows linearly.

5.2 Correspondence Between AdaBoost and Maximum Likelihood

We define the conditional I-divergence with respect to a distribution r over X as

Dr(p, q)
def
=
∑

x

r(x)
∑

y

(
p(y |x) log

p(y |x)
q(y |x) − p(y |x) + q(y |x)

)
. (21)

It is a non-negative measure of discrepancy between two conditional models p, q ∈ Rk×m
+ . If

q 6∈ Rk×m
+ , Dr(p, q) may be ∞. The I divergence is not a formal distance function as it does

not satisfy symmetry and the triangle inequality. In this section we will always take r(x) = p̃(x)

and hence we omit it from the notation and write D(p, q) = Dp̃(p, q). For normalized conditional

models, the I-divergence D(p, q) is equal to the Kullback-Leibler divergence (Kullback, 1968). The

formula presented here (21) is a straightforward adaptation of the non-conditional form of the I-

divergence studied by Csiszár (1991). The I-divergence comes up in many applications of statistics

and machine learning. See (Kullback, 1968; O’Sullivan, 1998; Amari & Nagaoka, 2000) for many

examples of such connections.

We define the feasible set F(p̃, f) of conditional models associated with f = (f1, . . . , fl) and an

empirical distribution p̃(x, y) as

F(p̃, f)
def
=

{
p ∈ Rk×m

+ :
∑

x

p̃(x)
∑

y

p(y |x) (fj(x, y)− Ep̃[fj |x]) = 0, j = 1, . . . , l

}
. (22)

Note that this set is non-empty since p̃ ∈ F(p̃, f) and that under the consistent data assumption

Ep̃[f |x] = f(x, ỹ(x)). The feasible set represents conditional models that agree with p̃ on the

conditional expectation of the features.

Consider now the following two convex optimization problems, labeled P1 and P2.

(P1) minimize D(p, q0)

subject to p ∈ F(p̃, f)

(P2) minimize D(p, q0)

subject to p ∈ F(p̃, f)

p ∈ Pk
m−1.

Thus, problem P2 differs from P1 only in that the solution is required to be normalized. As we

will show, the dual problem P ∗1 corresponds to AdaBoost, and the dual problem P ∗2 corresponds to

maximum likelihood for exponential models.
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This presentation of the constraints is the key to making the correspondence between AdaBoost

and maximum likelihood. The constraint
∑

x p̃(x)
∑

y p(y |x) f(x, y) = Ep̃[f ], which is the usual

presentation of the constraints for maximum likelihood (as dual to maximum entropy), doesn’t

make sense for non-normalized models, since the two sides of the equation may not be on the same

scale. Note further that attempting to re-scale by dividing by the mass of p to get

∑

x

p̃(x)

∑
y p(y |x) f(x, y)
∑

y p(y |x)
= Ep̃[f ]

would yield nonlinear constraints.

Before we continue, we recall the dual formulation from convex optimization. For mode details

refer for example to Section 5 of (Boyd & Vandenberghe, 2004). Given a convex optimization

problem

min
x∈Rn

f0(x) subject to hi(x) = 0 i = 1, . . . , r (23)

the Lagrangian is defined as

L(x, θ)
def
= f0(x)−

r∑

i=1

θihi(x). (24)

The vector θ ∈ Rr is called the dual variable or the Lagrange multiplier vector. The Lagrange

dual function is defined as h(θ) = infx L(x, θ) and the dual problem of the original problem (23), is

maxθ h(θ). The dual problem and the original problem, called the primal problem, are equivalent

to each other and typically, the easier of the two problems is solved. Both problems are useful,

however, as they provide alternative views of the optimization problem.

5.2.1 The Dual Problem (P ∗1 )

Applying the above definitions to (P1), and noting that the term q(y |x) in (21) does not play a

role in the minimization problem, the Lagrangian is

L1(p, θ) =
∑

x

p̃(x)
∑

y

p(y |x)
(

log
p(y |x)
q0(y |x)

− 1

)
−
∑

i

θi

∑

x

p̃(x)
∑

y

p(y |x)(fi(x, y) −Ep̃[fi |x])

=
∑

x

p̃(x)
∑

y

p(y |x)
(

log
p(y |x)
q0(y |x)

− 1− 〈θ, f(x, y)− Ep̃[f |x]〉
)
.

The first step is to minimize the Lagrangian with respect to p, which will allow us to express the

dual function. Equating the partial derivatives ∂L1(p,θ)
∂p(y | x) to 0 gives

0 = p̃(x)

(
log

p(y |x)
q0(y |x)

− 1− 〈θ, f(x, y)− Ep̃[f |x]〉+ p(y |x) 1

p(y |x)

)

= p̃(x)

(
log

p(y |x)
q0(y |x)

− 〈θ, f(x, y)− Ep̃[f |x]〉
)
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and we deduce that z(y |x ; θ)
def
= arg minp L1(p, θ), is

z(y |x ; θ) = q0(y |x) exp



∑

j

θj (fj(x, y)− Ep̃[fj |x])


 .

Thus, the dual function h1(θ) = L1(z(y |x ; θ), θ) is given by

h1(θ) =
∑

x

p̃(x)
∑

y

q0(y |x)e〈θ,f(x,y)−Ep̃[f | x]〉 (〈θ, f(x, y)− Ep̃[f |x]〉 − 1− 〈θ, f(x, y)− Ep̃[f |x]〉)

= −
∑

x

p̃(x)
∑

y

q0(y |x)e〈θ,f(x,y)−Ep̃[f |x]〉.

The dual problem (P ∗1 ) is to determine

θ⋆ = arg max
θ

h1(θ) = arg min
θ

∑

x

p̃(x)
∑

y

q0(y |x)e〈θ,f(x,y)−Ep̃[f |x]〉

= arg min
θ

∑

x

p̃(x)
∑

y

q0(y |x)e〈θ,f(x,y)−f(x,ỹ(x)〉

= arg min
θ

∑

x

p̃(x)
∑

y 6=ỹ(x)

q0(y |x)e〈θ,f(x,y)−f(x,ỹ(x)〉. (25)

5.2.2 The Dual Problem (P ∗2 )

To derive the dual for P2, we add additional Lagrange multipliers µx for the constraints
∑

y p(y |x) =

1 and note that if the normalization constraints are satisfied then the other constraints take the

form

∑

x

p̃(x)
∑

y

p(y |x)fj(x, y) =
∑

x,y

p̃(x, y)fj(x, y).

The Lagrangian becomes

L2(p, θ, µ) =D(p, q0)−
∑

j

θj

(
∑

x

p̃(x)
∑

y

p(y |x)fj(x, y)−
∑

x,y

p̃(x, y)fj(x, y)

)

−
∑

x

µx

(
1−

∑

y

p(y |x)
)
.

Setting the partial derivatives ∂L2(p,θ)
∂p(y|x) to 0 and noting that in the normalized case we can ignore

the last two terms in the I-divergence, we get

0 = p̃(x)

(
log

p(y|x)
q0(y|x)

+ 1− 〈θ, f(x, y)〉
)

+ µx

from which the minimizer z(y |x ; θ)
def
= argminp L2(p, θ) is seen to be

z(y |x ; θ) = q0(y |x)e〈θ,f(x,y)〉−1−µx/p̃(x).
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Substituting z(y |x ; θ) in L2 we obtain the dual function h2(θ, µ). Maximizing the dual function

with respect to µ results in a choice of µx that ensure the normalization of z

z(y |x ; θ) =
1

Zx
q0(y |x)e〈θ,f(x,y)〉

and maximizing h2 with respect to θ we get the following dual problem

θ∗ = arg max
θ

∑

x

p̃(x)
∑

y

1

Zx(θ)
q0(y |x)e〈θ,f(x,y)〉(〈θ, f(x, y)〉 − logZx(θ))

−
∑

x

p̃(x)
∑

y

〈θ, f(x, y)〉 1

Zx(θ)
q0(y |x)e〈θ,f(x,y)〉 +

∑

xy

p̃(x, y) 〈θ, f(x, y)〉 − 0
∑

x

µx

= arg max
θ

−
∑

x

p̃(x) logZx(θ)
∑

y

1

Zx(θ)
q0(y |x)e〈θ,f(x,y)〉 +

∑

xy

p̃(x, y) 〈θ, f(x, y)〉

= arg max
θ

∑

x,y

p̃(x, y) 〈θ, f(x, y)〉 −
∑

x,y

p̃(x, y) logZx(θ)

= arg max
θ

∑

x,y

p̃(x, y) log
1

Zx(θ)
q0(y |x)e〈θ,f(x,y)〉

= arg max
θ

∑

x

p̃(x) log
1

Zx(θ)
q0(ỹ(x) |x)e〈θ,f(x,ỹ(x))〉. (26)

5.2.3 Special cases

It is now straightforward to derive various boosting and conditional exponential models problems

as special cases of the dual problems (25) and (26).

Case 1: AdaBoost.M2. The dual problem (P ∗1 ) with q0(y |x) = 1 is the optimization problem of

AdaBoost.M2

θ⋆ = arg min
θ

∑

x

p̃(x)
∑

y 6=yi

e〈θ,f(xi,y)−f(xi,yi)〉 = arg min
θ

E(θ).

Case 2: Binary AdaBoost. The dual problem (P ∗1 ) with q0(y |x) = 1, Y = {−1, 1} and fj(x, y) =
1
2y fj(x) is the optimization problem of binary AdaBoost

θ⋆ = arg min
θ

∑

x

p̃(x)e−yi〈θ,f(xi)〉.

Case 3: Maximum Likelihood for Exponential Models. The dual problem (P ∗2 ) with q0(y |x) = 1 is

is maximum (conditional) likelihood for a conditional exponential model with sufficient statistics

fj(x, y)

θ⋆ = arg max
θ

∑

x

p̃(x) log
1

Zx
e〈θ,f(x,ỹ(x))〉 = arg max

θ
ℓ(θ).
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Case 4: Logistic Regression. The dual problem (P ∗2 ) with q0(y |x) = 1, Y = {−1, 1} and fj(x, y) =
1
2y fj(x) is maximum (conditional) likelihood for binary logistic regression.

θ⋆ = arg max
θ

∑

x

p̃(x)
1

1 + e−ỹ(x)〈θ,f(x)〉 .

We note that it is not necessary to scale the features by a constant factor here, as in (Friedman

et al., 2000); the correspondence between logistic regression and boosting is direct.

Case 5: Exponential Models with Carrier Density. Taking q0(y|x) 6= 1 to be a non-parametric

density estimator in (P ∗2 ) results in maximum likelihood for exponential models with a carrier

density q0. Such semi-parametric models have been proposed by Efron and Tibshirani (1996) for

integrating between parametric and nonparametric statistical modeling and by Della-Pietra et al.

(1992) and Rosenfeld (1996) for integrating exponential models and n-gram estimators in language

modeling.

Making the Lagrangian duality argument rigorous requires care, because of the possibility that

the solution may lie on the (topological) boundary of Rk×m
+ or Pk

m−1.

Let Q1 and Q2 be

Q1(q0, f) =
{
q ∈ Rk×m

+ | q(y |x) = q0(y |x) e〈θ,f(x,y)−f(x,ỹ(x))〉, θ ∈ Rl
}

Q2(q0, f) =
{
q ∈ Pk

m−1 | q(y |x) ∝ q0(y |x) e〈θ,f(x,y)〉, θ ∈ Rl
}

and the boosting solution q⋆
boost and maximum likelihood solution q⋆

ml be

q⋆
boost = arg min

q∈Q1

∑

x

p̃(x)
∑

y

q(y |x)

q⋆
ml = arg max

q∈Q2

∑

x

p̃(x) log q(ỹ(x) |x).

The following proposition corresponds to Proposition 4 of (Della Pietra et al., 1997) for the usual

Kullback-Leibler divergence; the proof for the I-divergence carries over with only minor changes.

In (Della Pietra et al., 2001) the duality theorem is proved for a class of Bregman divergences,

including the extended Kullback-Leibler divergence as a special case. Note that we do not require

divergences such as D(0, q) as in (Collins et al., 2002), but rather D(p̃, q), which is more natural

and interpretable from a statistical point-of-view.

Proposition 1. Suppose that D(p̃, q0) <∞. Then q⋆
boost and q⋆

ml exist, are unique, and satisfy

q⋆
boost = arg min

p∈F
D(p, q0) = arg min

q∈Q1

D(p̃, q) (27)

q⋆
ml = arg min

p∈F∩Pk
m−1

D(p, q0) = arg min
q∈Q2

D(p̃, q) (28)

Moreover, q⋆
ml is computed in terms of q⋆

boost as q⋆
ml = arg min

p∈F∩Pk
m−1

D(p, q⋆
boost).
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F

q⋆
boost

Q1

F

q⋆
boostq⋆

ml
F ∩ Pk

m−1

Q′1

Figure 8: Geometric view of duality. Minimizing the exponential loss finds the member of Q1 that intersects

the feasible set of measures satisfying the moment constraints (left). When we impose the additional con-

straint that each conditional distribution qθ(y |x) must be normalized, we introduce a Lagrange multiplier

for each training example x, giving a higher-dimensional family Q′

1
. By the duality theorem, projecting the

exponential loss solution onto the intersection of the feasible set with the simplex of conditional probabilities,

F ∩ Pk
m−1

, we obtain the maximum likelihood solution. In many practical cases this projection is obtained

by simply normalizing by a constant, resulting in an identical model.

This result has a simple geometric interpretation. The non-normalized exponential family Q1

intersects the feasible set of measures F satisfying the constraints (22) at a single point. The

algorithms presented in (Collins et al., 2002) determine this point, which is the exponential loss

solution q⋆
boost = arg minq∈Q1

D(p̃, q) (see Figure 8, left). On the other hand, maximum conditional

likelihood estimation for an exponential model with the same features is equivalent to the problem

q⋆
ml = arg min

q∈Q′1
D(p̃, q) where Q′1 is the exponential family with additional Lagrange multipliers,

one for each normalization constraint. The feasible set for this problem is F ∩ Pk
m−1. Since F ∩

Pk
m−1 ⊂ F , by the Pythagorean equality we have that q⋆

ml = arg min
p∈F∩Pk

m−1
D(p, q⋆

boost) (see

Figure 8, right).

5.3 Regularization

Minimizing the exponential loss or the log-loss on real data often fails to produce finite parameters.

Specifically, this happens when for some feature fj

fj(x, y) − fj(x, ỹ(x)) ≥ 0 for all y and x with p̃(x) > 0 (29)

or fj(x, y) − fj(x, ỹ(x)) ≤ 0 for all y and x with p̃(x) > 0

This is especially harmful since often the features for which (29) holds are the most important

for the purpose of discrimination. The parallel update in (Collins et al., 2002) breaks down in

such cases, resulting in parameters going to ∞ or −∞. On the other hand, iterative scaling

algorithms work in principle for such features. In practice however, either the parameters θ need
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to be artificially capped or the features need to be thrown out altogether, resulting in a partial

and less discriminating set of features. Of course, even when (29) does not hold, models trained by

maximizing likelihood or minimizing exponential loss can overfit the training data. The standard

regularization technique in the case of maximum likelihood employs parameter priors in a Bayesian

framework.

In terms of convex duality, a parameter prior for the dual problem corresponds to a “potential”

on the constraint values in the primal problem. The case of a Gaussian prior on θ, for example,

corresponds to a quadratic potential on the constraint values in the primal problem. Using this

correspondence, the connection between boosting and maximum likelihood presented in the previous

section indicates how to regularize AdaBoost using Bayesian MAP estimation for non-normalized

models, as explained below.

We now consider primal problems over (p, c) where p ∈ Rk×m
+ and c ∈ Rm is a parameter vector

that relaxes the original constraints. The feasible set F(p̃, f, c) ⊂ Rk×m
+ allows a violation of the

expectation constraints, represented by the vector c

F(p̃, f, c) =

{
p ∈ Rk×m

+ |
∑

x

p̃(x)
∑

y

p(y |x) (fj(x, y)− Ep̃[fj |x]) = cj

}
. (30)

A regularized problem for non-normalized models is defined by

(P1,reg) minimize D(p, q0) + U(c)

subject to p ∈ F(p̃, f, c)

where U : Rl → R is a convex function whose minimum is at 0 ∈ Rl. Intuitively (P1,reg) allows

some trade-off between achieving low I divergence to q0 and some constraint violation, with the

exact form of the trade-off represented by the function U . Note that it is possible to choose U in a

way that considers some feature constraints more important than others. This may be useful when

the values of the features (f1, . . . , fl) are known to be corrupted by noise, where the noise intensity

varies among the features.

The dual function of the regularized problem (P1,reg), as derived in Appendix A.3, is

h1,reg(θ) = h1(θ) + U∗(θ)

where U∗(θ) is the convex conjugate of U . For a quadratic penalty U(c) =
∑

j
1
2σ

2
j c

2
j , we have

U∗(θ) = −∑j
1
2σ

−2
j θ2

j and the dual function becomes

h1,reg(θ) = −
∑

x

p̃(x)
∑

y

q0(y |x) e〈θ,f(x,y)−f(x,ỹ(x))〉 −
∑

j

θ2
j

2σ2
j

. (31)

A sequential update rule for (31) incurs the small additional cost of solving a nonlinear equation by

Newton’s method every iteration. See Appendix A.3 for more details. Chen and Rosenfeld (2000)

contains a similar regularization for maximum likelihood for exponential models in the context of

statistical language modeling.
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Unregularized Regularized

Data ℓtrain(q1) ℓtest(q1) ǫtest(q1) ℓtrain(q2) ℓtest(q2) ǫtest(q2)

Promoters -0.29 -0.60 0.28 -0.32 -0.50 0.26

Iris -0.29 -1.16 0.21 -0.10 -0.20 0.09

Sonar -0.22 -0.58 0.25 -0.26 -0.48 0.19

Glass -0.82 -0.90 0.36 -0.84 -0.90 0.36

Ionosphere -0.18 -0.36 0.13 -0.21 -0.28 0.10

Hepatitis -0.28 -0.42 0.19 -0.28 -0.39 0.19

Breast Cancer Wisconsin -0.12 -0.14 0.04 -0.12 -0.14 0.04

Pima-Indians -0.48 -0.53 0.26 -0.48 -0.52 0.25

Table 1: Comparison of unregularized to regularized boosting. For both the regularized and unregularized

cases, the first column shows training log-likelihood, the second column shows test log-likelihood, and the

third column shows test error rate. Regularization reduces error rate in some cases while it consistently

improves the test set log-likelihood measure on all datasets. All entries were averaged using 10-fold cross

validation.

5.4 Experiments

We performed experiments on some of the UCI datasets (Blake & Merz, 1998) in order to investi-

gate the relationship between boosting and maximum likelihood empirically. The weak learner was

FindAttrTest as described in (Freund & Schapire, 1996), and the training set consisted of a ran-

domly chosen 90% of the data. Table 1 shows experiments with regularized boosting. Two boosting

models are compared. The first model q1 was trained for 10 features generated by FindAttrTest,

excluding features satisfying condition (29). Training was carried out using the parallel update

method described in (Collins et al., 2002). The second model, q2, was trained using the expo-

nential loss with quadratic regularization. The performance was measured using the conditional

log-likelihood of the (normalized) models over the training and test set, denoted ℓtrain and ℓtest, as

well as using the test error rate ǫtest. The table entries were averaged by 10-fold cross validation.

For the weak learner FindAttrTest, only the Iris dataset produced features that satisfy (29).

On average, 4 out of the 10 features were removed. As the flexibility of the weak learner is

increased, (29) is expected to hold more often. On this dataset regularization improves both the

test set log-likelihood and error rate considerably. In datasets where q1 shows significant over-

fitting, regularization improves both the log-likelihood measure and the error rate. In cases of

little over-fitting (according to the log-likelihood measure), regularization only improves the test

set log-likelihood at the expense of the training set log-likelihood, however without affecting much

the test set error.

Next we performed a set of experiments to test how much q⋆
boost differs from q⋆

ml , where the

boosting model is normalized (after training) to form a conditional probability distribution. For

different experiments, FindAttrTest generated a different number of features (10–100), and the

training set was selected randomly. The plots in Figure 9 show for different datasets the relationship

between ℓtrain(q⋆
ml) and ℓtrain(q⋆

boost) as well as between ℓtrain(q⋆
ml) and Dtrain(q⋆

ml, q
⋆
boost). The trend
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Figure 9: Comparison of AdaBoost and maximum likelihood on four UCI datasets: Hepatitis (top row),

Promoters (second row), Sonar (third row) and Glass (bottom row). The left column compares ℓtrain(q⋆

ml)

to ℓtrain(q⋆

boost
), and the right column compares ℓtrain(q⋆

ml
) to Dtrain(q⋆

ml
, q⋆

boost
).
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Figure 10: Comparison of AdaBoost and maximum likelihood on the same UCI datasets as in the previous

figure. The left column compares the test likelihoods, ℓtest(q
⋆

ml) to ℓtest(q
⋆

boost), and the right column compares

test error rates, ǫtest(q
⋆

ml) to ǫtest(q
⋆

boost). In each plot, the color represents the training likelihood ℓtrain(q⋆

ml);

red corresponds to fitting the training data well.
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is the same in each data set: as the number of features increases so that the training data is more

closely fit (ℓtrain(qml) → 0), the boosting and maximum likelihood models become more similar, as

measured by the I-divergence.

The plots in Figure 10 show the relationship between the test set log-likelihoods, ℓtest(q
⋆
ml) to

ℓtest(q
⋆
boost), together with the test set error rates ǫtest(q

⋆
ml) and ǫtest(q

⋆
boost). In these figures the

testing set was chosen to be 50% of the total data. The color represents the training data log-

likelihood, ℓtrain(q⋆
ml), with the color red corresponding to high likelihood. In order to indicate the

number of points at each error rate, each circle was shifted by a small random value to avoid points

falling on top of each other.

While the plots in Figure 9 indicate that ℓtrain(q
⋆
ml) > ℓtrain(q⋆

boost), as expected, on the test data

the linear trend is reversed, so that ℓtest(q
⋆
ml) < ℓtest(q

⋆
boost). This is a result of the fact that for

the above data-sets and features, little over-fitting occurs and the more aggressive exponential loss

criterion is superior to the more relaxed log-loss criterion. However, as ℓ(q⋆
ml) −→ 0, the two models

come to agree. Appendix A.4 shows that for any exponential model qθ ∈ Q2,

Dtrain(q⋆
ml, qθ) = ℓ(q⋆

ml)− ℓ(qθ). (32)

By taking qθ = q⋆
boost it is seen that as the difference between ℓ(q⋆

ml) and ℓ(q⋆
boost) gets smaller, the

divergence between the two models also gets smaller.

The results are consistent with the theoretical analysis. As the number of features is increased

so that the training data is fit more closely, the model matches the empirical distribution p̃ and

the normalizing term Z(x) becomes a constant. In this case, normalizing the boosting model q⋆
boost

does not violate the constraints, and results in the maximum likelihood model.

In Appendix A.1,A.2 we derive update rules for exponential loss minimization. These update

rules are derived by minimizing an auxiliary function that bounds from above the reduction in

loss. See (Collins et al., 2002) for the definition of an auxiliary function and proofs that these

functions are indeed auxiliary functions. The derived update rules are similar to the ones derived

by Collins et al. (2002), except that we do not assume that M = maxi,y
∑

j |fj(x, y)−fj(x, ỹ)| < 1.

In Appendix A.3 the regularized formulation is shown in detail and a sequential update rule is

derived. Appendix A.4 contains a proof for (32).

The next section derives an axiomatic characterization of the geometry of conditional models.

It then builds on the results of this section to given an axiomatic characterization of the geometry

underlying conditional exponential models and AdaBoost.

6 Axiomatic Geometry for Conditional Models

A fundamental assumption in the information geometric framework, is the choice of the Fisher

information as the metric that underlies the geometry of probability distributions. The choice of
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the Fisher information metric may be motivated in several ways the strongest of which is Čencov’s

characterization theorem (Lemma 11.3, (Čencov, 1982)). In his theorem, Čencov proves that the

Fisher information metric is the only metric that is invariant under a family of probabilistically

meaningful mappings termed congruent embeddings by a Markov morphism. Later on, Campbell

extended Čencov’s result to include non-normalized positive models (Campbell, 1986).

The theorems of Čencov and Campbell are particularly interesting since the Fisher information

is pervasive in statistics and machine learning. It is the asymptotic variance of the maximum

likelihood estimators under some regularity conditions. Cramer and Rao used it to compute a

lower bound on the variance of arbitrary unbiased estimators. In Bayesian statistics, it was used by

Jeffreys to define non-informative prior. It is tightly connected to the Kullback-Leibler divergence

which the cornerstone of maximum likelihood estimation for exponential models as well as various

aspects of information theory.

While the geometric approach to statistical inference has attracted considerable attention, little

research was conducted on the geometric approach to conditional inference. The characterization

theorems of Čencov and Campbell no longer apply in this setting and the different ways of choosing

a geometry for the space of conditional distributions, in contrast to the non-conditional case, are

not supported by theoretical considerations.

In this section we extend the results of Čencov and Campbell to provide an axiomatic character-

ization of conditional information geometry. We derive the characterization theorem in the setting

of non-normalized conditional models from which the geometry for normalized models is obtained

as a special case. In addition, we demonstrate a close connection between the characterized geome-

try and the conditional I-divergence which leads to a new axiomatic interpretation of the geometry

underlying the primal problems of logistic regression and AdaBoost. This interpretation builds

on the connection between AdaBoost and constrained minimization of I-divergence described in

Section 5.

Throughout the section we consider spaces of strictly positive conditional models where the

sample spaces of the explanatory and response variable are finite. Moving to the infinite case

presents some serious difficulties. The positivity constraint on the other hand does not play a

crucial role and may by discarded at some notational cost.

In the characterization theorem we will make use of the fact that Pk
m−1 ∩ Qk×m and Rk×m

+ ∩
Qk×m = Qk×m

+ are dense in Pk
m−1 and Rk×m

+ respectively. Since continuous functions are uniquely

characterized by their values on dense sets, it is enough to compute the metric for positive rational

models Qk×m
+ . The value of the metric on non-rational models follows from its continuous extension

to Rk×m
+ .

In Section 6.1 we define a class of transformations called congruent embeddings by a Markov

morphism. These transformations set the stage for the axioms in the characterization theorem of

Section 6.2.
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1/2 1/4 1/4

1/22/3 11/3

1/6 1/8 2/6 1/8 1/4

1/2

p

q = pQ

Figure 11: Congruent embedding by a Markov morphism of p = (1/2, 1/4, 1/4).

6.1 Congruent Embeddings by Markov Morphisms of Conditional Models

The characterization result of Section 6.2 is based on axioms that require geometric invariance

through a set of transformations between conditional models. These transformations are a general-

ization of the transformations underlying Čencov’s theorem. For consistency with the terminology

of Čencov (1982) and Campbell (1986) we refer to these transformations as Congruent embeddings

by Markov morphisms of conditional models.

Definition 4. Let A = {A1, . . . , Am} be a set partition of {1, . . . , n} with 0 < m ≤ n. A matrix

Q ∈ Rm×n is called A-stochastic if

∀i
n∑

j=1

Qij = 1, and Qij =

{
cij > 0 j ∈ Ai

0 j 6∈ Ai

.

In other words, A-stochastic matrices are stochastic matrices whose rows are concentrated on

the sets of the partition A. For example, if A = {{1, 3}, {2, 4}, {5}} then the following matrix is

A-stochastic



1/3 0 2/3 0 0

0 1/2 0 1/2 0

0 0 0 0 1


 . (33)

Obviously, the columns of any A-stochastic matrix have precisely one non-zero element. If m = n

then an A-stochastic matrix is a permutation matrix.

Multiplying a row probability vector p ∈ R1×m
+ with an A-stochastic matrix Q ∈ Rm×n results in

a row probability vector q ∈ R1×n
+ . The mapping p 7→ pQ has the following statistical interpretation.

The event xi is split into |Ai| distinct events stochastically, with the splitting probabilities given by

the i-row of Q. The new event space, denoted by Z = {z1, . . . , zn} may be considered a refinement

of X = {x1, . . . , xm} (if m < n) and the model q(z) is a consistent refinement of p(x). For example,

multiplying p = (1/2, 1/4, 1/4) with the matrix Q in (33) yields

q = pQ = (1/6, 1/8, 2/6, 1/8, 1/4).

In this transformation, x1 was split into {z1, z3} with unequal probabilities, x2 was split into {z2, z4}
with equal probabilities and x3 was relabeled z5 (Figure 3)
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The transformation q 7→ qQ is injective and therefore invertible. For example, the inverse

transformation to Q in (33) is

p(x1) = q(z1) + q(z3)

p(x2) = q(z2) + q(z4)

p(x3) = q(z5).

The inverse transformation may be interpreted as extracting a sufficient statistic T from Z. The

sufficient statistic joins events in Z to create the event space X , hence transforming models on Z
to corresponding models on X .

So far we have considered transformations of non-conditional models. The straightforward gener-

alization to conditional models involves performing a similar transformation on the response space

Y for every non-conditional model p(·|xi) followed by transforming the explanatory space X . It is

formalized in the definitions below and illustrated in Figure 4.

Definition 5. Let M ∈ Rk×m and Q = {Q(i)}k
i=1 be a set of matrices in Rm×n. We define the row

product M ⊗Q ∈ Rk×n as

[M ⊗Q]ij =
m∑

s=1

MisQ
(i)
sj = [MQ(i)]ij . (34)

In other words, the i-row of M ⊗Q is the i-row of the matrix product MQ(i).

Definition 6. Let B be a k sized partition of {1, . . . , l} and {A(i)}k
i=1 be a set of m sized partitions

of {1, . . . , n}. Furthermore, let R ∈ Rk×l
+ be a B-stochastic matrix and Q = {Q(i)}k

i=1 a sequence of

A(i)-stochastic matrices in Rm×n
+ . Then the map

f : Rk×m
+ → Rl×n

+ f(M) = R⊤(M ⊗Q) (35)

is termed a congruent embeddings by a Markov morphism of Rk×m
+ into Rl×n

+ and the set of all such

maps is denoted by F
l,n
k,m.

Congruent embeddings by a Markov morphism f are injective and if restricted to the space of

normalized models Pk
m−1 they produce a normalized model as well i.e. f(Pk

m−1) ⊂ Pl
n−1. The

component-wise version of equation (35) is

[f(M)]ij =

k∑

s=1

m∑

t=1

RsiQ
(s)
tj Mst (36)

with the above sum containing precisely one non-zero term since every column of Q(s) and R

contains only one non-zero entry. The push-forward map f∗ : TMRk×m
+ → Tf(M)R

l×n
+ associated

with f is

f∗(∂ab) =

l∑

i=1

n∑

j=1

RaiQ
(a)
bj ∂

′
ij (37)
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1/2 1/4 1/4

1/3 1/6 1/6 1/6 2/18 1/181/3 1/2 1/6

3/8 1/8 1/4 1/12 1/12 1/12

1/6 1/12 1/12 1/12 2/36 1/36

3/24 1/24 1/12 1/36 1/36 1/36

3/24 1/24 1/12 1/36 1/36 1/36

3/24 1/24 1/12 1/36 1/36 1/36

1/6 1/12 1/12 1/12 2/36 1/36

M

M ⊗Q

R⊤(M ⊗Q)

Figure 12: Congruent embedding by a Markov morphism of R2×3
+ into R5×6

+ .

where {∂ab}a,b and {∂′ij}ij are the bases of TMRk×m
+ and ∂′ij ∈ Tf(M)R

l×n
+ respectively. Using

definition 2 and equation (37), the pull-back of a metric g on Rl×n
+ through f ∈ F

l,n
k,m is

(f∗g)M (∂ab, ∂cd) = gf(M)(f∗∂ab, f∗∂cd) =
l∑

i=1

n∑

j=1

l∑

s=1

n∑

t=1

RaiRcsQ
(a)
bj Q

(c)
dt gf(M)(∂

′
ij , ∂

′
st). (38)

An important special case of a congruent embedding by a Markov morphism is specified by

uniform A-stochastic matrices defined next.

Definition 7. An A-stochastic matrix is called uniform if every row has the same number of

non-zero elements and if all its positive entries are identical.

For example, the following matrix is a uniformA-stochastic matrix forA = {{1, 3}, {2, 4}, {5, 6}}



1/2 0 1/2 0 0 0

0 1/2 0 1/2 0 0

0 0 0 0 1/2 1/2


 .

We proceed in the next section to state and prove the characterization theorem.

6.2 A Characterization of Metrics on Conditional Manifolds

As mentioned in the previous section, congruent embeddings by a Markov morphism have a strong

probabilistic interpretation. Such maps transform conditional models to other conditional models
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in a manner consistent with changing the granularity of the event spaces. Moving to a finer or

coarser description of the event space should not have an effect on the models if such a move

may be expressed as a sufficient statistic. It makes sense then to require that the geometry of a

space of conditional models be invariant under such transformations. Such geometrical invariance is

obtained by requiring maps f ∈ F
l,n
k,m to be isometries. The main results of the section are Theorems

1 and 1 below followed by Corollary 1. The proof of Theorem 1 bears some similarity to the proof

of Campbell’s theorem (Campbell, 1986) which in turn is related to the proof technique used in

Khinchin’s characterization of the entropy (Khinchin, 1957). Throughout the section we avoid

Čencov’s style of using category theory and use only standard techniques in differential geometry.

6.2.1 Three Useful Transformation

Before we turn to the characterization theorem we show that congruent embeddings by a Markov

morphisms are norm preserving and examine three special cases that will be useful later on.

We denote by Mi the ith row of the matrix M and by | · | the L1 norm applied to vectors or

matrices

|v| =
∑

i

|vi| |M | =
∑

i

|Mi| =
∑

ij

|Mij |.

Proposition 2. Maps in F
l,n
k,m are norm preserving:

|M | = |f(M)| ∀f ∈ F
l,n
k,m, ∀M ∈ Rk×m

+ .

Proof. Multiplying a positive row vector v by an A-stochastic matrix T is norm preserving

|vT | =
∑

i

[vT ]i =
∑

j

vj

∑

i

Tji =
∑

j

vj = |v|.

As a result, |[MQ(i)]i| = |Mi| for any positive matrix M and hence

|M | =
∑

i

|Mi| =
∑

i

|[MQ(i)]i| = |M ⊗Q|.

A map f ∈ F
l,n
k,m is norm preserving since

|M | = |M ⊗Q| = |(M ⊗Q)⊤| = |(M ⊗Q)⊤R| = |R⊤(M ⊗Q)| = |f(M)|.

We denote the symmetric group of permutations over k letters by Sk. The first transformation

hΠ
σ ∈ F

k,m
k,m, parameterized by a σ ∈ Sk and

Π = (π(1), . . . , π(k)) π(i) ∈ Sm,

is defined by Q(i) being the permutation matrix that corresponds to π(i) and R being the permu-

tation matrix that corresponds to σ. The push forward is

hΠ
σ∗(∂ab) = ∂′

σ(a)π(a)(b)
(39)
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and requiring hΠ
σ to be an isometry from (Rk×m

+ , g) to itself amounts to

gM (∂ab, ∂cd) = ghΠ
σ (M)(∂σ(a)π(a)(b), ∂σ(c)π(c)(d)) (40)

for all M ∈ Rk×m
+ and for every pair of basis vectors ∂ab, ∂cd in TMRk×m

+ .

The usefulness of hΠ
σ stems in part from the following proposition.

Proposition 3. Given ∂a1b1 , ∂a2b2 , ∂c1d1 , ∂c2d2 with a1 6= c1 and a2 6= c2 there exists σ,Π such that

hΠ
σ∗(∂a1b1) = ∂a2b2 hΠ

σ∗(∂c1d1) = ∂c2d2 . (41)

Proof. The desired map may be obtained by selecting Π, σ such that σ(a1) = a2, σ(c1) = c2 and

π(a1)(b1) = b2, π
(c1)(d1) = d2.

The second transformation rzw ∈ F
kz,mw
k,m , parameterized by z,w ∈ N, is defined by Q(1) = · · · =

Q(k) ∈ Rm×mw and R ∈ Rk×kz being uniform matrices (in the sense of Definition 7). Note that

each row of Q(i) has precisely m non-zero entries of value 1/m and each row of R has precisely z

non-zero entries of value 1/z. The exact forms of {Q(i)} and R are immaterial for our purposes

and any uniform matrices of the above sizes will suffice. By equation (37) the push-forward is

rzw∗(∂st) =
1

zw

z∑

i=1

w∑

j=1

∂′π(i)σ(j)

for some permutations π, σ that depend on s, t and the precise shape of {Q(i)} and R. The pull-back

of g is

(r∗zwg)M (∂ab, ∂cd) =
1

(zw)2

z∑

i=1

w∑

j=1

z∑

s=1

w∑

t=1

grzw(M)(∂
′
π1(i),σ1(j), ∂

′
π2(s),σ2(t)), (42)

again, for some permutations π1, π2, σ1, σ2.

We will often express rational conditional models M ∈ Qk×m
+ as

M =
1

z
M̃, M̃ ∈ Nk×m z ∈ N

where N is the natural numbers. Given a rational model M , the third mapping

yM ∈ F
|M̃ |,

Q
i |M̃i|

k,m where M =
1

z
M̃ ∈ Qk×m

+

is associated with Q(i) ∈ Rm×
Q

s |M̃s| and R ∈ Rk×|M̃ | which are defined as follows. The i-row

of R ∈ Rk×|M̃| is required to have |M̃i| non-zero elements of value |M̃i|−1. Since the number of

columns equals the number of positive entries it is possible to arrange the entries such that each

columns will have precisely one positive entry. R then is an A-stochastic matrix for some partition

A. The jth row of Q(i) ∈ Rm×
Q

s |M̃s| is required to have M̃ij
∏

s 6=i |M̃s| non-zero elements of value

(M̃ij
∏

s 6=i |Ms|)−1. Again, the number of positive entries

∑

j

M̃ij

∏

s 6=i

|M̃s| =
∏

s

|M̃s|

45

is equal to the number of columns and hence Q(i) is a legal A stochastic matrix for some A. Note

that the number of positive entries, and also columns of Q(i) does not depend on i hence {Q(i)} are

of the same size. The exact forms of {Q(i)} and R do not matter for our purposes as long as the

above restriction and the requirements for A-stochasticity apply (Definition 6).

The usefulness of yM comes from the fact that it transforms the rational models M into a

constant matrix.

Proposition 4. For M = 1
zM̃ ∈ Qk×m

+ ,

yM (M) =

(
z
∏

s

|M̃s|
)−1

1

where 1 is a matrix of ones of size |M̃ | ×∏s |M̃s|.

Proof. [M ⊗Q]i is a row vector of size
∏

s |M̃s| whose elements are

[M ⊗Q]ij = [MQ(i)]ij =
1

z
M̃ir

1

M̃ir
∏

s 6=i |M̃s|
=


z
∏

s 6=i

|M̃s|



−1

for some r that depends on i, j. Multiplying on the left by R results in

[R⊤(M ⊗Q)]ij = Rri[M ⊗Q]rj =
1

|M̃r|
1

z
∏

s 6=r |M̃s|
=

(
z
∏

s

|M̃s|
)−1

for some r that depends on i, j.

A straightforward calculation using equation (37) and the definition of yM∗ above shows that

the push-forward of yM is

yM∗(∂ab) =

∑|M̃a|
i=1

∑M̃ab
Q

l6=a |M̃l|
j=1 ∂′π(i)σ(j)

M̃ab
∏

i |M̃i|
. (43)

for some permutations π, σ that depend on M,s, t. Substituting equation (43) in equation (38)

gives the pull-back

(y∗Mg)M (∂ab, ∂cd) =

∑
i

∑
s

∑
j

∑
t gyM (M)(∂π1(i)σ1(j), ∂π2(s)σ2(t))

M̃abM̃cd
∏

s |M̃s|2
(44)

where the first two summations are over 1, . . . , |M̃a| and 1, . . . , |M̃c| and the last two summations

are over 1, . . . , M̃ab
∏

l 6=a |M̃l| and 1, . . . , M̃cd
∏

l 6=c |M̃l|.

6.2.2 The Characterization Theorem

Theorems 1 and 2 below are the main result of Section 6.

46



Theorem 1. Let {(Rk×m
+ , g(k,m)) : k ≥ 1,m ≥ 2} be a sequence of Riemannian manifolds with the

property that every congruent embedding by a Markov morphism is an isometry. Then

g
(k,m)
M (∂ab, ∂cd) =

A(|M |) + δac

( |M |
|Ma|

B(|M |) + δbd
|M |
Mab

C(|M |)
)

(45)

for some A,B,C ∈ C∞(R+,R).

Proof. The proof below uses the isometry requirement to obtain restrictions on g
(k,m)
M (∂ab, ∂cd) first

for a 6= c, followed by the case of a = c, b 6= d and finally for the case a = c, b = d. In each of

these cases, we first characterize the metric at constant matrices U and then compute it for rational

models M by pulling back the metric at U through yM . The value of the metric at non-rational

models follows from the rational case by the denseness of Qk×m
+ in Rk×m

+ and the continuity of the

metric.

Part I: g
(k,m)
M (∂ab, ∂cd) for a 6= c

We start by computing the metric at constant matrices U . Given ∂a1b1 , ∂c1d1 , a1 6= c1 and ∂a2b2 , ∂c2d2 , a2 6=
c2 we can use Proposition 3 and equation (40) to pull back through a corresponding hΠ

σ to obtain

g
(k,m)
U (∂a1b1 , ∂c1d1) = g

(k,m)

hΠ
σ (U)

(∂a2b2 , ∂c2d2) = g
(k,m)
U (∂a2b2 , ∂c2d2). (46)

Since (46) holds for all a1, a2, b1, b2 with a1 6= c1, a2, 6= c2 we have that g
(k,m)
U (∂ab, ∂cd), a 6= c depends

only on k, m and |U | and we denote it temporarily by Â(k,m, |U |).

A key observation, illustrated in Figure 13, is the fact that pushing forward ∂a,b, ∂c,d for a 6= c

through any f ∈ F
l,n
k,m results in two sets of basis vectors whose pairs have disjoint rows. As a result,

in the pull-back equation (38), all the terms in the sum represent metrics between two basis vectors

with different rows. As a result of the above observation, in computing the pull back g(kz,mw)

through rzw (42) we have a sum of z2w2 metrics between vectors of disjoint rows

Â(k,m, |U |) = g
(k,m)
U (∂ab, ∂cd) =

(zw)2

(zw)2
Â(kz,mw, |rzw(U)|) = Â(kz,mw, |U |) (47)

since rzw(U) is a constant matrix with the same norm as U . Equation (47) holds for any z,w ∈ N

and hence g
(k,m)
U (∂ab, ∂cd) does not depend on k,m and we write

g
(k,m)
U (∂ab, ∂cd) = A(|U |) for some A ∈ C∞(R+,R).

We turn now to computing g
(k,m)
M (∂ab, ∂cd), a 6= c for rational models M = 1

zM̃ . Pulling back

through yM according to equation (44) we have

g
(k,m)
M (∂ab, ∂cd) =

M̃abM̃cd
∏

s |M̃s|2
M̃abM̃cd

∏
s |M̃s|2

A(|yM (M)|) = A(|M |). (48)

Again, we made use of the fact that in the pull-back equation (44) all the terms in the sum are

metrics between vectors of different rows.
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1/31/3

1/6 1/12

1/6 1/12

∂ab

∂cd

S1

S2

Figure 13: Pushing forward ∂ab, ∂cd for a 6= c through any f ∈ F
l,n
k,m results in two sets of basis

vectors S1 (black) and S2 (gray) for which every pair of vectors {(v, u) : v ∈ S1, u ∈ S2} are in

disjoint rows.

Finally, since Qk×m
+ is dense in Rk×m

+ and g
(k,m)
M is continuous in M , equation (48) holds for all

models in Rk×m
+ .

Part II: g
(k,m)
M (∂ab, ∂cd) for a = c, b 6= d

As before we start with constant matrices U . Given ∂a1,b1, ∂c1,d1 with a1 = c1, b1 6= d1 and

∂a2,b2 , ∂c2,d2 with a2 = c2, b2 6= d2 we can pull-back through hΠ
σ with σ(a1) = a2, π

(a1)(b1) = b2
and π(a1)(d1) = d2 to obtain

g
(k,m)
U (∂a1b1 , ∂c1d1) = g

(k,m)

hΠ
σ (U)

(∂a2b2 , ∂c2d2) = g
(k,m)
U (∂a2b2 , ∂c2d2).

It follows that g
(k,m)
U (∂ab, ∂ad) depends only on k,m, |U | and we temporarily denote

g
(k,m)
U (∂ab, ∂ad) = B̂(k,m, |U |).

As in Part I, we stop to make an important observation, illustrated in Figure 14. Assume that

f∗ pushes forward ∂a,b to a set of vectors S1 organized in z rows and w1 columns and ∂a,d, b 6= d to

a set of vectors S2 organized in z rows and w2 columns. Then counting the pairs of vectors S1×S2

we obtain zw1w2 pairs of vectors that have the same rows but different columns and zw1(z − 1)w2

pairs of vectors that have different rows and different columns.

Applying the above observation to the push-forward of r
kz,mw
k,m we have among the set of pairs

S1 × S2, zw
2 pairs of vectors with the same rows but different columns and zw2(z − 1) pairs of

vectors with different rows and different columns.

Pulling back through rzw according to equation (42) and the above observation we obtain

B̂(k,m, |U |) =
zw2B̂(kz,mw, |U |)

(zw)2
+
z(z − 1)w2A(|U |)

(zw)2
=

1

z
B̂(kz,mw, |U |) +

z − 1

z
A(|U |)

48



1/31/3

1/6 1/12

1/6 1/12

∂ab

∂cd

S1 S2

z

w1 w2

Figure 14: Let f∗ push forward ∂ab to a set of vectors S1 (black) organized in z rows and w1 columns

and ∂ab, b 6= d to a set of vectors (gray) S2 organized in z rows and w2 columns. Then counting

the pairs of vectors S1×S2 we obtain zw1w2 pairs of vectors that have the same rows but different

columns and zw1(z − 1)w2 pairs of vectors that have different rows and different columns.

where the first term corresponds to the zw2 pairs of vectors with the same rows but different

columns and the second term corresponds to the zw2(z−1) pairs of vectors with different rows and

different columns. Rearranging and dividing by k results in

B̂(k,m, |U |) −A(|U |)
k

=
B̂(kz,mw, |U |) −A(|U |)

kz
.

It follows that the above quantity is independent of k,m and we write B̂(k,m,|U |)−A(|U |)
k = B(|U |)

for some B ∈ C∞(R+,R) which after rearrangement gives us

g
(k,m)
U (∂ab, ∂ad) = A(|U |) + kB(|U |). (49)

We compute next the metric for positive rational matrices M = 1
zM̃ by pulling back through

yM . We use again the observation in Figure 14, but now with z = |M̃a|, w1 = M̃ab
∏

l 6=a |M̃l| and

w2 = M̃ad
∏

l 6=a |M̃l|. Using (44) the pull-back through yM is

g
(k,m)
M (∂ab, ∂ad) =

|M̃a|M̃ab
∏

l 6=a |M̃l|(|M̃a| − 1)M̃ad
∏

l 6=a |M̃l|
M̃abM̃ad

∏
i |M̃i|2

A(|M |)

+
|M̃a|M̃abM̃ad

∏
l 6=a |M̃l|2

M̃abM̃ad
∏

i |M̃i|2
(
A(|M |) +B(|M |)

∑

i

|M̃i|
)

=
|M̃a| − 1

|M̃a|
A(|M |) +

1

|M̃a|
(
A(|M |) +B(|M |)

∑

i

|M̃i|
)

(50)

=A(|M |) +
|M̃ |
|M̃a|

B(|M |) = A(|M |) +
|M |
|Ma|

B(|M |).

The first term in the sums above corresponds to the zw1(z−1)w2 pairs of vectors that have different

rows and different columns and the second term corresponds to the zw1w2 pairs of vectors that have

different columns but the same row. As previously, by denseness of Qk×m
+ in Rk×m

+ and continuity

of g(k,m) equation (50) holds for all M ∈ Rk×m
+ .
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Part III: g
(k,m)
M (∂ab, ∂cd) for a = c, b = d

As before, we start by computing the metric for constant matrices U . Given a1, b1, a2, b2 we pull

back through hΠ
σ with σ(a1) = a2, π

(a1)(b1) = b2 to obtain

g
(k,m)
U (∂a1b1 , ∂a1b1) = g

(k,m)
U (∂a2b2 , ∂a2b2).

It follows that g
(k,m)
U (∂ab, ∂ab) does not depend on a, b and we temporarily denote

g
(k,m)
U (∂ab, ∂ab) = Ĉ(k,m, |U |).

In the present case, pushing forward two identical vectors ∂a,b, ∂a,b by a congruent embedding f

results in two identical sets of vectors S,S that we assume are organized in z rows and k columns.

Counting the pairs in S × S we obtain zw pairs of identical vectors, zw(w − 1) pairs of vectors

of the identical rows but different columns and zw2(z − 1) pairs of vectors of different rows and

columns. These three sets of pairs allow us to organize the terms in the pull-back summation (38)

into the three cases under considerations.

Pulling back through rzw (42) we obtain

Ĉ(k,m, |U |) =
zwĈ(kz,mw, |U |)

(zw)2
+
z(z − 1)w2A(|U |)

(zw)2
+
zw(w − 1)(A(|U |) + kzB(|U |))

(zw)2

=
Ĉ(kz,mw, |U |)

zw
+
(
1− 1

zw

)
A(|U |) +

(
k − zk

zw

)
B(|U |)

which after rearrangement and dividing by km gives

Ĉ(k,m, |U |) −A(|U |) − kB(|U |)
km

=
Ĉ(kz,mw, |U |) −A(|U |) − kzB(|U |)

kzmw
. (51)

It follows that the left side of (51) equals a function C(|U |) for some C ∈ C∞(R+,R) independent

of k and m resulting in

g
(k,m)
U (∂ab, ∂ab) = A(|U |) + kB(|U |) + kmC(|U |).

Finally, we compute g
(k,m)
M (∂ab, ∂ab) for positive rational matrices M = 1

zM̃ . Pulling back through

yM (44) and using the above division of S × S with z = M̃a, w = M̃ab
∏

l 6=a |M̃l| we obtain

g
(k,m)
M (∂ab, ∂ab) =

|M̃a| − 1

|M̃a|
A(|M |) +

( 1

|M̃a|
− 1

M̃ab
∏

i |M̃i|
)(
A(|M |) +B(|M |)

∑

i

|M̃i|
)

(52)

+
A(|M |) +B(|M |)∑i |M̃i|+ C(|M |)∏j |M̃j |

∑
i |M̃i|

M̃ab
∏

i |M̃i|

=A(|M |) +
|M̃ |
|M̃a|

B(|M |) +
|M̃ |
M̃ab

C(|M |) = A(|M |) +
|M |
|Ma|

B(|M |) +
|M |
Mab

C(|M |).

Since the positive rational matrices are dense in Rk×m
+ and the metric g

(k,m)
M is continuous in M ,

equation (52) holds for all models M ∈ Rk×m
+ .
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The following theorem is the converse of Theorem 1.

Theorem 2. Let {(Rk×m
+ , g(k,m))} be a sequence of Riemannian manifolds, with the metrics g(k,m)

given by

g
(k,m)
M (∂ab, ∂cd) = A(|M |) + δac

( |M |
|Ma|

B(|M |) + δbd
|M |
Mab

C(|M |)
)

(53)

for some A,B,C ∈ C∞(R+,R). Then every congruent embedding by a Markov morphism is an

isometry.

Proof. To prove the theorem we need to show that

∀M ∈ Rk×m
+ , ∀f ∈ F

l,n
k,m, ∀u, v ∈ TMRk×m

+ , g
(k,m)
M (u, v) = g

(l,n)
f(M)(f∗u, f∗v). (54)

Considering arbitrary M ∈ Rk×m
+ and f ∈ F

l,n
k,m we have by equation (38)

g
(l,n)
f(M)(f∗∂ab, f∗∂cd) =

l∑

i=1

n∑

j=1

l∑

s=1

n∑

t=1

RaiRcsQ
(a)
bj Q

(c)
dt g

(l,n)
f(M)(∂

′
ij , ∂

′
st). (55)

For a 6= c, using the metric form of equation (53), the right hand side of equation (55) reduces

to

A(|f(M)|)
l∑

i=1

n∑

j=1

l∑

s=1

n∑

t=1

RaiRcsQ
(a)
bj Q

(c)
dt = A(|f(M)|) = A(|M |) = g

(k,m)
M (∂ab, ∂cd)

since R and Q(i) are stochastic matrices.

Similarly, for a = c, b 6= d, the right hand side of equation (55) reduces to

A(|f(M)|)
l∑

i=1

n∑

j=1

l∑

s=1

n∑

t=1

RaiRcsQ
(a)
bj Q

(c)
dt +B(|f(M)|)

∑

i

|f(M)|
|[f(M)]i|

R2
ai

∑

j

∑

t

Q
(a)
bj Q

(a)
dt

= A(|M |) +B(|M |)|M |
∑

i

R2
ai

|[f(M)]i|
. (56)

Recall from equation (36) that

[f(M)]ij =

k∑

s=1

m∑

t=1

RsiQ
(s)
tj Mst.

Summing over j we obtain

|[f(M)]i| =
k∑

s=1

Rsi

m∑

t=1

Mst

∑

j

Q
(s)
tj =

k∑

s=1

Rsi|Ms|. (57)

Since every column of R has precisely one non-zero element it follows from (57) that Rai is either

0 or |[f(M)]i|
|Ma| which turns equation (56) into

g
(l,n)
f(M)(f∗∂ab, f∗∂ad) = A(|M |) +B(|M |)|M |

∑

i:Rai 6=0

Rai

|Ma|
= A(|M |) +B(|M |) |M |

|Ma|
= g

(k,m)
M (∂ab, ∂ad).
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Finally, for the case a = c, b = d the right hand side of equation (55) becomes

A(|M |) +B(|M |) |M |
|Ma|

+C(|M |)|M |
l∑

i=1

n∑

j=1

(RaiQ
(a)
bj )2

[f(M)]ij
.

Since in the double sum of equation (36)

[f(M)]ij =
k∑

s=1

m∑

t=1

RsiQ
(s)
tj Mst

there is a unique positive element, RaiQ
(a)
bj is either [f(M)]ij/Mab or 0. It follows then that equation

(55) equals

g
(l,n)
f(M)(f∗∂ab, f∗∂ab) =A(|M |) +B(|M |) |M |

|M |a
+ C(|M |)|M |

∑

i:Rai 6=0

∑

j:Q
(a)
bj 6=0

RaiQ
(a)
bj

Mab

= A(|M |) +B(|M |) |M |
|Ma|

+ C(|M |) |M |
Mab

= g
(k,m)
M (∂ab, ∂ab).

We have shown that for arbitrary M ∈ Rk×m
+ and f ∈ F

l,n
k,m

g
(k,m)
M (∂ab, ∂cd) = g

(l,n)
f(M)(f∗∂ab, f∗∂cd)

for each pair of tangent basis vectors ∂ab, ∂cd and hence the condition in (54) holds, thus proving

that

f :
(
R

(k,m)
+ , g(k,m)

)
→
(
R

(l,n)
+ , g(l,n)

)

is an isometry.

6.2.3 Normalized Conditional Models

A stronger statement can be said in the case of normalized conditional models. In this case, it

turns out that the choices of A and B are immaterial and equation (45) reduces to the product

Fisher information, scaled by a constant that represents the choice of the function C. The following

corollary specializes the characterization theorem to the normalized manifolds Pk
m−1.

Corollary 1. In the case of the manifold of normalized conditional models, equation (45) in theorem

1 reduces to the product Fisher information metric up to a multiplicative constant.

Proof. For u, v ∈ TMPk
m−1 expressed in the coordinates of the embedding tangent space TMRk×m

+

u =
∑

ij

uij∂ij v =
∑

ij

vij∂ij

we have

g
(k,m)
M (u, v) =



∑

ij

uij





∑

ij

vij


A(|M |) +

∑

i



∑

j

uij





∑

j

vij


 |M |
|Mi|

B(|M |) (58)

+
∑

ij

uijvij
|M |C(|M |)

Mij
= kC(k)

∑

ij

uijvij

Mij
(59)
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since |M | = k and for v ∈ TMPk
m−1 we have

∑
j vij = 0 for all i. We see that the choice of A and

B is immaterial and the resulting metric is precisely the product Fisher information metric up to

a multiplicative constant kC(k), that corresponds to the choice of C.

6.3 A Geometric Interpretation of Logistic Regression and AdaBoost

In this section, we use the close relationship between the product Fisher information metric and

conditional I-divergence to study the geometry implicitly assumed by logistic regression and Ad-

aBoost.

Logistic regression is a popular technique for conditional inference, usually represented by the

following normalized conditional model

p(1|x ; θ) =
1

Z
e
P

i xiθi , x, θ ∈ Rn, Y = {−1, 1}

where Z is the normalization factor. A more general form, demonstrated in Section 5 that is

appropriate for 2 ≤ |Y| <∞ is

p(y|x ; θ) =
1

Z
e
P

i θifi(x,y), x, θ ∈ Rn, y ∈ Y (60)

where fi : X ×Y → R are arbitrary feature functions. The model (60) is a conditional exponential

model and the parameters θ are normally obtained by maximum likelihood estimation for a training

set {(xj , yj)}N
j=1

arg max
θ

N∑

j=1

∑

i

θifi(xj , yj)−
N∑

j=1

log
∑

y′∈Y
e
P

i θifi(xj ,y′). (61)

AdaBoost is a linear classifier, usually viewed as an incremental ensemble methods that combines

weak learners (Schapire, 2002). The incremental rule that AdaBoost uses to select the weight vector

θ is known to greedily minimize the exponential loss

arg min
θ

∑

j

∑

y 6=yj

e
P

i θi(fi(xj ,y)−fi(xj ,yj)) (62)

associated with a non-normalized model

p(y|x ; θ) = e
P

i θifi(x,y), x, θ ∈ Rn, y ∈ Y.

By moving to the convex primal problems that correspond to maximum likelihood for logistic

regression (61) and minimum exponential loss for AdaBoost (62) a close connection between the two

algorithms appear cf. Section 5. Both problems selects a model that minimizes the I-divergence

(21)

Dr(p, q) =
∑

x

r(x)
∑

y

(
p(y|x) log

p(y|x)
q(y|x) − p(y|x) + q(y|x)

)
.

to a uniform distribution q where r is the empirical distribution over the training set r(x) =
1
N

∑N
i=1 δx,xi .

53

The minimization is constrained by expectation equations with the addition of normalization

constraints for logistic regression. The I-divergence above applies to non-normalized conditional

models and reduces to the conditional Kullback-Leibler divergence for normalized models. The

conditional form above (21) is a generalization of the non-normalized divergence for probability

measures studied by Csiszár (Csiszár, 1991).

Assuming ǫ = q − p → 0 we may approximate Dr(p, q) = Dr(p, p + ǫ) by a second order Taylor

approximation around ǫ = 0

Dr(p, q) ≈ Dr(p, p) +
∑

xy

∂D(p, p + ǫ)

∂ǫ(y, x)

∣∣∣
ǫ=0

ǫ(y, x)

+
1

2

∑

x1y1

∑

x2y2

∂2D(p, p + ǫ)

∂ǫ(y1, x1)∂ǫ(y2, x2)

∣∣∣
ǫ=0

ǫ(y1, x1)ǫ(y2, x2).

The first order terms

∂Dr(p, p+ ǫ)

∂ǫ(y1, x1)
= r(x1)

(
1− p(y1|x1)

p(y1|x1) + ǫ(y1, x1)

)

zero out for ǫ = 0. The second order terms

∂2Dr(p, p + ǫ)

∂ǫ(y1, x1)∂ǫ(y2, x2)
=
δy1y2δx1x2r(x1)p(y1|x1)

(p(y1|x1) + ǫ(y1, x1))2

at ǫ = 0 are δy1y2δx1x2

r(x1)
p(y1|x1)

. Substituting these expressions in the Taylor approximation gives

Dr(p, p + ǫ) ≈ 1

2

∑

xy

r(x)ǫ2(y, x)

p(y|x) =
1

2

∑

xy

(r(x)ǫ(y, x))2

r(x)p(y|x)

which is the squared length of r(x)ǫ(y, x) ∈ Tr(x)p(y|x)R
k×m
+ under the metric (45) for the choices

A(|M |) = B(|M |) = 0 and C(|M |) = 1/(2 |M |).

The I divergence Dr(p, q) which both logistic regression and AdaBoost minimize is then approx-

imately the squared geodesic distance between the conditional models r(x)p(y|x) and r(x)q(y|x)
under a metric (45) with the above choices of A,B,C. The fact that the models r(x)p(y|x) and

r(x)q(y|x) are not strictly positive is not problematic, since by the continuity of the metric, the-

orems 1 and 2 pertaining to Rk×m
+ apply also to its closure Rk×m

+ - the set of all non-negative

conditional models.

The above result is not restricted to logistic regression and AdaBoost. It carries over to any

conditional modeling technique that is based on maximum entropy or minimum Kullback-Leibler

divergence.
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6.4 Discussion

We formulated and proved an axiomatic characterization of a family of metrics, the simplest of

which is the product Fisher information metric in the conditional setting for both normalized and

non-normalized models. This result is a strict generalization of Campbell’s and Čencov’s theorems.

For the case k = 1, Theorems 1 and 2 reduce to Campbell’s theorem (Campbell, 1986) and corollary

1 reduces to Čencov’s theorem (Lemma 11.3 of (Čencov, 1982)).

In contrast to Čencov’s and Campbell’s theorems we do not make any reference to a joint distri-

bution and our analysis is strictly discriminative. If one is willing to consider a joint distribution

it may be possible to derive a geometry on the space of conditional models p(y|x) from Campbell’s

geometry on the space of joint models p(x, y). Such a derivation may be based on the observation

that the conditional manifold is a quotient manifold of the joint manifold. If such a derivation is

carried over, it is likely that the derived metric would be different from the metric characterized in

this section.

As mentioned in Section 3, the proper framework for considering non-negative models is a mani-

fold with corners (Lee, 2002). The theorem stated here carries over by the continuity of the metric

from the manifold of positive models to its closure. Extensions to infinite X or Y poses considerable

difficulty. For a brief discussion of infinite dimensional manifolds representing densities see (Amari

& Nagaoka, 2000) pp. 44-45.

The characterized metric (45) has three additive components. The first one represents a compo-

nents that is independent of the tangent vectors, but depends on the norm of the model at which

it is evaluated. Such a dependency may be used to produce the effect of giving higher importance

to large models, that represent more confidence. The second term is non-zero if the two tangent

vectors represent increases in the current model along p(·|xa). In this case, the term depends not

only on the norm of the model but also on |Ma| =
∑

j p(yj|xa). This may be useful in dealing

with non-normalized conditional models whose values along the different rows p(·|xi) are not on

the same numeric scale. Such scale variance may represent different importance in the predictions

made, when conditioning on different xi. The last component represents the essence of the Fisher

information quantity. It scales up with low values p(yj|xi) to represent a kind of space stretching,

or distance enhancing when we are dealing with points close to the boundary. It captures a similar

effect as the log-likelihood of increased importance given to near-zero erroneous predictions.

Using the characterization theorem we give for the first time, a differential geometric inter-

pretation of logistic regression and AdaBoost whose metric is characterized by natural invariance

properties. Such a geometry applies not only to the above models, but to any algorithmic technique

that is based on maximum conditional entropy principles.

Despite the relationship between the I-divergence Dr(p, q) and the geodesic distance d(pr, qr)

there are some important differences. The geodesic distance not only enjoys the symmetry and

triangle inequality properties, but is also bounded. In contrast, the I-divergence grows to infinity

55

- a fact that causes it to be extremely non-robust. Indeed, in the statistical literature, the maxi-

mum likelihood estimator is often replaced by more robust estimators, among them the minimum

Hellinger distance estimator (Beran, 1977; Lindsay, 1994). Interestingly, the Hellinger distance is

extremely similar to the geodesic distance under the Fisher information metric. It is likely that

new techniques in conditional inference that are based on minimum geodesic distance in the primal

space, will perform better than maximum entropy or conditional exponential models.

Another interesting aspect is that maximum entropy or conditional exponential models may be

interpreted as transforming models p into rp where r is the empirical distribution of the training

set. This makes sense since two models rp, rq become identical over xi that do not appear in

the training set, and indeed the lack of reference data makes such an embedding workable. It

is conceivable, however, to consider embeddings p 7→ rp using distributions r different from the

empirical training data distribution. Different xi may have different importance associated with

their prediction p(·|xi) and some labels yi may be known to be corrupted by noise with a distribution

that depends on i.

So far, we examined the geometry of the model space Θ. In the remainder of this thesis we turn

to studying machine learning algorithms in the context of geometric assumption on the data space

X .

7 Data Geometry Through the Embedding Principle

The standard practice in machine learning is to represent data points as vectors in a Euclidean

space, and then process them under the assumptions of Euclidean geometry. Such an embedding

is often done regardless of the origin of the data. It is a common practice for inherently real

valued data, such as measurements of physical quantities as well as for categorical data such as

text documents or boolean data.

Two classes of learning algorithms, which make such assumptions, are radial basis machines

and linear classifiers. Radial basis machines are algorithms that are based on the radial basis or

Gaussian function

K(x, y) = c exp

(
1

σ2
‖x− y‖2

)
= c exp

(
1

σ2

∑

i

|xi − yi|2
)

which is in turn based on the Euclidean normed distance. Linear classifiers, such as boosting, logistic

regression, linear SVM and the perceptron make an implicit Euclidean assumption by choosing the

class of linear hyperplane separators. Furthermore, the training phase of many linear classifiers is

based on Euclidean arguments such as the margin. Section 9 contains more details on this point.

In accordance with the earlier treatment of the model space geometry, we would like to investigate

a more appropriate geometry for X and its implications on practical algorithms. It is likely that

since data come from different sources, the appropriate geometry should be problem dependent.
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More specifically, the data should dictate first the topological space and then the geometric structure

to endow it with. It seems that selecting a geometry for the data space is much harder than for

the model space, where Čencov’s theorem offered a natural candidate.

The first step toward selecting a metric for X is assuming that the data comes from a set of

distributions {p(x ; θ) : θ ∈ Θ}. In this case we assume that every data point is associated with a

potentially different distribution. Since there is already a natural geometric structure on the model

space Θ, we can obtain a geometry for the data points by identifying them with the corresponding

probabilistic models and taking the Fisher geometry on Θ.

Under a frequentist interpretation, we can associate each data point with a single model θ. An

obvious choice for the mapping x 7→ θ is the maximum likelihood estimator θ̂ : X → Θ, which

enjoys both nice properties and often satisfactory performance. We can then measure geometric

quantities such as distance between two data points x, y by their geometric counterparts on Θ with

respect to the Fisher geometry

d(x, y) = dJ (θ̂(x), θ̂(y)). (63)

Under a Bayesian interpretation, we can associate a posterior p(θ |x) with each data point x. The

quantities that correspond to geometric measurements on Θ transform then into random variables.

For example, distance between two data points x, y becomes a random variable whose posterior

mean is

Eθ|xd(x, y) =

∫∫
dJ (θ, η)p(θ |x)p(η |x)dθdη. (64)

While there is a clearly defined geometry on Θ, the resulting concepts on X may be different

from what is expected by a geometry on X . For example, the functions in (63)-(64) may not be

metric distance function (satisfying positivity, symmetry and triangle inequality) on X , as happens

for example when θ̂ is not injective. Another possible disparity occurs if θ̂ is not surjective and

significant areas of Θ are not represented by the data.

As a result, we will be more interested in cases where θ̂ is injective and its image θ̂(X ) is dense

in Θ. Such is the case of text document representation, the main application area of this thesis. A

common assumption for text document representation is to disregard the order of the words. This

assumption, termed bag of words representation, is almost always used for text classification task.

Under this assumption, a document is represented as a vector of word counts x ∈ N|V | where V

is the set of distinct words commonly known as the dictionary. In order to treat long and short

documents on equal footing, it is furthermore common to divide the above representation by the

length of the document resulting in a non-negative vector that sum to 1. This is the representation

that we assume in this thesis, and from now on we assume that text documents x ∈ X are given in

this representation.
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Assuming that a multinomial model generates the documents, we find a close relationship between

X and Θ. The data space X is in fact a subset of the non-negative simplex Pn which is precisely

the model space Θ (in this case, n + 1 is the size of the dictionary). More specifically, X is the

subset of Pn = Θ with all rational coordinates

X = Pn ∩Qn+1.

Identifying X as a subset of Pn, we see that the maximum likelihood mapping θ̂ : X → Θ is the

injective inclusion map ι : X → Θ, ι(x) = x, and

Θ = Pn = Pn ∩Qn+1 = X .

In other words, the maximum likelihood mapping is an injective embedding of X onto a dense set

in Θ.

Since X is nowhere dense, it is not suitable for continuous treatment. It should, at the very

least be embedded in a complete space in which every Cauchy sequence convergence. Replacing

the document space X by its completion Pn, as we propose above, is the smallest embedding that

is sufficient for continuous treatment.

Once we assume that the data xi is sampled from a model p(x ; θtrue
i ) there is some justification in

replacing the data by points {θtrue
i }i on a Riemannian manifold (Θ,J ). Since the models generated

the data, in some sense they contain the essence of the data and the Fisher geometry is motivated

by Čencov’s theorem. The weakest part of the embedding framework, and apparently the most

arbitrary, is the choice of the particular embedding. In the next two subsections, we address this

concern by examining the properties of different embeddings.

7.1 Statistical Analysis of the Embedding Principle

As mentioned previously, one possible embedding is the maximum likelihood embedding θ̂mle : X →
Θ. The nice asymptotic properties that the MLE enjoys seem to be irrelevant to our purposes since

it is employed for a single data point. If we assume that the data parameters are clustered with a

finite number of clusters θtrue
1 , · · · , θtrue

C , then as the total number of examples increases, we obtain

increasing numbers of data points per cluster. In this case the MLE may enjoy the asymptotic

properties of first order efficiency. If no clustering exists, then the number of parameters grow

proportionally to the number of data points. Such is the situation in non-parametric statistics

which becomes a more relevant framework than parametric statistics.

Before we continue, we review some definitions from classical decision theory. For more details, see

for example (Schervish, 1995). Given an estimator T : X n → Θ, and a loss function l : Θ×Θ → R,

we can define the risk

rT : Θ → R rT (θ) =

∫

Xn

p(x1, . . . , xn ; θ) l(T (x1, . . . , xn), θ) dx1 . . . dxn. (65)
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The risk rT (θ) measures the average loss of the estimator T assuming that the true parameter value

is θ. If there exists another estimator T ′ that dominates T i.e.

∀θ rT ′(θ) ≤ rT (θ) and ∃θ rT ′(θ) < rT (θ)

we say that the estimator T is inadmissable. We will assume from now on that the loss function is

the mean squared error function.

Assuming no clustering, the admissability of the MLE estimator is questionable, as was pointed by

James and Stein who stunned the statistics community by proving that the James-Stein estimator

θ̂JS : R → R for N(θ, 1) given by

θ̂JS(xi) =

(
1− n− 2∑

i x
2
i

)
xi

dominates7 the MLE in mean squared error for n ≥ 3 (Stein, 1955; Efron & Morris, 1977). Here the

data x1, . . . , xn is sampled from N(µ1, 1), . . . , N(µn, 1) and the parameter space is Θ = R. James-

Stein estimator and other shrinkage estimators are widely studied in statistics. Such estimators,

however, depend on the specific distribution being estimated and are usually difficult to come up

with.

A similar result from a different perspective may be obtained by considering the Bayesian frame-

work. In this framework, θi are iid random variables with a common, but unknown, distribution

p(θ|φ) =
∏

i p(θi|φ). If φ is unknown our marginal distribution is a mixture of iid distributions8

p(θ) =

∫ ∏

i

p(θi|φ)p(φ) dφ.

Introducing the data xi, we then have the following form for the posterior

p(θ1, . . . , θn|x1, . . . xn) ∝
∏

i

p(xi|θi)

∫ ∏

i

p(θi|φ)p(φ) dφ =

∫ ∏

i

p(xi|θi)p(θi|φ)p(φ) dφ. (66)

Recall that in the Bayesian setting, the embedding becomes a random variable. Furthermore, as

seen from equation (66) if φ is unknown, the embedding of the data x1, . . . , xn cannot be decoupled

into independent random embeddings and the posterior of the entire parameter set has to be

considered.

In the Bayesian framework, our distributional assumptions dictate the form of the posterior and

there is no arbitrariness such as a selection of a specific point estimator. This benefit, as is often

the case in Bayesian statistics, comes at the expense of added computational complexity. Given a

data set x1, . . . , xn, the distance between two data points becomes a random variable. Assuming

we want to use a nearest neighbor classifier, a reasonable thing would be to consider the posterior

7Interestingly, the James-Stein estimator is inadmissable as well as it is further dominated by another estimator.
8the mixture of iid distribution is also motivated by de Finetti’s theorem that singles it out as the only possibly

distribution if n→∞ and θi are exchangeable, rather than independent
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mean of the geodesic distance Eθ|xd(xi, xj). If φ is unknown, equation (64) should be replaced with

the following high dimensional integral

Eθ|xd(xi, xj) ∝
∫∫ ∏

i

p(xi|θi)p(θi|φ)p(φ) dφd(θi, θj) dθ.

The empirical Bayes framework achieves a compromise between the frequentist and the Bayesian

approaches (Robbins, 1955; Casella, 1985). In this approach, a deterministic embedding θ̂ for xi is

obtained by using the entire data set x1, . . . , xn to approximate the regression function E(θi|xi).

For some restricted cases, the empirical Bayes procedure enjoys asymptotic optimality. However,

both the analysis and the estimation itself depend heavily on the specific case at hand.

In the next sections we use the embedding principle to improve several classification algorithms.

In Section 7 we propose a generalization of the radial basis function, adapted to the Fisher geometry

of the embedded data space. In Section 9 we define the class of hyperplane separators and margin

quantity to arbitrary data geometries and work out the detailed generalization of logistic regression

to multinomial geometry. Finally, Section 10 goes beyond the Fisher geometry and attempts to

learn a local metric, adapted to the provided training set. Experimental results in these sections

show that the above generalizations of known algorithms to non-Euclidean geometries outperform

their Euclidean counterparts.

8 Diffusion Kernels on Statistical Manifolds

The use of Mercer kernels for transforming linear classification and regression schemes into nonlinear

methods is a fundamental idea, one that was recognized early in the development of statistical

learning algorithms such as the perceptron, splines, and support vector machines (Aizerman et al.,

1964; Kimeldorf & Wahba, 1971; Boser et al., 1992). The recent resurgence of activity on kernel

methods in the machine learning community has led to the further development of this important

technique, demonstrating how kernels can be key components in tools for tackling nonlinear data

analysis problems, as well as for integrating data from multiple sources.

Kernel methods can typically be viewed either in terms of an implicit representation of a high

dimensional feature space, or in terms of regularization theory and smoothing (Poggio & Girosi,

1990). In either case, most standard Mercer kernels such as the Gaussian or radial basis function

kernel require data points to be represented as vectors in Euclidean space. This initial processing

of data as real-valued feature vectors, which is often carried out in an ad hoc manner, has been

called the “dirty laundry” of machine learning Dietterich (2002)—while the initial Euclidean feature

representation is often crucial, there is little theoretical guidance on how it should be obtained. For

example in text classification, a standard procedure for preparing the document collection for the

application of learning algorithms such as support vector machines is to represent each document as

a vector of scores, with each dimension corresponding to a term, possibly after scaling by an inverse

document frequency weighting that takes into account the distribution of terms in the collection

Joachims (2000). While such a representation has proven to be effective, the statistical justification

of such a transform of categorical data into Euclidean space is unclear.
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Recent work by Kondor and Lafferty (2002) was directly motivated by this need for kernel meth-

ods that can be applied to discrete, categorical data, in particular when the data lies on a graph.

Kondor and Lafferty (2002) propose the use of discrete diffusion kernels and tools from spectral

graph theory for data represented by graphs. In this section, we propose a related construction

of kernels based on the heat equation. The key idea in our approach is to begin with a statistical

family that is natural for the data being analyzed, and to represent data as points on the statistical

manifold associated with the Fisher information metric of this family. We then exploit the geometry

of the statistical family; specifically, we consider the heat equation with respect to the Riemannian

structure given by the Fisher metric, leading to a Mercer kernel defined on the appropriate function

spaces. The result is a family of kernels that generalizes the familiar Gaussian kernel for Euclidean

space, and that includes new kernels for discrete data by beginning with statistical families such as

the multinomial. Since the kernels are intimately based on the geometry of the Fisher information

metric and the heat or diffusion equation on the associated Riemannian manifold, we refer to them

here as information diffusion kernels.

One apparent limitation of the discrete diffusion kernels of (Kondor & Lafferty, 2002) is the

difficulty of analyzing the associated learning algorithms in the discrete setting. This stems from

the fact that general bounds on the spectra of finite or even infinite graphs are difficult to obtain,

and research has concentrated on bounds on the first eigenvalues for special families of graphs. In

contrast, the kernels we investigate here are over continuous parameter spaces even in the case where

the underlying data is discrete, leading to more amenable spectral analysis. We can draw on the

considerable body of research in differential geometry that studies the eigenvalues of the geometric

Laplacian, and thereby apply some of the machinery that has been developed for analyzing the

generalization performance of kernel machines in our setting.

Although the framework proposed is fairly general, in this section we focus on the application

of these ideas to text classification, where the natural statistical family is the multinomial. In the

simplest case, the words in a document are modeled as independent draws from a fixed multinomial;

non-independent draws, corresponding to n-grams or more complicated mixture models are also

possible. For n-gram models, the maximum likelihood multinomial model is obtained simply as

normalized counts, and smoothed estimates can be used to remove the zeros. This mapping is then

used as an embedding of each document into the statistical family, where the geometric framework

applies. We remark that the perspective of associating multinomial models with individual docu-

ments has recently been explored in information retrieval, with promising results (Ponte & Croft,

1998; Zhai & Lafferty, 2001).

The statistical manifold of the n-dimensional multinomial family comes from an embedding of the

multinomial simplex into the n-dimensional sphere which is isometric under the Fisher information

metric. Thus, the multinomial family can be viewed as a manifold of constant positive curvature.

As discussed below, there are mathematical technicalities due to corners and edges on the boundary

of the multinomial simplex, but intuitively, the multinomial family can be viewed in this way as

a Riemannian manifold with boundary; we address the technicalities by a “rounding” procedure

on the simplex. While the heat kernel for this manifold does not have a closed form, we can
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approximate the kernel in a closed form using the leading term in the parametrix expansion, a

small time asymptotic expansion for the heat kernel that is of great use in differential geometry.

This results in a kernel that can be readily applied to text documents, and that is well motivated

mathematically and statistically.

We present detailed experiments for text classification, using both the WebKB and Reuters

data sets, which have become standard test collections. Our experimental results indicate that

the multinomial information diffusion kernel performs very well empirically. This improvement

can in part be attributed to the role of the Fisher information metric, which results in points

near the boundary of the simplex being given relatively more importance than in the flat Euclidean

metric. Viewed differently, effects similar to those obtained by heuristically designed term weighting

schemes such as inverse document frequency are seen to arise automatically from the geometry of

the statistical manifold.

The section is organized as follows. In Section 8.1 we define the relevant concepts from Rie-

mannian geometry, that have not been described in Section 2 and then proceed to define the heat

kernel for a general manifold, together with its parametrix expansion. In Section 8.3, we derive

bounds on covering numbers and Rademacher averages for various learning algorithms that use the

new kernels, borrowing results from differential geometry on bounds for the geometric Laplacian.

Section 8.4 describes the results of applying the multinomial diffusion kernels to text classification,

and we conclude with a discussion of our results in Section 8.6.

8.1 Riemannian Geometry and the Heat Kernel

We begin by briefly reviewing some relevant concepts from Riemannian geometry that will be used

in the construction of information diffusion kernels. These concepts complement the ones defined

in Section 2. Using these concepts, the heat kernel is defined, and its basic properties are presented.

An excellent introductory account of this topic is given by Rosenberg (1997), and an authoritative

reference for spectral methods in Riemannian geometry is (Schoen & Yau, 1994).

The construction of our kernels is based on the Laplacian9. One way to describe the appropriate

generalization of the Euclidean Laplacian to arbitrary Riemannian manifold is through the notions

of gradient and divergence. The gradient of a function is defined as the vector field that satisfies

grad : C∞(M,R) → X(M) gp(grad f |p,Xp) = Xp(f) (67)

for every vector field X ∈ X(M) and every point p ∈M. In local coordinates, the gradient is given

by

(grad f |p)i =
∑

j

[G−1(p)]ij
∂f(p)

∂xj
(68)

where G(p) is the gram matrix associated with the metric g (see Section 2).

9As described by Nelson (1968), “The Laplace operator in its various manifestations is the most beautiful and

central object in all of mathematics. Probability theory, mathematical physics, Fourier analysis, partial differential

equations, the theory of Lie groups, and differential geometry all revolve around this sun, and its light even penetrates

such obscure regions as number theory and algebraic geometry.”
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The divergence operator

div : X(M) → C∞(M,R)

is defined to be the adjoint of the gradient, allowing “integration by parts” on manifolds with

special structure. In local coordinates, the divergence is the function

divX (p) =
1√

det g(p)

∑

i

∂

∂xi

(√
det g(p) (Xp)i

)
(69)

where det g(p) is the determinant10 of the Gram matrix G(p).

Finally, the Laplace-Beltrami operator or the Laplacian is defined by11

∆ : C∞(M,R) → C∞(M,R) ∆ = div ◦ grad (70)

which in local coordinates is given by

∆f (p) =
1√

det g(p)

∑

ij

∂

∂xi

(
[G(p)−1]ij

√
det g(p)

∂f

∂xj

)
. (71)

These definitions preserve the familiar intuitive interpretation of the usual operators in Euclidean

geometry; in particular, the gradient grad f points in the direction of steepest ascent of f and the

divergence divX measures outflow minus inflow of liquid or heat flowing according to the vector

field X.

8.1.1 The Heat Kernel

The Laplacian is used to model how heat will diffuse throughout a geometric manifold; the flow

f(x, t), at point x and time t, is governed by the following second order partial differential equation

with initial conditions

∂f

∂t
−∆f = 0 (72)

f(x, 0) = f0(x). (73)

The value f(x, t) describes the heat at location x and time t, beginning from an initial distribution

of heat given by f0(x) at time zero. The heat or diffusion kernel Kt(x, y) is the solution to the

heat equation f(x, t) with initial condition given by Dirac’s delta function δy. As a consequence of

the linearity of the heat equation, the heat kernel can be used to generate the solution to the heat

equation with arbitrary initial conditions, according to

f(x, t) =

∫

M
Kt(x, y) f(y) dy. (74)

10Most definition of the divergence, require the manifold to be oriented. We ignore this issue because it is not

important to what follows and we will always work with orientable manifolds.
11There is no general agreement about the sign convention for the Laplacian. Many authors define the Laplacian

as the negative of the present definition.
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When M = R with the Euclidean metric, the heat kernel is the familiar Gaussian kernel, so that

the solution to the heat equation is expressed as

f(x, t) =
1√
4πt

∫

R

e−
(x−y)2

4t f(y) dy (75)

and it is seen that as t→∞, the heat diffuses out “to infinity” so that f(x, t) → 0.

When M is compact the Laplacian has discrete eigenvalues 0 = λ0 < λ1 ≤ λ2 · · · with corre-

sponding eigenfunctions φi satisfying ∆φi = −λiφi. When the manifold has a boundary, appro-

priate boundary conditions must be imposed in order for ∆ to be self-adjoint. Dirichlet boundary

conditions set φi|∂M = 0 and Neumann boundary conditions require ∂φi
∂ν

∣∣∣
∂M

= 0 where ν is the

outer normal direction. The following theorem summarizes the basic properties for the kernel of

the heat equation on M; we refer to (Schoen & Yau, 1994) for a proof.

Theorem 3. Let M be a complete Riemannian manifold. Then there exists a function K ∈
C∞(R+ ×M ×M), called the heat kernel, which satisfies the following properties for all x, y ∈M ,

with Kt(·, ·) = K(t, ·, ·)
1. Kt(x, y) = Kt(y, x)

2. limt→0Kt(x, y) = δx(y)

3.
(
∆− ∂

∂t

)
Kt(x, y) = 0

4. Kt(x, y) =
∫
MKt−s(x, z)Ks(z, y) dz for any s > 0.

If in addition M is compact, then Kt can be expressed in terms of the eigenvalues and eigenfunctions

of the Laplacian as Kt(x, y) =
∑∞

i=0 e
−λitφi(x)φi(y).

Properties 2 and 3 imply that Kt(x, y) solves the heat equation in x, starting from y. It

follows that et∆f(x) = f(x, t) =
∫
M Kt(x, y) f(y) dy solves the heat equation with initial conditions

f(x, 0) = f(x), since

∂f(x, t)

∂t
=

∫

M

∂Kt(x, y)

∂t
f(y) dy (76)

=

∫

M
∆Kt(x, y) f(y) dy (77)

= ∆

∫

M
Kt(x, y) f(y) dy (78)

= ∆f(x) (79)

and limt→0 f(x, t) =
∫
M limt→0Kt(x, y) dy = f(x). Property 4 implies that et∆es∆ = e(t+s)∆,

which has the physically intuitive interpretation that heat diffusion for time t is the composition of

heat diffusion up to time s with heat diffusion for an additional time t− s. Since et∆ is a positive

operator,
∫

M

∫

M
Kt(x, y)f(x)f(y) dxdy =

〈
f, et∆f

〉
≥ 0 (80)

and Kt(x, y) is positive-definite. In the compact case, positive-definiteness follows directly from the

expansion Kt(x, y) =
∑∞

i=0 e
−λitφi(x)φi(y), which shows that the eigenvalues of Kt as an integral

operator are e−λit. Together, these properties show that Kt defines a Mercer kernel.
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The heat kernel Kt(x, y) is a natural candidate for measuring the similarity between points

between x, y ∈ M, while respecting the geometry encoded in the metric g. Furthermore it is,

unlike the geodesic distance, a Mercer kernel – a fact that enables its use in statistical kernel

machines. When this kernel is used for classification, as in our text classification experiments

presented in Section 8.4, the discriminant function yt(x) =
∑

i αiyiKt(x, xi) can be interpreted as

the solution to the heat equation with initial temperature y0(xi) = αi yi on labeled data points xi,

and y0(x) = 0 elsewhere.

8.1.2 The parametrix expansion

For most geometries, there is no closed form solution for the heat kernel. However, the short

time behavior of the solutions can be studied using an asymptotic expansion, called the parametrix

expansion. In fact, the existence of the heat kernel, as asserted in the above theorem, is most

directly proven by first showing the existence of the parametrix expansion. Although it is local,

the parametrix expansion contains a wealth of geometric information, and indeed much of modern

differential geometry, notably index theory, is based upon this expansion and its generalizations.

In Section 8.4 we will employ the first-order parametrix expansion for text classification.

Recall that the heat kernel on n-dimensional Euclidean space is given by

KEuclid
t (x, y) = (4πt)−

n
2 exp

(
−‖x− y‖2

4t

)
(81)

where ‖x−y‖2 =
∑n

i=1 |xi − yi|2 is the squared Euclidean distance between x and y. The parametrix

expansion approximates the heat kernel locally as a correction to this Euclidean heat kernel. It is

given by

P
(m)
t (x, y) = (4πt)−

n
2 exp

(
−d

2(x, y)

4t

)
(ψ0(x, y) + ψ1(x, y)t+ · · ·+ ψm(x, y)tm) (82)

where d is the geodesic distance and ψk are recursively obtained by solving the heat equation

approximately to order tm, for small diffusion time t. Denoting K
(m)
t (x, y) = P

(m)
t (x, y) we thus

obtain an approximation for the heat kernel, that converges as t→ 0 and x→ y. For further details

refer to (Schoen & Yau, 1994; Rosenberg, 1997).

While the parametrixK
(m)
t is not in general positive-definite, and therefore does not define a Mer-

cer kernel, it is positive-definite for t sufficiently small. In particular, define f(t) = min spec
(
K

(m)
t

)
,

where min spec denotes the smallest eigenvalue. Then f is a continuous function with f(0) = 1

since K
(m)
0 = I. Thus, there is some time interval [0, ǫ) for which K

(m)
t is positive-definite in case

t ∈ [0, ǫ).

The following two basic examples illustrate the geometry of the Fisher information metric and

the associated diffusion kernel it induces on a statistical manifold. Under the Fisher information

metric, the spherical normal family corresponds to a manifold of constant negative curvature, and

the multinomial corresponds to a manifold of constant positive curvature. The multinomial will be

the most important example that we develop, and we will report extensive experiments with the

resulting kernels in Section 8.4.
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Figure 15: Example decision boundaries for a kernel-based classifier using information diffusion

kernels for spherical normal geometry with d = 2 (right), which has constant negative curvature,

compared with the standard Gaussian kernel for flat Euclidean space (left). Two data points are

used, simply to contrast the underlying geometries. The curved decision boundary for the diffusion

kernel can be interpreted statistically by noting that as the variance decreases the mean is known

with increasing certainty.

The heat kernel on the hyperbolic space Hn has the following closed form (Grigor’yan & Noguchi,

1998). For odd n = 2m+ 1 it is given by

Kt(x, x
′) =

(−1)m

2mπm

1√
4πt

(
1

sinh r

∂

∂r

)m

exp

(
−m2t− r2

4t

)
(83)

and for even n = 2m+ 2 it is given by

Kt(x, x
′) =

(−1)m

2mπm

√
2

√
4πt

3

(
1

sinh r

∂

∂r

)m ∫ ∞

r

s exp
(
− (2m+1)2t

4 − s2

4t

)

√
cosh s− cosh r

ds (84)

where r = d(x, x′) is the geodesic distance between the two points in Hn given by equation (15).

If only the mean θ = µ is unspecified, then the associated kernel is the standard RBF or Gaussian

kernel. The hyperbolic geometry is illustrated in Figure 15 where decision boundaries of SVM with

the diffusion kernel are plotted for both Euclidean and hyperbolic geometry.

Unlike the explicit expression for the Gaussian geometry discussed above, there is no explicit form

for the heat kernel on the sphere, nor on the positive orthant of the sphere. We will therefore resort

to the parametrix expansion to derive an approximate heat kernel for the multinomial geometry.

For the n-sphere it can be shown (Berger et al., 1971) that the function ψ0 of in the parametrix

expansion, which is the leading order correction of the Gaussian kernel under the Fisher information

metric, is given by

ψ0(r) =

(√
det g

rn−1

)− 1
2

=

(
sin r

r

)− (n−1)
2

= 1 +
(n− 1)

12
r2 +

(n− 1)(5n − 1)

1440
r4 +O(r6).
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Figure 16: Example decision boundaries using support vector machines with information diffusion

kernels for trinomial geometry on the 2-simplex (top right) compared with the standard Gaussian

kernel (left).

In our experiments we approximate the diffusion kernel using ψ0 ≡ 1 and obtain

K(θ, θ′) = (4πt)−
n
2 e−

1
t

arccos2(
P

i

√
θiθ′i). (85)

In Figure 16 the kernel (85) is compared with the standard Euclidean space Gaussian kernel for

the case of the trinomial model, d = 2, using an SVM classifier.

8.2 Rounding the Simplex

The case of multinomial geometry poses some technical complications for the analysis of diffusion

kernels, due to the fact that the open simplex is not complete, and moreover, its closure is not a

differentiable manifold with boundary. Thus, it is technically not possible to apply several results

from differential geometry, such as bounds on the spectrum of the Laplacian, as adopted in Sec-

tion 8.3. We now briefly describe a technical “patch” that allows us to derive all of the needed

analytical results, without sacrificing in practice any of the methodology that has been derived so

far. The idea is to “round the corners” of Pn to obtain a compact manifold with boundary, and

that closely approximates the original simplex Pn.

For ǫ > 0, let Bǫ(x) = {y | ‖x− y‖ < ǫ} be the open Euclidean ball of radius ǫ centered at x and

Cǫ(Pn) be

Cǫ(Pn) =
{
x ∈ Pn : Bǫ(x) ⊂ Pn

}
(86)

The ǫ-rounded simplex is then defined as the closure of

Pǫ
n =

⋃

x∈Cǫ(Pn)

Bǫ(x). (87)
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Figure 17: Rounding the simplex. Since the closed simplex is not a manifold with boundary, we

carry out a “rounding” procedure to remove edges and corners. The ǫ-rounded simplex is the

closure of the union of all ǫ-balls lying within the open simplex.

The above rounding procedure that yields Pǫ
2 is suggested by Figure 17. Note that in general the

ǫ-rounded simplex Pǫ
n will contain points with a single, but not more than one component having

zero probability and it forms a compact manifold with boundary whose image under the isometry F

described above is a compact submanifold with boundary of the n-sphere. Since, by choosing ǫ small

enough we can approximate Pn arbitrarily well (both in the Euclidean and geodesic distances), no

harm is done by assuming that we are dealing with a rounded compact manifold with a boundary.

8.3 Spectral Bounds on Covering Numbers and Rademacher Averages

We now turn to establishing bounds on the generalization performance of kernel machines that use

information diffusion kernels. We begin by adopting the approach of Guo et al. (2002), estimating

covering numbers by making use of bounds on the spectrum of the Laplacian on a Riemannian

manifold, rather than on VC dimension techniques; these bounds in turn yield bounds on the

expected risk of the learning algorithms. Our calculations give an indication of how the underlying

geometry influences the entropy numbers, which are inverse to the covering numbers. We then

show how bounds on Rademacher averages may be obtained by plugging in the spectral bounds

from differential geometry. The primary conclusion that is drawn from these analyses is that from

the point of view of generalization error bounds, information diffusion kernels behave essentially

the same as the standard Gaussian kernel.

8.3.1 Covering Numbers

We begin by recalling the main result of Guo et al. (2002), modifying their notation slightly to

conform with ours. Let X ⊂ Rd be a compact subset of d-dimensional Euclidean space, and suppose

that K : X × X −→ R is a Mercer kernel. Denote by λ1 ≥ λ2 ≥ · · · ≥ 0 the eigenvalues of K, i.e.,

of the mapping f 7→
∫
X K(·, y) f(y) dy, and let ψj(·) denote the corresponding eigenfunctions. We

assume that CK
def
= supj ‖ψj‖∞ <∞.
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Given m points xi ∈ X , the kernel hypothesis class for x = {xi} with weight vector bounded by

R is defined as the collection of functions on x given by

FR(x) = {f : f(xi) = 〈w,Φ(xi)〉 for some ‖w‖ ≤ R} (88)

where Φ(·) is the mapping from M to feature space defined by the Mercer kernel, and 〈·, ·〉 and ‖ · ‖
denote the corresponding Hilbert space inner product and norm. It is of interest to obtain uniform

bounds on the covering numbers N (ǫ,FR(x)), defined as the size of the smallest ǫ-cover of FR(x)

in the metric induced by the norm ‖f‖∞,x = maxi=1,...,m |f(xi)|. The following is the main result

of (Guo et al., 2002).

Theorem 4. Given an integer n ∈ N, let j∗n denote the smallest integer j for which

λj+1 <

(
λ1 · · ·λj

n2

)1
j

(89)

and define

ǫ∗n = 6CKR

√√√√√j∗n

(
λ1 · · ·λj∗n

n2

) 1
j∗n

+
∞∑

i=j∗n

λi . (90)

Then sup{xi}∈Mm N (ǫ∗n,FR(x)) ≤ n.

To apply this result, we will obtain bounds on the indices j∗n using spectral theory in Riemannian

geometry. The following bounds on the eigenvalues of the Laplacian are due to (Li & Yau, 1980).

Theorem 5. Let M be a compact Riemannian manifold of dimension d with non-negative Ricci

curvature, and let 0 < µ1 ≤ µ2 ≤ · · · denote the eigenvalues of the Laplacian with Dirichlet

boundary conditions. Then

c1(d)

(
j

V

) 2
d

≤ µj ≤ c2(d)

(
j + 1

V

) 2
d

(91)

where V is the volume of M and c1 and c2 are constants depending only on the dimension.

Note that the manifold of the multinomial model satisfies the conditions of this theorem. Using

these results we can establish the following bounds on covering numbers for information diffusion

kernels. We assume Dirichlet boundary conditions; a similar result can be proven for Neumann

boundary conditions. We include the constant V = vol(M) and diffusion coefficient t in order to

indicate how the bounds depend on the geometry.

Theorem 6. Let M be a compact Riemannian manifold, with volume V , satisfying the conditions

of Theorem 5. Then the covering numbers for the Dirichlet heat kernel Kt on M satisfy

logN (ǫ,FR(x)) = O

((
V

t
d
2

)
log

d+2
2

(
1

ǫ

))
(92)
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Proof. By the lower bound in Theorem 5, the Dirichlet eigenvalues of the heat kernel Kt(x, y),

which are given by λj = e−tµj , satisfy log λj ≤ −tc1(d)
(

j
V

) 2
d
. Thus,

−1

j
log

(
λ1 · · ·λj

n2

)
≥ tc1

j

j∑

i=1

(
i

V

) 2
d

+
2

j
log n ≥ tc1

d

d+ 2

(
j

V

)2
d

+
2

j
log n (93)

where the second inequality comes from
∑j

i=1 i
p ≥

∫ j
0 x

p dx = jp+1

p+1 . Now using the upper bound of

Theorem 5, the inequality j∗n ≤ j will hold if

tc2

(
j + 2

V

)2
d
≥ − log λj+1 ≥ tc1

d

d+ 2

(
j

V

) 2
d

+
2

j
log n (94)

or equivalently
tc2

V
2
d

(
j(j + 2)

2
d − c1

c2

d

d+ 2
j

d+2
d

)
≥ 2 log n (95)

The above inequality will hold in case

j ≥




(
2V

2
d

t(c2 − c1
d

d+2)
log n

) d
d+2



≥




(
V

2
d (d+ 2)

tc1
log n

) d
d+2




(96)

since we may assume that c2 ≥ c1; thus, j∗n ≤
⌈
c1

(
V

2
d

t log n

) d
d+2

⌉
for a new constant c1(d).

Plugging this bound on j∗n into the expression for ǫ∗n in Theorem 2 and using

∞∑

i=j∗n

e−i
2
d = O

(
e−j∗n

2
d

)
(97)

we have after some algebra that

log

(
1

ǫn

)
= Ω

((
t

V
2
d

) d
d+2

log
2

d+2 n

)
(98)

Inverting the above expression in log n gives equation (92).

We note that Theorem 4 of (Guo et al., 2002) can be used to show that this bound does

not, in fact, depend on m and x. Thus, for fixed t the covering numbers scale as logN (ǫ,F) =

O
(
log

d+2
2

(
1
ǫ

))
, and for fixed ǫ they scale as logN (ǫ,F) = O

(
t−

d
2

)
in the diffusion time t.

8.3.2 Rademacher Averages

We now describe a different family of generalization error bounds that can be derived using the

machinery of Rademacher averages Bartlett and Mendelson (2002); Bartlett et al. (2003). The

bounds fall out directly from the work of (Mendelson, 2003) on computing local averages for kernel-

based function classes, after plugging in the eigenvalue bounds of Theorem 3.
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As seen above, covering number bounds are related to a complexity term of the form

C(n) =

√√√√√j∗n

(
λ1 · · ·λj∗n

n2

) 1
j∗n

+

∞∑

i=j∗n

λi (99)

In the case of Rademacher complexities, risk bounds are instead controlled by a similar, yet simpler

expression of the form

C(r) =

√√√√j∗r r +

∞∑

i=j∗r

λi (100)

where now j∗r is the smallest integer j for which λj < r Mendelson (2003), with r acting as a

parameter bounding the error of the family of functions. To place this into some context, we quote

the following results from (Bartlett et al., 2003) and (Mendelson, 2003), which apply to a family of

loss functions that includes the quadratic loss; we refer to (Bartlett et al., 2003) for details on the

technical conditions.

Let (X1, Y1), (X2, Y2) . . . , (Xn, Yn) be an independent sample from an unknown distribution P on

X×Y, where Y ⊂ R. For a given loss function ℓ : Y×Y → R, and a family F of measurable functions

f : X → Y, the objective is to minimize the expected loss E[ℓ(f(X), Y )]. Let Eℓf∗ = inff∈F Eℓf ,

where ℓf (X,Y ) = ℓ(f(X), Y ), and let f̂ be any member of F for which Enℓf̂ = inff∈F Enℓf where

En denotes the empirical expectation. The Rademacher average of a family of functions G =

{g : X → R} is defined as the expectation ERnG = E
[
supg∈GRng

]
with Rng = 1

n

∑n
i=1 σi g(Xi),

where σ1, . . . , σn are independent Rademacher random variables; that is, p(σi = 1) = p(σi = −1) =
1
2 .

Theorem 7. Let F be a convex class of functions and define ψ by

ψ(r) = aERn

{
f ∈ F : E(f − f∗)2 ≤ r

}
+
b x

n
(101)

where a and b are constants that depend on the loss function ℓ. Then when r ≥ ψ(r),

E
(
ℓf̂ − ℓf∗

)
≤ c r +

dx

n
(102)

with probability at least 1− e−x, where c and d are additional constants.

Moreover, suppose that K is a Mercer kernel and F = {f ∈ HK : ‖f‖K ≤ 1} is the unit ball in

the reproducing kernel Hilbert space associated with K. Then

ψ(r) ≤ a

√√√√ 2

n

∞∑

j=1

min{r, λj}+
bx

n
(103)

Thus, to bound the excess risk for kernel machines in this framework it suffices to bound the

term

ψ̃(r) =

√√√√
∞∑

j=1

min{r, λj} (104)

involving the spectrum. Given bounds on the eigenvalues, this is typically easy to do.
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Theorem 8. Let M be a compact Riemannian manifold, satisfying the conditions of Theorem 5.

Then the Rademacher term ψ̃ for the Dirichlet heat kernel Kt on M satisfies

ψ̃(r) ≤ C

√(
r

t
d
2

)
log

d
2

(
1

r

)
(105)

for some constant C depending on the geometry of M .

Proof. We have that

ψ̃2(r) =
∞∑

j=1

min{r, λj} (106)

= j∗r r +

∞∑

j=j∗r

e−tµj (107)

≤ j∗r r +

∞∑

j=j∗r

e−tc1j
2
d (108)

≤ j∗r r + Ce−tc1j∗r
2
d (109)

for some constant C, where the first inequality follows from the lower bound in Theorem 5. But

j∗r ≤ j in case log λj+1 > r, or, again from Theorem 5, if

t c2(j + 1)
2
d ≤ − log λj < log

1

r
(110)

or equivalently,

j∗r ≤
C ′

t
d
2

log
d
2

(
1

r

)
(111)

It follows that

ψ̃2(r) ≤ C ′′
(
r

t
d
2

)
log

d
2

(
1

r

)
(112)

for some new constant C ′′.

From this bound, it can be shown that, with high probability,

E
(
ℓf̂ − ℓf∗

)
= O

(
log

d
2 n

n

)
(113)

which is the behavior expected of the Gaussian kernel for Euclidean space.

Thus, for both covering numbers and Rademacher averages, the resulting bounds are essentially

the same as those that would be obtained for the Gaussian kernel on the flat d-dimensional torus,

which is the standard way of “compactifying” Euclidean space to get a Laplacian having only

discrete spectrum; the results of (Guo et al., 2002) are formulated for the case d = 1, corresponding

to the circle. While the bounds for information diffusion kernels were derived for the case of positive

curvature, which apply to the special case of the multinomial, similar bounds for general manifolds

with curvature bounded below by a negative constant should also be attainable.
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8.4 Experimental Results for Text Classification

In this section we present the application of multinomial diffusion kernels to the problem of text

classification. Text processing can be subject to some of the “dirty laundry” referred to in the

introduction—documents are cast as Euclidean space vectors with special weighting schemes that

have been empirically honed through applications in information retrieval, rather than inspired from

first principles. However for text, the use of multinomial geometry is natural and well motivated;

our experimental results offer some insight into how useful this geometry may be for classification.

We consider several embeddings θ̂ : X → Θ of documents in bag of words representation into

the probability simplex. The term frequency (tf) representation uses normalized counts; the corre-

sponding embedding is the maximum likelihood estimator for the multinomial distribution

θ̂tf(x) =

(
x1∑
i xi

, . . . ,
xn+1∑

i xi

)
. (114)

Another common representation is based on term frequency, inverse document frequency (tf-idf).

This representation uses the distribution of terms across documents to discount common terms;

the document frequency dfv of term v is defined as the number of documents in which term v

appears. Although many variants have been proposed, one of the simplest and most commonly

used embeddings is

θ̂tf-idf(x) =

(
x1 log(D/df1)∑
i xi log(D/dfi)

, . . . ,
xn+1 log(D/dfn+1)∑

i xi log(D/dfi)

)
(115)

where D is the number of documents in the corpus.

In text classification applications the tf and tf-idf representations are typically normalized to unit

length in the L2 norm rather than the L1 norm, as above Joachims (2000). For example, the tf

representation with L2 normalization is given by

x 7→
(

x1∑
i x

2
i

, . . . ,
xn+1∑

i x
2
i

)
(116)

and similarly for tf-idf. When used in support vector machines with linear or Gaussian kernels, L2-

normalized tf and tf-idf achieve higher accuracies than their L1-normalized counterparts. However,

for the diffusion kernels, L1 normalization is necessary to obtain an embedding into the simplex.

These different embeddings or feature representations are compared in the experimental results

reported below.

The three kernels that we compare are the linear kernel

KLin(θ, θ′)
n+1∑

v=1

θv θ
′
v, (117)

the Gaussian kernel

KGauss
σ (θ′, θ′) = (2πσ)−

n+1
2 exp

(
−
∑n+1

i=1 |θi − θ′i|2
2σ2

)
(118)
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and the multinomial diffusion kernel approximation

KMult
t (θ, θ′) = (4πt)−

n
2 exp

(
−1

t
arccos2

(
n+1∑

i=1

√
θiθ′i

))
. (119)

In our experiments, the multinomial diffusion kernel using the tf embedding was compared to the

linear or Gaussian kernel with tf and tf-idf embeddings using a support vector machine classifier

on the WebKB and Reuters-21578 collections, which are standard data sets for text classification.

The WebKB dataset contains web pages found on the sites of four universities Craven et al.

(1998). The pages were classified according to whether they were student, faculty, course, project

or staff pages; these categories contain 1641, 1124, 929, 504 and 137 instances, respectively. Since

only the student, faculty, course and project classes contain more than 500 documents each,

we restricted our attention to these classes. The Reuters-21578 dataset is a collection of newswire

articles classified according to news topic Lewis and Ringuette (1994). Although there are more

than 135 topics, most of the topics have fewer than 100 documents; for this reason, we restricted

our attention to the following five most frequent classes: earn, acq, moneyFx, grain and crude, of

sizes 3964, 2369, 717, 582 and 578 documents, respectively.

For both the WebKB and Reuters collections we created two types of binary classification tasks.

In the first task we designate a specific class, label each document in the class as a “positive”

example, and label each document on any of the other topics as a “negative” example. In the

second task we designate a class as the positive class, and choose the negative class to be the most

frequent remaining class (student for WebKB and earn for Reuters). In both cases, the size of the

training set is varied while keeping the proportion of positive and negative documents constant in

both the training and test set.

Figure 18 shows the test set error rate for the WebKB data, for a representative instance of

the one-versus-all classification task; the designated class was course. The results for the other

choices of positive class were qualitatively very similar; all of the results are summarized in Table 2.

Similarly, Figure 20 shows the test set error rates for two of the one-versus-all experiments on the

Reuters data, where the designated classes were chosen to be acq and moneyFx. All of the results

for Reuters one-versus-all tasks are shown in Table 4.

Figure 19 and Figure 21 show representative results for the second type of classification task,

where the goal is to discriminate between two specific classes. In the case of the WebKB data the

results are shown for course vs. student. In the case of the Reuters data the results are shown

for moneyFx vs. earn and grain vs. earn. Again, the results for the other classes are qualitatively

similar; the numerical results are summarized in Tables 3 and 5.

In these figures, the leftmost plots show the performance of tf features while the rightmost plots

show the performance of tf-idf features. As mentioned above, in the case of the diffusion kernel we

use L1 normalization to give a valid embedding into the probability simplex, while for the linear
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Figure 18: Experimental results on the WebKB corpus, using SVMs for linear (dotted) and Gaussian

(dash-dotted) kernels, compared with the diffusion kernel for the multinomial (solid). Classification

error for the task of labeling course (top row), faculty (second row), project (third row), and

student(bottom row) is shown in these plots, as a function of training set size. The left plot

uses tf representation and the right plot uses tf-idf representation. The curves shown are the error

rates averaged over 20-fold cross validation. The results for the other “1 vs. all” labeling tasks are

qualitatively similar, and therefore not shown.
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Figure 19: Results on the WebKB corpus, using SVMs for linear (dotted) and Gaussian (dash-

dotted) kernels, compared with the diffusion kernel (solid). The tasks are course vs. student

(top row), faculty vs. student (top row) and project vs. student (top row). The left plot

uses tf representation and the right plot uses tf-idf representation. Results for other label pairs are

qualitatively similar. The curves shown are the error rates averaged over 20-fold cross validation.
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Figure 20: Experimental results on the Reuters corpus, using SVMs for linear (dotted) and Gaussian

(dash-dotted) kernels, compared with the diffusion kernel (solid). The tasks are classifying earn

(top row), acq (second row), moneyFx (bottom row) vs. the rest. Plots for the other classes are

qualitatively similar. The left column uses tf representation and the right column uses tf-idf. The

curves shown are the error rates averaged over 20-fold cross validation.
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Figure 21: Experimental results on the Reuters corpus, using SVMs for linear (dotted) and Gaussian

(dash-dotted) kernels, compared with the diffusion (solid). The tasks are acq vs. earn (top row),

moneyFx vs. earn (top row), grain vs. earn (top row), crude vs. earn (top row). The left

column uses tf representation and the right column uses tf-idf representation. The left column uses

tf representation and the right column uses tf-idf. The curves shown are the error rates averaged

over 20-fold cross validation.

78



tf Representation tf-idf Representation

Task L Linear Gaussian Diffusion Linear Gaussian Diffusion

40 0.1225 0.1196 0.0646 0.0761 0.0726 0.0514

80 0.0809 0.0805 0.0469 0.0569 0.0564 0.0357

course vs. all 120 0.0675 0.0670 0.0383 0.0473 0.0469 0.0291

200 0.0539 0.0532 0.0315 0.0385 0.0380 0.0238

400 0.0412 0.0406 0.0241 0.0304 0.0300 0.0182

600 0.0362 0.0355 0.0213 0.0267 0.0265 0.0162

40 0.2336 0.2303 0.1859 0.2493 0.2469 0.1947

80 0.1947 0.1928 0.1558 0.2048 0.2043 0.1562

faculty vs. all 120 0.1836 0.1823 0.1440 0.1921 0.1913 0.1420

200 0.1641 0.1634 0.1258 0.1748 0.1742 0.1269

400 0.1438 0.1428 0.1061 0.1508 0.1503 0.1054

600 0.1308 0.1297 0.0931 0.1372 0.1364 0.0933

40 0.1827 0.1793 0.1306 0.1831 0.1805 0.1333

80 0.1426 0.1416 0.0978 0.1378 0.1367 0.0982

project vs. all 120 0.1213 0.1209 0.0834 0.1169 0.1163 0.0834

200 0.1053 0.1043 0.0709 0.1007 0.0999 0.0706

400 0.0785 0.0766 0.0537 0.0802 0.0790 0.0574

600 0.0702 0.0680 0.0449 0.0719 0.0708 0.0504

40 0.2417 0.2411 0.1834 0.2100 0.2086 0.1740

80 0.1900 0.1899 0.1454 0.1681 0.1672 0.1358

student vs. all 120 0.1696 0.1693 0.1291 0.1531 0.1523 0.1204

200 0.1539 0.1539 0.1134 0.1349 0.1344 0.1043

400 0.1310 0.1308 0.0935 0.1147 0.1144 0.0874

600 0.1173 0.1169 0.0818 0.1063 0.1059 0.0802

Table 2: Experimental results on the WebKB corpus, using SVMs for linear, Gaussian, and multi-

nomial diffusion kernels. The left columns use tf representation and the right columns use tf-idf

representation. The error rates shown are averages obtained using 20-fold cross validation. The

best performance for each training set size L is shown in boldface. All differences are statistically

significant according to the paired t test at the 0.05 level.
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tf Representation tf-idf Representation

Task L Linear Gaussian Diffusion Linear Gaussian Diffusion

40 0.0808 0.0802 0.0391 0.0580 0.0572 0.0363

80 0.0505 0.0504 0.0266 0.0409 0.0406 0.0251

course vs. student 120 0.0419 0.0409 0.0231 0.0361 0.0359 0.0225

200 0.0333 0.0328 0.0184 0.0310 0.0308 0.0201

400 0.0263 0.0259 0.0135 0.0234 0.0232 0.0159

600 0.0228 0.0221 0.0117 0.0207 0.0202 0.0141

40 0.2106 0.2102 0.1624 0.2053 0.2026 0.1663

80 0.1766 0.1764 0.1357 0.1729 0.1718 0.1335

faculty vs. student 120 0.1624 0.1618 0.1198 0.1578 0.1573 0.1187

200 0.1405 0.1405 0.0992 0.1420 0.1418 0.1026

400 0.1160 0.1158 0.0759 0.1166 0.1165 0.0781

600 0.1050 0.1046 0.0656 0.1050 0.1048 0.0692

40 0.1434 0.1430 0.0908 0.1304 0.1279 0.0863

80 0.1139 0.1133 0.0725 0.0982 0.0970 0.0634

project vs. student 120 0.0958 0.0957 0.0613 0.0870 0.0866 0.0559

200 0.0781 0.0775 0.0514 0.0729 0.0722 0.0472

400 0.0590 0.0579 0.0405 0.0629 0.0622 0.0397

600 0.0515 0.0500 0.0325 0.0551 0.0539 0.0358

Table 3: Experimental results on the WebKB corpus, using SVMs for linear, Gaussian, and multi-

nomial diffusion kernels. The left columns use tf representation and the right columns use tf-idf

representation. The error rates shown are averages obtained using 20-fold cross validation. The

best performance for each training set size L is shown in boldface. All differences are statistically

significant according to the paired t test at the 0.05 level.
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tf Representation tf-idf Representation

Task L Linear Gaussian Diffusion Linear Gaussian Diffusion

80 0.1107 0.1106 0.0971 0.0823 0.0827 0.0762

120 0.0988 0.0990 0.0853 0.0710 0.0715 0.0646

earn vs. all 200 0.0808 0.0810 0.0660 0.0535 0.0538 0.0480

400 0.0578 0.0578 0.0456 0.0404 0.0408 0.0358

600 0.0465 0.0464 0.0367 0.0323 0.0325 0.0290

80 0.1126 0.1125 0.0846 0.0788 0.0785 0.0667

120 0.0886 0.0885 0.0697 0.0632 0.0632 0.0534

acq vs. all 200 0.0678 0.0676 0.0562 0.0499 0.0500 0.0441

400 0.0506 0.0503 0.0419 0.0370 0.0369 0.0335

600 0.0439 0.0435 0.0363 0.0318 0.0316 0.0301

80 0.1201 0.1198 0.0758 0.0676 0.0669 0.0647∗

120 0.0986 0.0979 0.0639 0.0557 0.0545 0.0531∗

moneyFx vs. all 200 0.0814 0.0811 0.0544 0.0485 0.0472 0.0438

400 0.0578 0.0567 0.0416 0.0427 0.0418 0.0392

600 0.0478 0.0467 0.0375 0.0391 0.0385 0.0369∗

80 0.1443 0.1440 0.0925 0.0536 0.0518∗ 0.0595

120 0.1101 0.1097 0.0717 0.0476 0.0467∗ 0.0494

grain vs. all 200 0.0793 0.0786 0.0576 0.0430 0.0420∗ 0.0440

400 0.0590 0.0573 0.0450 0.0349 0.0340∗ 0.0365

600 0.0517 0.0497 0.0401 0.0290 0.0284∗ 0.0306

80 0.1396 0.1396 0.0865 0.0502 0.0485∗ 0.0524

120 0.0961 0.0953 0.0542 0.0446 0.0425∗ 0.0428

crude vs. all 200 0.0624 0.0613 0.0414 0.0388 0.0373 0.0345∗

400 0.0409 0.0403 0.0325 0.0345 0.0337 0.0297

600 0.0379 0.0362 0.0299 0.0292 0.0284 0.0264∗

Table 4: Experimental results on the Reuters corpus, using SVMs for linear, Gaussian, and multi-

nomial diffusion kernels. The left columns use tf representation and the right columns use tf-idf

representation. The error rates shown are averages obtained using 20-fold cross validation. The

best performance for each training set size L is shown in boldface. An asterisk (*) indicates that

the difference is not statistically significant according to the paired t test at the 0.05 level.
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tf Representation tf-idf Representation

Task L Linear Gaussian Diffusion Linear Gaussian Diffusion

40 0.1043 0.1043 0.1021∗ 0.0829 0.0831 0.0814∗

80 0.0902 0.0902 0.0856∗ 0.0764 0.0767 0.0730∗

acq vs. earn 120 0.0795 0.0796 0.0715 0.0626 0.0628 0.0562

200 0.0599 0.0599 0.0497 0.0509 0.0511 0.0431

400 0.0417 0.0417 0.0340 0.0336 0.0337 0.0294

40 0.0759 0.0758 0.0474 0.0451 0.0451 0.0372∗

80 0.0442 0.0443 0.0238 0.0246 0.0246 0.0177

moneyFx vs. earn 120 0.0313 0.0311 0.0160 0.0179 0.0179 0.0120

200 0.0244 0.0237 0.0118 0.0113 0.0113 0.0080

400 0.0144 0.0142 0.0079 0.0080 0.0079 0.0062

40 0.0969 0.0970 0.0543 0.0365 0.0366 0.0336∗

80 0.0593 0.0594 0.0275 0.0231 0.0231 0.0201∗

grain vs. earn 120 0.0379 0.0377 0.0158 0.0147 0.0147 0.0114∗

200 0.0221 0.0219 0.0091 0.0082 0.0081 0.0069∗

400 0.0107 0.0105 0.0060 0.0037 0.0037 0.0037∗

40 0.1108 0.1107 0.0950 0.0583∗ 0.0586 0.0590

80 0.0759 0.0757 0.0552 0.0376 0.0377 0.0366∗

crude vs. earn 120 0.0608 0.0607 0.0415 0.0276 0.0276∗ 0.0284

200 0.0410 0.0411 0.0267 0.0218∗ 0.0218 0.0225

400 0.0261 0.0257 0.0194 0.0176 0.0171∗ 0.0181

Table 5: Experimental results on the Reuters corpus, using support vector machines for linear,

Gaussian, and multinomial diffusion kernels. The left columns use tf representation and the right

columns use tf-idf representation. The error rates shown are averages obtained using 20-fold cross

validation. The best performance for each training set size L is shown in boldface. An asterisk (*)

indicates that the difference is not statistically significant according to the paired t test at the 0.05

level.
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Category Linear RBF Diffusion

earn 0.01159 0.01159 0.01026

acq 0.01854 0.01854 0.01788

money-fx 0.02418 0.02451 0.02219

grain 0.01391 0.01391 0.01060

crude 0.01755 0.01656 0.01490

trade 0.01722 0.01656 0.01689

interest 0.01854 0.01854 0.01689

ship 0.01324 0.01324 0.01225

wheat 0.00894 0.00794 0.00629

corn 0.00794 0.00794 0.00563

Table 6: Test set error rates for the Reuters top 10 classes using tf features. The train and test

sets were created using the Mod-Apt split.

and Gaussian kernels we use L2 normalization, which works better empirically than L1 for these

kernels. The curves show the test set error rates averaged over 20 iterations of cross validation as

a function of the training set size. The error bars represent one standard deviation. For both the

Gaussian and diffusion kernels, we test scale parameters (
√

2σ for the Gaussian kernel and 2t1/2

for the diffusion kernel) in the set {0.5, 1, 2, 3, 4, 5, 7, 10}. The results reported are for the best

parameter value in that range.

We also performed experiments with the popular Mod-Apte train and test split for the top 10

categories of the Reuters collection. For this split, the training set has about 7000 documents and

is highly biased towards negative documents. We report in Table 6 the test set accuracies for the

tf representation. For the tf-idf representation, the difference between the different kernels is not

statistically significant for this amount of training and test data. The provided train set is more

than enough to achieve outstanding performance with all kernels used, and the absence of cross

validation data makes the results too noisy for interpretation.

In Table 7 we report the F1 measure rather than accuracy, since this measure is commonly used in

text classification. The last column of the table compares the presented results with the published

results of Zhang and Oles (2001), with a + indicating the diffusion kernel F1 measure is greater

than the result published by Zhang and Oles (2001) for this task.

Our results are consistent with previous experiments in text classification using SVMs, which

have observed that the linear and Gaussian kernels result in very similar performance (Joachims

et al., 2001). However the multinomial diffusion kernel significantly outperforms the linear and

Gaussian kernels for the tf representation, achieving significantly lower error rate than the other

kernels. For the tf-idf representation, the diffusion kernel consistently outperforms the other kernels

for the WebKb data and usually outperforms the linear and Gaussian kernels for the Reuters data.

The Reuters data is a much larger collection than WebKB, and the document frequency statistics,
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Category Linear RBF Diffusion ±
earn 0.9781 0.9781 0.9808 −
acq 0.9626 0.9626 0.9660 +

money-fx 0.8254 0.8245 0.8320 +

grain 0.8836 0.8844 0.9048 −
crude 0.8615 0.8763 0.8889 +

trade 0.7706 0.7797 0.8050 +

interest 0.8263 0.8263 0.8221 +

ship 0.8306 0.8404 0.8827 +

wheat 0.8613 0.8613 0.8844 −
corn 0.8727 0.8727 0.9310 +

Table 7: F1 measure for the Reuters top 10 classes using tf features. The train and test sets

were created using the Mod-Apte split. The last column compares the presented results with the

published results of (Zhang & Oles, 2001), with a + indicating the diffusion kernel F1 measure is

greater than the result published in (Zhang & Oles, 2001) for this task.

which are the basis for the inverse document frequency weighting in the tf-idf representation, are

evidently much more effective on this collection. It is notable, however, that the multinomial

information diffusion kernel achieves at least as high an accuracy without the use of any heuristic

term weighting scheme. These results offer evidence that the use of multinomial geometry is both

theoretically motivated and practically effective for document classification.

8.5 Experimental Results for Gaussian Embedding

In this section we report experiments on synthetic data demonstrating the applicability of the

heat kernel on the hyperbolic space Hn that corresponds to the manifold of spherical normal

distributions.

Embedding data points in the hyperbolic space is more complicated than the multinomial case.

Recall that in the multinomial case, we embedded points by computing the maximum likelihood

estimator the the data. A similar method would fail for Hn embedding since all the data points

will be mapped to normal distributions with variance 0, which will result in a degenerate geometry

that is equivalent to the Euclidean one (see Section 4.3).

A more realistic embedding can be achieved by sampling from the posterior of a Dirichlet Process

Mixture Model (DPMM) (Ferguson, 1973; Blackwell & MacQueen, 1973; Antoniak, 1974). A

Dirichlet Process Mixture model, based on the spherical Normal distribution, associates with the

data x1, . . . , xm ∈ Rn a posterior p(θ1, . . . , θm|x1, . . . , xm) where θi ∈ Hn+1. Instead of going into

the description and properties of Dirichlet Process Mixture Model we refer the interested reader

to the references above, and to (Escobar & West, 1995; Neal, 2000) for relevant Monte Carlo

approximations.
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Figure 22: A sample from the posterior of a DPMM based on data from two Gaussians

N((−1,−1)⊤, I) (solid blue dots) and N((1, 1)⊤, I) (hollow red dots). The sample is illustrated

by the circles that represent one standard deviation centered around the mean. Blue dotted circles

represent a parameter associated with a point from N((−1,−1)⊤, I), red dashed circles represent a

parameter associated with a point from N((1, 1)⊤, I) and solid black circles represent parameters

associated with points from both Gaussians.

Obtaining T samples from the DPMM posterior {θ(t)
i }m,T

i=1,t=1 we can measure the similarity

between points xi, xj as

K̃t(xi, xj) =
1

T

T∑

t=1

Kt

(
θ
(t)
i , θ

(t)
j

)
(120)

where Kt is the heat kernel on the hyperbolic space given by equations (83)–(84). The above

definition of K̃ has the interpretation of being approximately the mean of the heat kernel – which

is now a random variable under the DPMM posterior p(θ|x). The details of Gibbs sampling from

the posterior of a spherical Normal based DPMM is given in Appendix B.

Some intuition may be provided by Figure 2212. A sample from the posterior of a DPMM based

on data from two Gaussians N((−1,−1)⊤, I) (solid blue dots) and N((1, 1)⊤, I) (hollow red dots).

The sample is illustrated by the circles that represent one standard deviation centered around the

mean. Blue dotted circles represent a parameter associated with a point from N((−1,−1)⊤, I),
red dashed circles represent a parameter associated with a point from N((1, 1)⊤, I) and solid black

circles represent parameters associated with points from both Gaussians.

12This Figure is better displayed in color.
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Figure 23: Test set error rate for SVM based on standard RBF kernel and the mean hyperbolic heat

kernel K̃ as a function of the train set size, after 20-fold cross validation. The data was generated

from two significantly overlapping Gaussians N((−2,−2)⊤, 5I), N((2, 2)⊤ , 5I).

After generating data from two significantly overlapping GaussiansN((−2,−2)⊤, 5I), N((2, 2)⊤ , 5I),

and sampling 20 samples from the posterior we compared the performance of a standard RBF ker-

nel and K̃. The test set accuracy for SVM, after 20-fold cross validation, as a function of the train

set size is displayed in Figure 23. The mean hyperbolic heat kernel outperforms the RBF kernel

consistently.

8.6 Discussion

In this section we introduced a family of kernels that is intimately based on the geometry of the

Riemannian manifold associated with a statistical family through the Fisher information metric.

The metric is canonical in the sense that it is uniquely determined by requirements of invariance

(Čencov, 1982), and moreover, the choice of the heat kernel is natural because it effectively encodes

a great deal of geometric information about the manifold. While the geometric perspective in

statistics has most often led to reformulations of results that can be viewed more traditionally, the

kernel methods developed here clearly depend crucially on the geometry of statistical families.

The main application of these ideas has been to develop the multinomial diffusion kernel. Our

experimental results indicate that the resulting diffusion kernel is indeed effective for text classifica-

tion using support vector machine classifiers, and can lead to significant improvements in accuracy

compared with the use of linear or Gaussian kernels, which have been the standard for this ap-

plication. The results of Section 8.4 are notable since accuracies better or comparable to those

obtained using heuristic weighting schemes such as tf-idf are achieved directly through the geomet-
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ric approach. In part, this can be attributed to the role of the Fisher information metric; because

of the square root in the embedding into the sphere, terms that are infrequent in a document are

effectively up-weighted, and such terms are typically rare in the document collection overall. The

primary degree of freedom in the use of information diffusion kernels lies in the specification of the

mapping of data to model parameters. For the multinomial, we have used the maximum likelihood

mapping. The use of other model families and mappings remains an interesting direction to explore.

While kernel methods generally are “model free,” and do not make distributional assumptions

about the data that the learning algorithm is applied to, statistical models offer many advantages,

and thus it is attractive to explore methods that combine data models and purely discriminative

methods. Our approach combines parametric statistical modeling with non-parametric discrimi-

native learning, guided by geometric considerations. In these aspects it is related to the methods

proposed by Jaakkola and Haussler (1998). However, the kernels proposed in the current section

differ significantly from the Fisher kernel of Jaakkola and Haussler (1998). In particular, the latter

is based on the score grad θ log p(X | θ̂) at a single point θ̂ in parameter space. In the case of an ex-

ponential family model it is given by a covariance KF (x, x′) =
∑

i

(
xi − Eθ̂[Xi]

) (
x′i − Eθ̂[Xi]

)
; this

covariance is then heuristically exponentiated. In contrast, information diffusion kernels are based

on the full geometry of the statistical family, and yet are also invariant under re-parameterizations

of the family. In other conceptually related work, Belkin and Niyogi (2003) suggest measuring

distances on the data graph to approximate the underlying manifold structure of the data. In this

case the underlying geometry is inherited from the embedding Euclidean space rather than the

Fisher geometry.

While information diffusion kernels are very general, they will be difficult to compute in many

cases – explicit formulas such as equations (83–84) for hyperbolic space are rare. To approximate

an information diffusion kernel it may be attractive to use the parametrices and geodesic distance

between points, as we have done for the multinomial. In cases where the distance itself is difficult to

compute exactly, a compromise may be to approximate the geodesic distance between nearby points

in terms of the Kullback-Leibler divergence. In effect, this approximation is already incorporated

into the kernels recently proposed by Moreno et al. (2004) for multimedia applications, which have

the form K(θ, θ′) ∝ exp(−αD(θ, θ′)) ≈ exp(−2αd2(θ, θ′)), and so can be viewed in terms of the

leading order approximation to the heat kernel. The results of Moreno et al. (2004) are suggestive

that diffusion kernels may be attractive not only for multinomial geometry, but also for much more

complex statistical families.

9 Hyperplane Margin Classifiers

Linear classifiers are a mainstay of machine learning algorithms, forming the basis for techniques

such as the perceptron, logistic regression, boosting, and support vector machines. A linear

classifier, parameterized by a vector w ∈ Rn, classifies examples according to the decision rule

ŷ(x) = sign (
∑

i wiφi(x)) = sign(〈w, x〉) ∈ {−1,+1}, following the common practice of identifying

x with the feature vector φ(x). The differences between different linear classifiers lie in the criteria

and algorithms used for selecting the parameter vector w based on a training set.
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Geometrically, the decision surface of a linear classifier is formed by a hyperplane or linear

subspace in n-dimensional Euclidean space, {x ∈ Rn : 〈x,w〉 = 0} where 〈·, ·〉 denotes the Euclidean

inner product. (In both the algebraic and geometric formulations, a bias term is sometimes added;

we prefer to absorb the bias into the notation given by the inner product, by setting xn = 1 for

all x.) The linearity assumption made by such classifiers can be justified on purely computational

grounds; linear classifiers are generally easy to train, and the linear form is simple to analyze and

compute.

Modern learning theory emphasizes the tension between fitting the training data well and the

more desirable goal of achieving good generalization. A common practice is to choose a model

that fits the data closely, but from a restricted class of models. The model class needs to be

sufficiently rich to allow the choice of a good hypothesis, yet not so expressive that the selected

model is likely to overfit the data. Hyperplane classifiers are attractive for balancing these two

goals. Indeed, linear hyperplanes are a rather restricted set of models, but they enjoy many unique

properties. For example, given two points x, y ∈ Rn, the set of points equidistant from x and y

is a hyperplane; this lies behind the intuition that a hyperplane is the correct geometric shape for

separating sets of points. Similarly, a hyperplane is the best decision boundary to separate two

Gaussian distributions of equal covariance. Another distinguishing property is that a hyperplane

in Rn is isometric to Rn−1, and can therefore be thought of as a reduced dimension version of the

original feature space. Finally, a linear hyperplane is the union of straight lines, which are distance

minimizing curves, or geodesics, in Euclidean geometry.

However, a fundamental assumption is implicitly associated with linear classifiers, since they are

based crucially on the use of the Euclidean geometry of Rn. If the data or features at hand lack a

Euclidean structure, the arguments above for linear classifiers break down; arguably, there is lack

of Euclidean geometry for the feature vectors in most applications. This section studies analogues

of linear hyperplanes as a means of obtaining simple, yet effective classifiers when the data can be

represented in terms of a natural geometric structure that is only locally Euclidean. This is the case

for categorical data that is represented in terms of multinomial models, for which the associated

geometry is spherical.

Because of the complexity of the notion of linearity in general Riemannian spaces, we focus our

attention on the multinomial manifold, which permits a relatively simple analysis. Hyperplanes

in multinomial manifold is discussed in Section 9.2. The construction and training of margin

based models is discussed in Section 9.3, with an emphasis on spherical logistic regression. A brief

examination of linear hyperplanes in general Riemannian manifolds appears in Section 9.4 followed

by experimental results for text classification given in Section 9.5. Concluding remarks are made

in Section ??.

9.1 Hyperplanes and Margins on Sn

This section generalizes the notion of linear hyperplanes and margins to the n-sphere Sn = {x ∈
Rn+1 :

∑
i x

2
i = 1}. A similar treatment on the positive n-sphere Sn

+ is more complicated, and is
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postponed to the next section. In the remainder of this section we denote points on Pn,S
n or Sn

+

as vectors in Rn+1 using the standard basis of the embedding space. The notation 〈·, ·〉 and ‖ · ‖
will be used for the Euclidean inner product and norm.

A hyperplane on Sn is defined as Hu = Sn∩Eu where Eu is an n-dimensional linear subspace of

Rn+1 associated with the normal vector u. We occasionally need to refer to the unit normal vector

(according to the Euclidean norm) and denote it by û. Hu is an n − 1 dimensional submanifold

of Sn which is isometric to Sn−1 (Bridson & Haefliger, 1999). Using the common notion of the

distance of a point from a set d(x, S) = infy∈S d(x, y) we make the following definitions.

Definition 8. Let X be a metric space. A decision boundary is a subset of X that separates

X into two connected components. The margin of x with respect to a decision boundary H is

d(x,H) = infy∈H d(x, y).

Note that this definition reduces to the common definition of margin for Euclidean geometry

and affine hyperplanes.

In contrast to Gous (1998), our submanifolds are intersections of the sphere with linear subspaces,

not affine sets. One motivation for the above definition of hyperplane as the correct generalization

of a Euclidean hyperplane is that Hu is the set of points equidistant from x, y ∈ Sn in the spherical

metric. Further motivation is given in Section 9.4.

Before we can obtain a closed form expression for margins on Sn we need the following definitions.

Definition 9. Given a point x ∈ Rn+1, we define its reflection with respect to Eu as

ru(x) = x− 2〈x, û〉û.

Note that if x ∈ Sn then ru(x) ∈ Sn as well, since ‖ru(x)‖2 = ‖x‖2 − 4〈x, û〉2 + 4〈x, û〉2 = 1.

Definition 10. The projection of x ∈ Sn \ {û} on Hu is defined to be

pu(x) =
x− 〈x, û〉û√
1− 〈x, û〉2

.

Note that pu(x) ∈ Hu, since ‖pu(x)‖ = 1 and 〈x − 〈x, û〉û, û〉 = 〈x, û〉 − 〈x, û〉 ‖û‖2 = 0. The

term projection is justified by the following proposition.

Proposition 5. Let x ∈ Sn \ (Hu ∪ {û}). Then

(a) d(x, q) = d(ru(x), q) ∀q ∈ Hu

(b) d(x, pu(x)) = arccos
(√

1− 〈x, û〉2
)

(c) d(x,Hu) = d(x, pu(x)).
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Proof. Since q ∈ Hu,

cos d(ru(x), q) = 〈x− 2〈x, û〉û, q〉
= 〈x, q〉 − 2〈x, û〉〈û, q〉
= 〈x, q〉 = cos d(x, q)

and (a) follows. Assertion (b) follows from

cos d(x, pu(x)) =

〈
x,

x− 〈x, û〉û√
1− 〈x, û〉2

〉
=

1− 〈x, û〉2√
1− 〈x, û〉2

.

Finally, to prove (c) note that by the identity cos 2θ = 2cos2 θ − 1,

cos(2d(x, pu(x))) = 2 cos2(d(x, pu(x)))− 1

= 1− 2〈x, û〉2 = cos(d(x, ru(x)))

and hence d(x, pu(x)) = 1
2d(x, ru(x)). The distance d(x, q), q ∈ Hu cannot be any smaller than

d(x, pu(x)) since this would result in a path from x to ru(x) of length shorter than the geodesic

d(x, ru(x)).

Parts (b) and (c) of Proposition 5 provide a closed form expression for the Sn margin analogous to

the Euclidean unsigned margin |〈x, û〉|. Similarly, the Sn analogue of the Euclidean signed margin

y〈û, x〉 is

y
〈x, û〉
|〈x, û〉| arccos

(√
1− 〈x, û〉2

)
.

A plot of the signed margin as a function of 〈x, û〉 and a geometric interpretation of the spherical

margin appear in Figure 24.

9.2 Hyperplanes and Margins on Sn
+

A hyperplane on the positive n-sphere Sn
+ is defined as Hu+ = Eu ∩ Sn

+, assuming it is non-empty.

This definition leads to a margin concept d(x,Hu+) different from the Sn margin d(x,Hu) since

d(x,Hu+) = inf
y∈Eu∩Sn

+

d(x, y)

≥ inf
y∈Eu∩Sn

d(x, y) = d(x,Hu).

The above infimum is attained by the continuity of d and compactness of Eu ∩ Sn
+ justifying the

notation q = arg miny∈Eu∩Sn
+
d(x, y) as a point realizing the margin distance d(x,Hu+).

The following theorem will be useful in computing d(x,Hu+). For a proof see Bridson and

Haefliger (1999) page 17.

Theorem 9. (The Spherical Law of Cosines)

Consider a spherical triangle with geodesic edges of lengths a, b, c, where γ is the vertex angle

opposite to edge c. Then

cos c = cos a cos b+ sin a sin b cos γ.
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We have the following corollaries of Proposition 5.

Proposition 6. If x ∈ Sn
+ and pu(x) ∈ Sn

+ then

pu(x) = arg min
y∈Sn

+∩Eu

d(x, y)

d(x,Hu) = d(x,Hu+)

Proof. This follows immediately from the fact that pu(x) = arg miny∈Sn∩Eu
d(x, y) and from Sn

+ ∩
Eu ⊂ Sn ∩ Eu.

Proposition 7. For x ∈ Sn
+ and pu(x) 6∈ Sn

+ we have

q = arg min
y∈Sn

+∩Eu

d(x, y) ∈ ∂Sn
+

where ∂Sn
+ is the boundary of Sn

+.

Proof. Assume that q 6∈ ∂Sn
+ and connect q and pu(x) by a minimal geodesic α. Since pu(x) 6∈ Sn

+,

the geodesic α intersects the boundary ∂Sn
+ at a point r. Since q, pu(x) ∈ Hu and Hu is geodesically

convex, α ⊂ Hu. Now, since pu(x) = arg miny∈α d(y, x), the geodesic from x to pu(x) and α intersect

orthogonally (this is an elementary result in Riemannian geometry, e.g. Lee (1997) p. 113). Using

the spherical law of cosines, applied to the spherical triangles (q, x, pu(x)) and (r, x, pu(x)) (see

Figure 25), we deduce that

cos d(x, q) = cos d(q, pu(x)) cos d(x, pu(x))

≤ cos d(r, pu(x)) cos d(x, pu(x))

= cos d(x, r)

Hence r is closer to x than q. This contradicts the definition of q; thus q can not lie in the interior

of Sn
+.

Before we proceed to compute d(x,Hu+) for pu(x) 6∈ Sn
+ we define the following concepts.

Definition 11. The boundary of Sn and Sn
+ with respect to A ⊂ {1, . . . , n+ 1} is

∂ASn = Sn ∩ {x ∈ Rn+1 : ∀i ∈ A, xi = 0} ∼= Sn−|A|

∂ASn
+ = Sn

+ ∩ {x ∈ Rn+1 : ∀i ∈ A, xi = 0} ∼= S
n−|A|
+

Note that if A ⊂ A′ then ∂A′Sn
+ ⊂ ∂ASn

+. We use the notation 〈·, ·〉A and ‖·‖A to refer to the

Euclidean inner product and norm, where the summation is restricted to indices not in A.

Definition 12. Given x ∈ Sn we define x|A ∈ ∂ASn as

(x|A)i =

{
0 i ∈ A
xi/ ‖x‖A i 6∈ A .
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We abuse the notation by identifying x|A also with the corresponding point on Sn−|A| un-

der the isometry ∂ASn ∼= Sn−|A| mentioned in Definition 11. Note that if x ∈ Sn
+ then x|A ∈

∂ASn
+. The following proposition computes the Sn

+ margin d(x,Hu+) given the boundary set of

q = arg miny∈Sn
+∩Eu

d(y, x).

Proposition 8. Let û ∈ Rn+1 be a unit vector, x ∈ Sn
+ and q = arg miny∈Sn

+∩Eu
d(y, x) ∈ ∂ASn

+

where A is the (possibly empty) set A = {1 ≤ i ≤ n+ 1 : qi = 0}. Then

d(x,Hu+) = arccos
(
‖x‖A

√
1− 〈x|A, û|A〉2

)

Proof. If pu(x) ∈ Sn
+ then the proposition follows from earlier propositions and the fact that when

A = ∅, ‖x‖A = ‖x‖ = 1 and v|A = v. We thus restrict our attention to the case of A 6= ∅.
For all I ⊂ {1, . . . , n + 1} we have

arg min
y∈∂ISn

+∩Eu

d(x, y) = arg max
y∈∂ISn

+∩Eu

〈x, y〉

= arg max
y∈∂ISn

+∩Eu

〈x, y〉I

= arg max
y∈S

n−|I|
+ ∩Eu|I

‖x‖I 〈x|I , y〉

= arg min
y∈S

n−|I|
+ ∩Eu|I

d(x|I , y) .

It follows that

q|A = arg min
y∈S

n−|A|
+ ∩Eu|A

d(x|A, y). (121)

By Proposition 7 applied to Sn−|A| we have that since q|A lies in the interior of Sn−|A| then so does

pu|A(x|A) =
x|A − 〈x|A, û|A〉û|A√

1− 〈x|A, û|A〉2
, x|A, û|A ∈ S

n−|A|
+ .

Using Proposition 5 applied to Sn−|A| we can compute d(x,Hu+) as

d(x, pu|A(x|A)) = arccos

〈
x,
x|A − 〈x|A, û|A〉û|A√

1− 〈x|A, û|A〉2

〉

= arccos
‖x‖A − 〈x|A, û|A〉〈x, û|A〉√

1− 〈x|A, û|A〉2

= arccos
(
‖x‖A

√
1− 〈x|A, û|A〉2

)
.

In practice the boundary set A of q is not known. In our experiments we set A = {i : (pu(x))i ≤
0}; in numerical simulations in low dimensions, the true boundary never lies outside of this set.

93

9.3 Logistic Regression on the Multinomial Manifold

The logistic regression model p(y |x) = 1
Z exp(y〈x,w〉), with y ∈ {−1, 1}, assumes Euclidean geom-

etry. It can be re-expressed as

p(y |x ;u) ∝ exp (y ‖u‖ 〈x, û〉)
= exp (y sign(〈x, û〉) θd(x,Hu))

where d is the Euclidean distance of x from the hyperplane that corresponds to the normal vector

û, and where θ = ‖u‖ is a parameter.

The generalization to spherical geometry involves simply changing the margin to reflect the

appropriate geometry:

p(y|x ; û, θ) ∝
exp

(
y sign(〈x, û〉) θ arccos

(
‖x‖A

√
1− 〈x|A, û|A〉2

))
.

Denoting sx = y sign(〈x, û〉), the log-likelihood of the example (x, y) is

ℓ(û, θ ; (x, y))

= − log

(
1 + e

−2sxθ arccos
�
‖x‖A

√
1−〈x|A,û|A〉2

�)
.

We compute the derivatives of the log-likelihood in several steps, using the chain rule and the

notation z = 〈x|A, û|A〉. We have

∂ arccos
(
‖x‖A

√
1− z2

)

∂z
=

z ‖x‖A√
1− ‖x‖2

A (1− z2)
√

1− z2

and hence

∂ℓ(û, θ ; (x, y))

∂z
=

2sxθz ‖x‖A /(1 + e2sxθ arccos(‖x‖A

√
1−z2))√

1− ‖x‖2
A (1− z2)

√
1− z2

. (122)

The log-likelihood derivative with respect to ûi is equation (122) times

∂〈x|A, û|A〉
∂ûi

=





0 i ∈ A
(x|A)i

‖û‖A
− ûi

〈x|A,û|A〉
‖u‖2A

i 6∈ A .

The log-likelihood derivative with respect to θ is

∂ℓ(û, θ ; (x, y))

∂θ
=

2sx arccos(‖x‖A

√
1− z2)

1 + e2sxθ arccos(‖x‖A

√
1−z2)

.
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Optimizing the log-likelihood with respect to û requires care. Following the gradient û(t+1) =

û(t) +αgrad ℓ(û(t)) results in a non-normalized vector. Performing the above gradient descent step

followed by normalization has the effect of moving along the sphere in a curve whose tangent vector

at û(t) is the projection of the gradient onto the tangent space Tû(t)Sn. This is the technique used

in the experiments described in Section 9.5.

Note that the spherical logistic regression model has n + 1 parameters in contrast to the n +

2 parameters of Euclidean logistic regression. This is in accordance with the intuition that a

hyperplane separating an n-dimensional manifold should have n parameters. The extra parameter

in the Euclidean logistic regression is an artifact of the embedding of the n-dimensional multinomial

space, on which the data lies, into an (n+ 1)-dimensional Euclidean space.

The derivations and formulations above assume spherical data. If the data lies on the multinomial

manifold, the isometry π mentioned earlier has to precede these calculations. The net effect is that

xi is replaced by
√
xi in the model equation, and in the log-likelihood and its derivatives.

Synthetic data experiments contrasting Euclidean logistic regression and spherical logistic regres-

sion on Sn
+, as described in this section, are shown in Figure 26. The leftmost column shows an

example where both models give a similar solution. In general, however, as is the case in the other

two columns, the two models yield significantly different decision boundaries.

9.4 Hyperplanes in Riemannian Manifolds

The definition of hyperplanes in general Riemannian manifolds has two essential components. In

addition to discriminating between two classes, hyperplanes should be regular in some sense with

respect to the geometry. In Euclidean geometry, the two properties of discrimination and regularity

coincide, as every affine subspace of dimension n − 1 separates Rn into two regions. In general,

however, these two properties do not necessarily coincide, and have to be considered separately.

The separation property implies that if N is a hyperplane of M then M \N has two connected

components. Note that this property is topological and independent of the metric. The linearity

property is generalized through the notion of auto-parallelism explained below. The following

definitions and propositions are taken from Spivak (1975), Volume 3. All the connections described

below ∇ are the metric connections inherited from the metric g.

Definition 13. Let (M, g) be a Riemannian manifold and ∇ the metric connection. A submanifold

N ⊂M is auto-parallel if parallel translation in M along a curve C ⊂ N takes vectors tangent to

N to vectors tangent to N .

Proposition 9. A submanifold N ⊂M is auto-parallel if and only if

X,Y ∈ TpN ⇒ ∇XY ∈ TpN.

95

Figure 26: Experiments contrasting Euclidean logistic regression (left column) with multinomial

logistic regression (right column) for several toy data sets in P2.
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Definition 14. A submanifold N of M is totally geodesic at p ∈ N if every geodesic γ in M with

γ(0) = p, γ′(0) ∈ TpN remains in N on some interval (−ǫ, ǫ). The submanifold N is said to be

totally geodesic if it is totally geodesic at every point.

As a consequence, we have that N is totally geodesic if and only if every geodesic in N is also

a geodesic in M .

Proposition 10. Let N be a submanifold of (M,∇). Then

1. If N is auto-parallel in M then N is totally geodesic.

2. If M is totally geodesic and ∇ is symmetric then M is auto-parallel.

Since the metric connection is symmetric, the last proposition gives a complete equivalence

between auto-parallelism and totally geodesic submanifolds.

We can now define linear hyperplanes on Riemannian manifolds.

Definition 15. A linear decision boundary N in M is an auto-parallel submanifold of M such

that M \N has two connected components.

Several observations are in order. First note that if M is an n-dimensional manifold, the sep-

arability condition requires N to be an (n − 1)-dimensional submanifold. It is easy to see that

every affine subspace of Rn is totally geodesic and hence auto-parallel. Conversely, since the metric

connection is symmetric, every auto-parallel submanifold of Euclidean space that separates it is an

affine subspace. As a result, we have that our generalization does indeed reduce to affine subspaces

under Euclidean geometry. Similarly, the above definition reduces to spherical hyperplanes Hu∩Sn

and Hu∩Sn
+. Another example is the hyperbolic half plane H2 where the linear decision boundaries

are half-circles whose centers lie on the x axis.

Hyperplanes on Sn have the following additional nice properties. They are the set of equidistant

points from x, y ∈ Sn (for some x, y), they are isometric to Sn−1 and they are parameterized by n

parameters. These properties are particular to the sphere and do not hold in general (Bridson &

Haefliger, 1999).

9.5 Experiments

A natural embedding of text documents in the multinomial simplex is the L1 normalized term-

frequency (tf) representation (Joachims, 2000)

θ̂(x) =

(
x1∑
i xi

, . . . ,
xn+1∑

i xi

)
.

Using this embedding we compared the performance of spherical logistic regression with Euclidean

logistic regression. Since Euclidean logistic regression often performs better with L2 normalized tf

representation, we included these results as well.
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Figure 27: Test error accuracy of spherical logistic regression (solid), and linear logistic regression

using tf representation with L1 normalization (dashed) and L2 normalization (dotted). The task is

Web-KB binary “one vs. all” classification, where the name of the topic is listed above the individual

plots. Error bars represent one standard deviation over 20-fold cross validation for spherical logistic

regression. The error bars of the other classifiers are of similar sizes and are omitted for clarity.

Experiments were conducted on both the Web-KB (Craven et al., 1998) and the Reuters-21578

(Lewis & Ringuette, 1994) datasets. In the Web-KB dataset, the classification task that was

tested was each of the classes faculty, course, project and student vs. the rest. In the Reuters

dataset, the task was each of the 8 most popular classes vs. the rest. The test error rates as

a function of randomly sampled training sets of different sizes are shown in Figures 27-29. In

both cases, the positive and negative example sets are equally distributed, and the results were

averaged over a 20-fold cross validation with the error bars indicating one standard deviation. As

mentioned in Section 9.2, we assume that the boundary set of q = arg miny∈Sn
+∩Eu

d(y, x) is equal

to A = {i : (pu(x))i ≤ 0}.

The experiments show that the new linearity and margin concepts lead to more powerful classifiers

than their Euclidean counterparts, which are commonly used in the literature regardless of the

geometry of the data.
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Reuters: earn vs. all Reuters: acq vs. all
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Figure 28: Test error accuracy of spherical logistic regression (solid), and linear logistic regression

using tf representation with L1 normalization (dashed) and L2 normalization (dotted). The task

is Reuters-21578 binary “one vs. all” classification, where the name of the topic is listed above

the individual plots. Error bars represent one standard deviation over 20-fold cross validation for

spherical logistic regression. The error bars of the other classifiers are of similar sizes and are

omitted for clarity.
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Reuters: crude vs. all Reuters: trade vs. all
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Figure 29: Test error accuracy of spherical logistic regression (solid), and linear logistic regression

using tf representation with L1 normalization (dashed) and L2 normalization (dotted). The task

is Reuters-21578 binary “one vs. all” classification, where the name of the topic is listed above

the individual plots. Error bars represent one standard deviation over 20-fold cross validation for

spherical logistic regression. The error bars of the other classifiers are of similar sizes and are

omitted for clarity.
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10 Metric Learning

Machine learning algorithms often require an embedding of data points into some space. Algorithms

such as k-nearest neighbors and neural networks assume the embedding space to be Rn while SVM

and other kernel methods embed the data in a Hilbert space through a kernel operation. Whatever

the embedding space is, the notion of metric structure has to be carefully considered. The popular

assumption of a Euclidean metric structure is often used without justification by data or modeling

arguments. We argue that in the absence of direct evidence of Euclidean geometry, the metric

structure should be inferred from data (if available). After obtaining the metric structure, it may

be passed to a learning algorithm for use in tasks such as classification and clustering.

Several attempts have recently been made to learn the metric structure of the embedding space

from a given data set. Saul and Jordan (1997) use geometrical arguments to learn optimal paths

connecting two points in a space. Xing et al. (2003) learn a global metric structure. that is able

to capture non-Euclidean geometry, but only in a restricted manner since the metric is constant

throughout the space. Lanckriet et al. (2002) learn a kernel matrix that represents similarities

between all pairs of the supplied data points. While such an approach does learn the kernel

structure from data, the resulting Gram matrix does not generalize to unseen points.

Learning a Riemannian metric is also related to finding a lower dimensional representation of

a dataset. Work in this area includes linear methods such as principal component analysis and

nonlinear methods such as spherical subfamily models (Gous, 1998) or locally linear embedding

(Roweis & Saul, 2000) and curved multinomial subfamilies (Hall & Hofmann, 2000). Once such a

submanifold is found, distances d(x, y) may be computed as the lengths of shortest paths on the

submanifold connecting x and y. As shown in Section 10.1, this approach is a limiting case of

learning a Riemannian metric for the embedding high-dimensional space.

Lower dimensional representations are useful for visualizing high dimensional data. However,

these methods assume strict conditions that are often violated in real-world, high dimensional data.

The obtained submanifold is tuned to the training data and new data points will likely lie outside

the submanifold due to noise. It is necessary to specify some way of projecting the off-manifold

points into the manifold. There is no notion of non-Euclidean geometry outside the submanifold and

if the estimated submanifold does not fit current and future data perfectly, Euclidean projections

are usually used.

Another source of difficulty is estimating the dimension of the submanifold. The dimension of

the submanifold is notoriously hard to estimate in high dimensional sparse datasets. Moreover, the

data may have different lower dimensions in different locations or may lie on several disconnected

submanifolds thus violating the assumptions underlying the submanifold approach.

We propose an alternative approach to the metric learning problem. The obtained metric is local,

thus capturing local variations within the space, and is defined on the entire embedding space. A

set of metric candidates is represented as a parametric family of transformations, or equivalently as
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a parametric family of statistical models and the obtained metric is chosen from it based on some

performance criterion.

In Section 10.1 we discuss our formulation of the Riemannian metric problem. Section 10.2

describes the set of metric candidates as pull-back metrics of a group of transformations followed

by a discussion of the resulting generative model in Section 10.3. In Section 10.4 we apply the

framework to text classification and report experimental results on the WebKB data.

10.1 The Metric Learning Problem

The metric learning problem may be formulated as follows. Given a differentiable manifold M and

a dataset D = {x1, . . . , xN} ⊂ M, choose a Riemannian metric g from a set of metric candidates

G. As in statistical inference, G may be a parametric family

G = {gθ : θ ∈ Θ ⊂ Rk} (123)

or as in nonparametric statistics a less constrained set of candidates. We focus on the parametric

approach, as we believe it to generally perform better in high dimensional sparse data such as text

documents. The reason we use a superscript gθ is that the subscript of the metric is reserved for

its value at a particular point of the manifold.

We propose to choose the metric based on maximizing the following objective function O(g,D)

O(g,D) =
N∏

i=1

(dvol g(xi))
−1

∫
M(dvol g(x))−1dx

(124)

where dvol g(x) =
√

detG(x) is the differential volume element, and G(x) is the Gram matrix of

the metric g at the point x. Note that detG(x) > 0 since G(x) is positive definite.

The volume element dvol g(x) summarizes the size of the metric g at x in one scalar. Intuitively,

paths crossing areas with high volume will tend to be longer than the same paths over an area

with low volume. Hence maximizing the inverse volume in (124) will result in shorter curves across

densely populated regions of M. As a result, the geodesics will tend to pass through densely

populated regions. This agrees with the intuition that distances between data points should be

measured on the lower dimensional data submanifold, thus capturing the intrinsic geometrical

structure of the data.

The normalization in (124) is necessary since the problem is clearly unidentifiable without it.

Metrics cg with 0 < c < 1 will always a have higher inverse volume element than g. The normalized

inverse volume element may be seen as a probability distribution over the manifold. As a result,

we may cast the problem of maximizing O as a maximum likelihood problem.
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If G is completely unconstrained, the metric maximizing the above criterion will have a volume

element tending to 0 at the data points and +∞ everywhere else. Such a solution is analogous

to estimating a distribution by an impulse train at the data points and 0 elsewhere (the empirical

distribution). As in statistics we avoid this degenerate solution by restricting the set of candidates

G to a small set of relatively smooth functions.

The case of extracting a low dimensional submanifold (or linear subspace) may be recovered from

the above framework if g ∈ G is equal to the metric inherited from the embedding Euclidean space

across a submanifold and tending to +∞ outside. In this case distances between two points on the

submanifold will be measured as the shortest curve on the submanifold using the Euclidean length

element.

If G is a parametric family of metrics G = {gλ : λ ∈ Λ}, the log of the objective function O(g) is

equivalent to the loglikelihood ℓ(λ) under the model

p(x ;λ) =
1

Z

(√
detGλ(x)

)−1

.

If G is the Gram matrix of the Fisher information, the above model is the inverse of Jeffreys’ prior

p(x) ∝
√

detG(x). However in the case of Jeffreys’ prior, the metric is known in advance and there

is no need for parameter estimation. For prior work on connecting volume elements and densities

on manifolds refer to (Murray & Rice, 1993).

Specifying the family of metrics G is not an intuitive task. Metrics are specified in terms of a

local inner product and it may be difficult to understand the implications of a specific choice on

the resulting distances. Instead of specifying a parametric family of metrics as discussed in the

previous section, we specify a parametric family of transformations {Fλ : λ ∈ Λ}. The resulting set

of metric candidates will be the pull-back metrics G = {F ∗λJ : λ ∈ Λ} of the Fisher information

metric J .

If F : (M, g) → (N , δ) is an isometry (recall that δ is the metric inherited from an embedding

Euclidean space) we call it a flattening transformation. In this case distances on the manifold

(M, g) = (M, F ∗δ) may be measured as the shortest Euclidean path on the manifold N between

the transformed points. F thus takes a locally distorted space and converts it into a subset of Rn

equipped with the flat Euclidean metric.

In the next sections we work out in detail an implementation of the above framework in which

the manifold M is the multinomial simplex.

10.2 A Parametric Class of Metrics

Consider the following family of diffeomorphisms Fλ : Pn → Pn

Fλ(x) =

(
x1λ1

〈x, λ〉 , . . . ,
xn+1λn+1

〈x, λ〉

)
, λ ∈ Pn
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Figure 30: Fλ acting on P2 for λ = ( 2
10 ,

5
10 ,

3
10 ) (left) and F−1

λ (right) acting on P2.

where 〈x, λ〉 is the scalar product
∑n+1

i=1 xiλi. The family Fλ is a Lie group of transformations

under composition whose parametric space is Λ = Pn. The identity element is ( 1
n+1 , . . . ,

1
n+1) and

the inverse of Fλ is (Fλ)−1 = Fη where ηi = 1/λiP
k 1/λk

. The above transformation group acts on

x ∈ Pn by increasing the components of x with high λi values while remaining in the simplex. See

Figure 10.2 for an illustration of the above action in P2.

We will consider the pull-back metrics of the Fisher information J through the above transfor-

mation group as our parametric family of metrics

G = {F ∗λJ : λ ∈ Pn}.

Note that since the Fisher information itself is a pullback metric from the sphere under the square

root transformation (see Section 4) we have that F ∗λJ is also the pull-back metric of (Sn
+, δ) through

the transformation

F̂λ(x) =

(√
x1λ1

〈x, λ〉 , . . . ,
√
xn+1λn+1

〈x, λ〉

)
, λ ∈ Pn.

As a result of the above observation we have the following closed form for the geodesic distance

under F ∗λJ

dF ∗
λJ (x, y) = acos

(
n+1∑

i=1

√
xiλi

〈x, λ〉
yiλi

〈y, λ〉

)
. (125)

Note the only difference between (125) and tf-idf cosine similarity measure (Salton & McGill, 1983)

is the square root and the choice of the λ parameters.

To apply the framework described in Section 10.1 to the metric F ∗λJ we need to compute the

volume element given by
√

detF ∗λJ . We start by computing the Gram matrix [G]ij = F ∗λJ (∂i, ∂j)
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where {∂i}n
i=1 is a basis for TxPn given by the rows of the matrix

U =




1 0 · · · 0 −1

0 1 · · · 0 −1
... 0

. . . 0 −1

0 0 · · · 1 −1



∈ Rn×n+1. (126)

and computing detG in Propositions 11-12 below.

Proposition 11. The matrix [G]ij = F ∗λJ (∂i, ∂j) is given by

G = JJ⊤ = U(D − λα⊤)(D − λα⊤)⊤U⊤ (127)

where D ∈ Rn+1×n+1 is a diagonal matrix whose entries are [D]ii =
√

λi
xi

1

2
√
〈x,λ〉

and α is a column

vector given by [α]i =
√

λi
xi

xi

2〈x,λ〉3/2

Note that all vectors are treated as column vectors and for λ, α ∈ Rn+1, λα⊤ ∈ Rn+1×n+1 is

the outer product matrix [λα⊤]ij = λiαj .

Proof. The jth component of the vector F̂λ∗v is

[F̂λ∗v]j =
d

dt

√
(xj + tvj)λj

〈x+ tv, λ〉

∣∣∣∣∣
t=0

=
1

2

vjλj√
xjλj

√
〈x, λ〉

− 1

2

〈v, λ〉
√
xjλj

〈x, λ〉3/2
.

Taking the rows of U to be the basis {∂i}n
i=1 for TxPn we have, for i = 1, . . . , n and j = 1, . . . , n+1,

[F̂λ∗∂i]j =
λj[∂i]j

2
√
xjλj

√
〈x, λ〉

−
√
xjλj

2 〈x, λ〉3/2
∂i · λ =

δj,i − δj,n+1

2
√
〈x, λ〉

√
λj

xj
− λi − λn+1

2 〈x, λ〉3/2

√
λj

xj
xj.

If we define J ∈ Rn×n+1 to be the matrix whose rows are {F̂∗∂i}n
i=1 we have

J = U(D − λα⊤).

Since the metric F ∗λJ is the pullback of the metric on Sn
+ that is inherited from the Euclidean

space through F̂λ we have

[G]ij =
〈
F̂λ∗∂i, F̂λ∗∂j

〉

and hence

G = JJ⊤ = U(D − λα⊤)(D − λα⊤)⊤U⊤.
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Proposition 12. The determinant of F ∗λJ is

detF ∗λJ ∝
∏n+1

i=1 (λi/xi)

〈x, λ〉n+1 . (128)

Proof. We will factor G into a product of square matrices and compute detG as the product of the

determinants of each factor. Note that G = JJ⊤ does not qualify as such a factorization since J is

not square.

By factoring a diagonal matrix Λ, [Λ]ii =
√

λi
xi

1

2
√
〈x,λ〉

from D − λα⊤ we have

J = U

(
I − λx⊤

〈x, λ〉

)
Λ (129)

G = U

(
I − λx⊤

〈x, λ〉

)
Λ2

(
I − λx⊤

〈x, λ〉

)⊤
U⊤. (130)

We proceed by studying the eigenvalues and eigenvectors of I − λx⊤

〈x,λ〉 in order to simplify (130)

via an eigenvalue decomposition. First note that if (v, µ) is an eigenvector-eigenvalue pair of λx⊤

〈x,λ〉
then (v, 1 − µ) is an eigenvector-eigenvalue pair of I − λx⊤

〈x,λ〉 . Next, note that vectors v such that

x⊤v = 0 are eigenvectors of λx⊤

〈x,λ〉 with eigenvalue 0. Hence they are also eigenvectors of I − λx⊤

〈x,λ〉
with eigenvalue 1. There are n such independent vectors v1, . . . , vn. Since trace(I − λx⊤

〈x,λ〉) = n, the

sum of the eigenvalues is also n and we may conclude that the last of the n+ 1 eigenvalues is 0.

The eigenvectors of I − λx⊤

〈x,λ〉 may be written in several ways. One possibility is as the columns

of the following matrix

V =




−x2
x1

−x3
x1

· · · −xn+1

x1
λ1

1 0 · · · 0 λ2

0 1 · · · 0 λ3

...
...

. . .
...

...

0 0 · · · 1 λn+1




∈ Rn+1×n+1

where the first n columns are the eigenvectors that correspond to unit eigenvalues and the last

eigenvector corresponds to a 0 eigenvalue.

Using the above eigenvector decomposition we have I− λx⊤

〈x,λ〉 = V ĨV −1 and Ĩ is a diagonal matrix

containing all the eigenvalues. Since the diagonal of Ĩ is (1, 1, . . . , 1, 0) we may write I − λx⊤

〈x,λ〉 =

V |nV −1|n where V |n ∈ Rn+1×n is V with the last column removed and V −1|n ∈ Rn×n+1 is V −1

with the last row removed.
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We have then,

detG = det (U(V |nV −1|n)Λ2(V −1|n⊤V |n⊤)U⊤)

= det ((UV |n)(V −1|nΛ2V −1|n⊤)(V |n⊤U⊤))

= (det (UV |n))2 det (V −1|nΛ2V −1|n⊤).

Noting that

UV |n =




−x2
x1

−x3
x1

· · · −xn
x1

−xn+1

x1
− 1

1 0 · · · 0 −1

0 1 · · · 0 −1
...

...
. . .

...
...

0 0 · · · 1 −1




∈ Rn×n

we factor 1/x1 from the first row and add columns 2, . . . , n to column 1 thus obtaining




−∑n+1
i=1 xi −x3 · · · −xn −xn+1 − x11

0 0 · · · 0 −1

0 1 · · · 0 −1
...

...
. . .

...
...

0 0 · · · 1 −1




.

Computing the determinant by minor expansion of the first column we obtain

det (UV |n)2 =

(
1

x1

n+1∑

i=1

xi

)2

=
1

x2
1

. (131)

An argument presented in Appendix C.2 shows that

detV −1|nΛ2V −1|n⊤ =
x2

1 〈x, λ〉n−1

4n 〈x, λ〉2n

n+1∏

i=1

λi

xi
. (132)

By multiplying (132) and (131) we obtain (128).

Figure 31 displays the inverse volume element on P1 with the corresponding geodesic distance

from the left corner of P1.

Propositions 11 and 12 reveal the form of the objective function O(g,D). In the next section we

describe a maximum likelihood estimation problem that is equivalent to maximizing O(g,D) and

study its properties.
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Figure 31: The inverse volume element 1/
√

detG(x) as a function of x ∈ P1 (left) and the geodesic

distance d(x, 0) from the left corner as a function x ∈ P1 (right). Different plots represent different

metric parameters λ ∈ {(1/2, 1/2), (1/3, 2/3), (1/6, 5/6), (0.0099, 0.9901)}.

10.3 An Inverse-Volume Probabilistic Model on the Simplex

Using proposition 12 we have that the objective function O(g,D) may be regarded as a likelihood

function under the model

p(x ;λ) =
1

Z
〈x, λ〉n+1

2

n+1∏

i=1

x
1/2
i x ∈ Pn, λ ∈ Pn (133)

where Z =
∫

Pn
〈x, λ〉n+1

2
∏n+1

i=1 x
1/2
i dx. The loglikelihood function for model (133) is given by

ℓ(λ ;x) =
n+ 1

2
log(〈x, λ〉)− log

∫

Pn

〈x, λ〉n+1
2

n+1∏

i=1

√
xi dx.

The Hessian matrix H(x, λ) of the loglikelihood function may be written as

[H(x, λ)]ij = −k xi

〈x, λ〉
xj

〈x, λ〉 − (k2 − k)L

(
xi

〈x, λ〉
xj

〈x, λ〉

)
+ k2L

(
xi

〈x, λ〉

)
L

(
xj

〈x, λ〉

)

where k = n+1
2 and L is the positive linear functional

Lf =

∫
Pn
〈x, λ〉n+1

2
∏n+1

l=1

√
xl f(x, λ) dx

∫
Pn
〈x, λ〉n+1

2
∏n+1

l=1

√
xldx

.

Note that the matrix given by LH(x, λ) = [LHij(x, λ)] is negative definite due to its covariance-like

form. In other words, for every value of λ, H(x, λ) is negative definite on average, with respect to

the model p(x ;λ).
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10.3.1 Computing the Normalization Term

We describe an efficient way to compute the normalization term Z through the use of dynamic

programming and FFT.

Assuming that n = 2k − 1 for some k ∈ N we have

Z =

∫

Pn

〈x, λ〉k
n+1∏

i=1

x
1/2
i dx =

∑

a1+···+an+1=k:ai≥0

k!

a1! · · · an+1!

n+1∏

j=1

λ
aj

j

∫

Pn

n+1∏

j=1

x
aj+

1
2

j

∝
∑

a1+···+an+1=k:ai≥0

n+1∏

j=1

Γ(aj + 3/2)

Γ(aj + 1)
λ

aj

j .

The following proposition and its proof describe a way to compute the summation in Z inO(n2 log n)

time.

Proposition 13. The normalization term for model (133) may be computed in O(n2 log n) time

complexity.

Proof. Using the notation cm = Γ(m+3/2)
Γ(m+1) the summation in Z may be expressed as

Z ∝
k∑

a1=0

ca1λ
a1
1

k−a1∑

a2=0

ca2λ
a2
2 · · ·

k−
Pn−1

j=1 aj∑

an=0

canλ
an
n ck−

Pn
j=1 aj

λ
k−
Pn

j=1 aj

n+1 . (134)

A trivial dynamic program can compute equation (134) in O(n3) complexity.

However, each of the single subscript sums in (134) is in fact a linear convolution operation. By

defining

Bij =

j∑

ai=0

caiλ
ai
i · · ·

j−Pn−1
l=i al∑

an=0

canλ
an
n cj−

Pn
l=i al

λ
j−
Pn

l=i al

n+1

we have Z = B1k and the recurrence relation Bij =
∑j

m=0 cmλ
m
i Bi+1,j−m which is the linear

convolution of {Bi+1,j}k
j=0 with the vector {cjλj

i}k
j=0. By performing the convolution in the fre-

quency domain filling in each row of the table Bij for i = 0, . . . , n+ 1, j = 0, . . . , k takes O(n log n)

complexity leading to a total of O(n2 log n) complexity.

The computation method described in the proof may be used to compute the partial derivative

of Z, resulting in O(n3 log n) computation for the gradient. By careful dynamic programming, the

gradient vector may be computed in O(n2 log n) time complexity as well.

10.4 Application to Text Classification

In this section we describe applying the metric learning framework to document classification and

report some results on the WebKB dataset (Craven et al., 1998).

We map documents to the simplex by multinomial MLE or MAP estimation. This mapping

results in a the well-known term-frequency (tf) representation (see Section 7).
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It is a well known fact that less common terms across the text corpus tend to provide more

discriminative information than the most common terms. In the extreme case, stopwords like the,

or and of are often severely down-weighted or removed from the representation. Geometrically,

this means that we would like the geodesics to pass through corners of the simplex that correspond

to sparsely occurring words, in contrast to densely populated simplex corners such as the ones

that correspond to the stopwords above. To account for this in our framework we learn the metric

F ∗λJ = (F−1
θ )∗J where θ is the MLE under model (133). In other words, we are pulling back the

Fisher information metric through the inverse to the transformation that maximizes the normalized

inverse volume of D.

The standard tfidf representation of a document consists of multiplying the tf parameter by an

idf component

idfk = log
N

#documents that word k appears in
.

Given the tfidf representation of two documents, their cosine similarity is simply the scalar product

between the two normalized tfidf representations (Salton & McGill, 1983). Despite its simplicity the

tfidf representation leads to some of the best results in text classification and information retrieval

and is a natural candidate for a baseline comparison due to its similarity to the geodesic expression.

A comparison of the top and bottom terms between the metric learning and idf scores is shown in

Figure 32. Note that both methods rank similar words at the bottom. These are the most common

words that often carry little information for classification purposes. The top words however are

completely different for the two schemes. Note the tendency of tfidf to give high scores to rare

proper nouns while the metric learning method gives high scores for rare common nouns. This

difference may be explained by the fact that idf considers appearance of words in documents as

a binary event while the metric learning looks at the number of appearances of a term in each

document. Rare proper nouns such as the high scoring tfidf terms in Figure 32 appear several

times in a single web page. As a result, these words will score higher with the tfidf scheme but

lower with the metric learning scheme.

In Figure 33 the rank-value plot for the estimated λ values and idf is shown on a log-log scale.

The x axis represents different words that are sorted by increasing parameter value and the y axis

represents the λ or idf value. Note that the idf scores show a stronger linear trend in the log-log

scale than the λ values.

To measure performance in classification we compared the testing error of a nearest neighbor

classifier under several different metrics. We compared tfidf cosine similarity and the geodesic

distance under the obtained metric obtained. Figure 34 displays test-set error rates as a function

of the training set size. The error rates were averaged over 20 experiments with random sampling

of the training set. The λ parameter was obtained by approximated gradient descent procedure

using the dynamic programming method described in Section 10.3.1. According to Figure 34 the

learned metric outperforms the standard tfidf measure.
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Figure 32: Comparison of top and bottom valued parameters for tfidf and model (133). The dataset

is the faculty vs. student webpage classification task from WebKB dataset. Note that the least

scored terms are similar for the two methods while the top scored terms are completely disjoint.
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Figure 33: Log-log plots for sorted values of tfidf (top) and estimated λ values (bottom). The task

is the same as in Figure 32.
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Figure 34: Test set error rate for nearest neighbor classifier on WebKB binary tasks. Distances

were computed by geodesic for the learned Riemannian metric (red dashed) and tfidf with cosine

similarity (blue solid). The plots are averaged over a set of 20 random samplings of training sets

of the specified sizes, evenly divided between positive and negative examples.
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10.5 Summary

We have proposed a new framework for the metric learning problem that enables robust learning

of a local metric for high dimensional sparse data. This is achieved by restricting the set of metric

candidates to a parametric family and selecting a metric based on maximizing the inverse volume

element.

In the case of learning a metric on the multinomial simplex, the metric candidates are taken to

be pull-back metrics of the Fisher information under a continuous group of transformation. When

composed with a square root, the transformations are flattening transformation for the obtained

metrics. The resulting optimization problem may be interpreted as maximum likelihood estimation.

Guided by the well known principle that common words should have little effect on the metric

structure we learn the metric that is associated with the inverse to the transformation that maxi-

mizes the inverse volume of the training set. The resulting pull-back metric de-emphasizes common

words, in a way similar to tfidf. Despite the similarity between the resulting geodesics and tfidf

similarity measure, there are significant qualitative and quantitative differences between the two

methods. Using a nearest neighbor classifier in a text classification experiment, the obtained metric

is shown to significantly outperform the popular tfidf cosine similarity.

The framework proposed in this section is quite general and allows implementations in other

domains. The key component is the specification of the set of metric candidates possibly by

parametric transformations in a way that facilitates efficient computation and maximization of the

volume element.

11 Discussion

The use of geometric techniques in studying statistical learning algorithms is not new. As mentioned

in Section 3 the geometric view of statistics was developed over the past fifty years. The focus of

research in this area has been finding connections between geometric quantities under the Fisher

geometry and asymptotic statistical properties. A common criticism is that the geometric viewpoint

is little more than an elegant way to explain these asymptotic properties. There has been little

success in carrying the geometric reasoning further to define new models and inference methods

that outperform existing models in practical situations.

The contributions of this thesis may be roughly divided into three parts. The first part contains

the embedding principle and the novel algorithms of Sections 8 and 9 which are a direct response

to the criticism outlined above. Based on the Fisher geometry of the embedded data, we de-

rive generalizations of several popular state-of-the-art algorithms. These geometric generalizations

significantly outperform their popular counterparts in the task of text classification.

The second part contains an extension of information geometry to spaces of conditional mod-

els. Čencov’s important theorem is extended to both normalized and non-normalized conditional
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{xi} {θtrue
i }

{θ̂i}

{θ̂i} ⊂ (Θ,J )

Figure 35: Motivation for the embedding principle. The data {xi} is assumed to be drawn from

{p(x ; θtrue
i }. It is reasonable to assume that the models {θtrue

i } capture the essence of the data and

may be used by the algorithms in place of the data. Since we do not know the true parameters, we

replace them with an estimate {θ̂i} (see Section 3 for more details). The final step is to consider

the estimated models {θ̂i} as points in a manifold endowed with the Fisher information metric,

whose choice is motivated by Čencov’s theorem.

models. A previously undiscovered relationship between maximum likelihood for conditional ex-

ponential models and minimum exponential loss for AdaBoost leads to a deeper understanding of

both models. This relationship, together with the generalized Čencov characterization reveals an

axiomatic framework for conditional exponential models and AdaBoost. An additional bi-product

of this relationship is that it enables us to derive the AdaBoost analogue of maximum posterior

inference. This new algorithm performs better than AdaBoost in cases where overfitting is likely

to occur.

Information geometry has almost exclusively been concerned with the Fisher geometry. The third

part of this thesis extends the Riemannian geometric viewpoint to data-dependent geometries. The

adapted geometry exhibits a close similarity in its functional form to the tf-idf metric, but leads to

a more effective metric for text classification.

It is interesting to consider the motivation leading to the algorithmic part of the thesis. The

algorithms transfer the data point into a Riemannian manifold Θ with the Fisher information

metric. A schematic view of this process is outlined in Figure 35. The data {xi} is assumed to

be drawn from {p(x ; θtrue
i }. It is reasonable to assume that the models {θtrue

i } capture the essence

of the data and may be used by the algorithms in place of the data. Since we do not know the

true parameters, we replace them with an estimate {θ̂i} (See Section 3 for more details). The final

step is to consider the estimated models {θ̂i} as points in a manifold endowed with the Fisher

information metric, whose choice is motivated by Čencov’s theorem.

An interesting prospect for future research is to develop further the theory behind the embedding

principle, and more generally the geometric approach to machine learning. Theoretical results such
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as generalization error bounds and decision theory might be able to provide a comparison of different

geometries. For example, error bounds for nearest neighbor and other classification algorithms

might depend on the employed geometry. A connection between such standard theoretical results

and the geometry under consideration would be a significant addition to the algorithmic ideas in

this thesis. Such a result may provide a more rigorous motivation for the ideas in Figure 35 that

underlie a large part of this thesis.

It is also interesting to consider the role of geometry in developing learning theory results. Re-

placing Euclidean geometric concepts, such as the Euclidean diameter of the data, with their non-

Euclidean counterparts may lead to a new understanding of current algorithms and to alternative

error bounds.

Despite the fact that information geometry is half a century old, I believe it is only beginning

to affect the design of practical algorithms in statistical machine learning. Many machine learning

algorithms, including some of the most popular ones, make naive unrealistic geometric assumptions.

I hope that the contribution of this thesis will draw greater attention to this fact and encourage

others to exploit the geometric viewpoint in the quest of designing better practical algorithms.

Appendix

A Derivations Concerning Boosting and Exponential Models

In this appendix we provide some technical details concerning Section 5. We derive update rules

for minimizing the exponential loss of AdaBoost and the log-loss of exponential models, derive

the dual problem of regularized I-divergence minimization and express the I-divergence between

exponential models as a difference between loglikelihoods.

A.1 Derivation of the Parallel Updates

Let x ∈ X be an example in the training set, which is of size N , ỹ be its label and Y is the set of

all possible labels. At a given iteration θj denotes the j-th parameter of the model, and θj + ∆θj

the parameter at the following iteration.

A.1.1 Exponential Loss

The objective is to minimize Eexp(θ+ ∆θ)− Eexp(θ). In the following hj(x, y) = fj(x, y)− fj(x, ỹ),

qθ(y|x) = e
P

j θjhj(x,y), sj(x, y) = sign(hj(x, y)), M = maxi,y
∑

j |hj(xi, y)|, ωi,y = 1−∑j
|hj(xi,y)|

M .
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By Jensen’s inequality applied to ex we have

Eexp(θ + ∆θ)− Eexp(θ) =
∑

i

∑

y

e
P

j(θj+∆θj)hj(xi,y) −
∑

i

∑

y

e
P

j θjhj(xi,y)

=
∑

i

∑

y

qθ(y|xi)e
P

j ∆θj
|hj (xi,y)|

M
sj(xi,y) M −

∑

i

∑

y

qθ(y|xi)

≤
∑

i

∑

y

qθ(y|xi)



∑

j

|hj(xi, y)|
M

e∆θjsj(xi,y)M + ωi,y − 1




def
= A(∆θ, θ). (135)

We proceed by finding the stationary point of the auxiliary function with respect to ∆θj:

0 =
∂A
∂∆θj

= −
∑

i

∑

y

qθ(y|xi)hj(xi, y)e
∆θjsj(xi,y) M

= −
∑

y

∑

i:sj(xi,y)=+1

qθ(y|xi)hj(xi, y)e
∆θjM −

∑

y

∑

i:sj(xi,y)=−1

qθ(y|xi)hj(xi, y)e
−∆θjM

⇒ e2M∆θj
∑

y

∑

i:sj(xi,y)=+1

hj(xi, y)qθ(y|xi) =
∑

y

∑

i:sj(xi,y)=−1

|hj(xi, y)|qθ(y|xi)

⇒ ∆θj =
1

2M
log

(∑
y

∑
i:sj(xi,y)=−1 |hj(xi, y)|qθ(y|xi)∑

y

∑
i:sj(xi,y)=+1 |hj(xi, y)|qθ(y|xi)

)

A.1.2 Maximum Likelihood for Exponential Models

For the normalized case, the objective is to maximize the likelihood or minimize the log-loss. In

this section, the previous notation remains except for qθ(y|x) = e
P

j θjhj (x,y)P
y e
P

j θjhj (x,y) . The log-likelihood

is

ℓ(θ) =
∑

i

log
e
P

j θjfj(xi,yi)

∑
y e
P

j θjfj(xi,yi)
= −

∑

i

log
∑

y

e
P

j θj(fj(xi,y)−fj(xi,yi))
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and the difference in the loss between two iterations is

ℓ(θ)− ℓ(θ + ∆θ) =
∑

i

log

∑
y e
P

j(θj+∆θj)(fj (xi,y)−fj(xi,yi))

∑
y e
P

j θj(fj(xi,y)−fj(xi,yi))

=
∑

i

log

∑
y e
P

j(θj+∆θj)hj(xi,y)

∑
y e
P

j θjhj(xi,y)

=
∑

i

log
∑

y

qθ(y|xi)e
P

j ∆θjhj(xi,y)

≤
∑

i

∑

y

qθ(y|xi)e
P

j ∆θjhj(xi,y) −N (136)

=
∑

i

∑

y

qθ(y|xi)e
P

j ∆θj
|hj (xi,y)|

M
sj(xi,y) M −N

≤
∑

i

∑

y

qθ(y|xi)



∑

j

|hj(xi, y)|
M

e∆θjsj(xi,y) M + ωi,y


−N (137)

def
= A(θ,∆θ) (138)

where in (136) we used the inequality log x ≤ x− 1 and in (137) we used Jensen’s inequality. The

derivative of (137) with respect to ∆θ will be identical to the derivative of (135) and so the log-loss

update rule will be identical to the exponential loss update rule, but with qθ(y|x) representing a

normalized exponential model.

A.2 Derivation of the Sequential Updates

The setup for sequential updates is similar to that for parallel updates, but now only one parameter

gets updated in each step, while the rest are held fixed.

A.2.1 Exponential Loss

We now assume that that only θk gets updated. We also assume (with no loss of generality) that

each feature takes values in [0, 1], making hk(xi, y) ∈ [−1, 1].

Eexp(θ + ∆θ)− Eexp(θ) =
∑

i

∑

y

e
P

j θjhj(xi,y)+∆θkhk(xi,y) −
∑

i

∑

y

e
P

j θjhj(xi,y)

=
∑

i

∑

y

qθ(y|xi)

(
e

�
1+hk(xi,y)

2

�
∆θk+

�
1−hk(xi,y)

2

�
(−∆θk) − 1

)
(139)

≤
∑

i

∑

y

qθ(y|xi)

(
1 + hk(xi, y)

2
e∆θk +

1− hk(xi, y)

2
e−∆θk − 1

)

def
= A(θ,∆θk) (140)
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The stationary point of A (with respect to ∆θk) is

0 =
∑

i

∑

y

qθ(y|xi)

(
1 + hk(xi, y)

2
e∆θk +

hk(xi, y)− 1

2
e−∆θk

)

⇒ e2∆θk
∑

i

∑

y

qθ(y|xi)(1 + hk(xi, y)) =
∑

i

∑

y

qθ(y|xi)(1 − hk(xi, y))

⇒ ∆θk =
1

2
log

(∑
i

∑
y qθ(y|xi)(1 − hk(xi, y))∑

i

∑
y qθ(y|xi)(1 + hk(xi, y))

)

A.2.2 Log-Loss

Similarly, for the log-loss we have

ℓ(θ)− ℓ(θ + ∆θk) =
∑

i

log

∑
y e
P

j θjhj(xi,y)+∆θkhk(xi,y)

∑
y e
P

j θjhj(xi,y)
=
∑

i

log
∑

y

qθ(y|xi)e
∆θkhk(xi,y)

≤
∑

i

∑

y

qθ(y|xi)e
∆θkhk(xi,y) −N. (141)

Equation (141) is the same as (139), except that qθ is now the normalized model. This leads to

exactly the same form of update rule as in the previous subsubsection.

A.3 Regularized Loss Functions

We derive the dual problem for the non-normalized regularized I-divergence minimization and then

proceed to derive a sequential update rule.

A.3.1 Dual Function for Regularized Problem

The regularized problem (P1,reg) is equivalent to

Minimize D(p, q0) + U(c) =
∑

x

p̃(x)
∑

y

p(y|x)
(

log
p(y|x)
q0(y|x)

− 1

)
+ U(c)

subject to fj(p) =
∑

x,y

p̃(x)p(y|x)hj(x, y) = cj , j = 1, . . . ,m

where c ∈ Rm and U : Rm → R is a convex function whose minimum is at 0. The Lagrangian turns

out to be

L(p, c, θ) =
∑

x

p̃(x)
∑

y

p(y|x)
(

log
p(y|x)
q0(y|x)

− 1− 〈θ, h(x, y)〉
)

+ U(c).

We will derive the dual problem for U(c) =
∑

i
1
2σ

2
i c

2
i . The convex conjugate U∗ is

U∗(θ)
def
= inf

c

∑

i

θici + U(c) = inf
c

∑

i

θici +
∑

i

1

2
σ2

i c
2
i (142)

0 = θi + σ2
i ci ⇒ ci = − θi

σ2
i

U∗(θ) = −
∑

i

θ2
i

σ2
i

+
∑

i

1

2
σ2

i

θ2
i

σ4
i

= −
∑

i

θ2
i

2σ2
i
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and the dual problem is

θ⋆ = arg max
θ

h1,reg(θ)

= arg max
θ

−
∑

x

p̃(x)
∑

y

q0(y|x)e
P

j θj hj(x,y) + U∗(θ) (143)

= arg min
θ

∑

x

p̃(x)
∑

y

q0(y|x)e
P

j θj hj(x,y) +
∑

j

θ2
j

2σ2
j

.

A.3.2 Exponential Loss–Sequential update rule

We now derive a sequential update rule for (P1,ref). As before, q0 = 1 and we replace 1
2σ2

k
by β.

Eexp(θ + ∆θ)− Eexp(θ)

=
∑

i

∑

y

(
e
P

j θjhj(xi,y)+∆θkhk(xi,y) − e
P

j θjhj(xi,y)
)

+ β(θk + ∆θk)
2 − βθ2

k (144)

=
∑

i

∑

y

qθ(y|xi)

(
e

�
1+hk(xi,y)

2

�
∆θk+

�
1−hk(xi,y)

2

�
(−∆θk) − 1

)

+ 2β θk ∆θk + β∆θ2
k

≤
∑

i

∑

y

qθ(y|xi)

(
1 + hk(xi, y)

2
e∆θk +

1− hk(xi, y)

2
e−∆θk − 1

)

+ 2β θk ∆θk + β∆θ2
k

def
= A(θ,∆θk)

The stationary point will be at the solution of the following equation

0 =
∂A
∂∆θk

=
1

2

∑

i

∑

y

qθ(y|xi)
(
(1 + hk(xi, y))e

∆θk + (hk(xi, y)− 1)e−∆θk

)
+ 2β (θk + ∆θk).

that can be readily found by Newton’s method. Since the second derivative ∂2A
∂∆θ2

k
is positive, the

auxiliary function is strictly convex and Newton’s method will converge.

A.4 Divergence Between Exponential Models

In this subsection we derive the I-divergence between two exponential models, one of which is

the maximum likelihood model as a difference in their loglikelihoods. The log-likelihood of an

exponential model qθ is

ℓ(θ) =
1

n

∑

i

log
e
P

j θjfj(xi,yi)

Zθ,i
=

1

n

∑

j

θj

∑

i

fj(xi, yi)−
1

n

∑

i

logZθ,i

=
∑

j

θjEp̃[fj]−
1

n

∑

i

logZθ,i
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while the I-divergence is

D(qθ, qη) =
1

n

∑

i

∑

y

qθ(y|xi) log
qη(y|xi)

qθ(y|xi)

=
1

n

∑

i

∑

y

qθ(y|xi)

(
log

Zη,i

Zθ,i
+ log

e
P

j θjfj(xi,y)

e
P

j ηjfj(xi,y)

)

=
1

n

∑

i

log
Zη,i

Zθ,i
+

1

n

∑

i

∑

y

qθ(y|xi)
∑

j

fj(xi, y)(θj − ηj)

=
1

n

∑

i

log
Zη,i

Zθ,i
+

1

n

∑

j

(θj − ηj)Eqθ
[fj].

This corresponds to the fact that the I divergence between normalized exponential models is the

Bregman divergence, with respect to the cumulant function, between the natural parameters. If qθ
is the maximum likelihood model, the moment constraints are satisfied and

D(qml
θ , qη) =

1

n

∑

i

log
Zη,i

Zml
θ,i

+
∑

j

(θml
j − ηj)Ep̃[fj ] = ℓ(θml)− ℓ(η).

B Gibbs Sampling from the Posterior of Dirichlet Process Mix-

ture Model based on a Spherical Normal Distribution

In this appendix we derive the Gibbs sampling from the posterior of a Dirichlet Process Mixture

Model (DPMM) based on a Spherical Normal Distribution. For details on DPMM see (Ferguson,

1973; Blackwell & MacQueen, 1973; Antoniak, 1974) and for a general discussion on MCMC

sampling from the posterior see (Neal, 2000). As mentioned by Neal (2000) the vanilla Gibbs

sampling discussed below is not the most efficient and other more sophisticated sampling scheme

may be derived.

We will assume below that the data dimensionality is 2. All the derivations may be easily

extended to a higher dimensional case. We denote the data points by y = (y1, . . . , ym) where yi ∈ R2

and the spherical Gaussian parameters associated with the data by θ = (θ1, . . . , θm), θi ∈ H3. We

use the notation θ−i to denote {θ1, . . . , θi−1, θi+1, . . . , θm}. In Gibbs sampling we sample from

the conditionals p(θi|θ−i, y) repeatedly to obtain a sample from the DPMM posterior p(θ|y). The

conditional is proportional to (e.g. (Neal, 2000))

p(θi|θ−i, y) ∝ p(yi|θi)p(θi|θ−i) =
1

2πσ2
i

e−‖yi−µi‖2/2σ2
i


 1

n− 1 + ζ

∑

j 6=i

δθi,θj
+

ζ

n− 1 + ζ
G0(θi)




where ζ is the “power” parameter of the DPMM and G0 is a conjugate prior to the spherical noral

distribution

G0(µi, σ
2
i ) = Inv-Γ2(σ2

i |α, β)N(µi|µ0, σi)
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To sample from p(θi|θ−i, y) we need to write the product p(yi|θi)G0(θi)

p(yi|θi)G0(θi) =
1

2πσ2
i

e−‖yi−µi‖2/2σ2
i

1

2πσ2
i

e−‖µi−µ0‖2/2σ2
i
βα

Γ(α)
(σ2

i )
−(α+1)e−β/σ2

i

=
βα

4π2Γ(α)
(σ2

i )
−(α+3) exp

(
−‖yi − µi‖2 + ‖µi − µ0‖2 + 2β

2σ2
i

)

as a distribution times a constant. To do so, we expand the exponent’s negative numerator

‖µi − yi‖2 + ‖µi − µ0‖2 + 2β

=
(
2(µ1

i )
2 − 2µ1

i (y
1
i + µ1

0) + (y1
i )

2 + (µ1
0)

2 + β
)

+
(
2(µ2

i )
2 − 2µ2

i (y
2
i + µ2

0) + (y2
i )

2 + (µ2
0)

2 + β
)

= 2

(
(µ1

i − (y1
i + µ1

0)/2)
2 +

1

2
(y1

i )
2 +

1

2
(µ1

0)
2 +

1

2
β − (y1

i + µ1
0)

2/4

)

+ 2

(
(µ2

i − (y2
i + µ2

0)/2)
2 +

1

2
(y2

i )
2 +

1

2
(µ2

0)
2 +

1

2
β − (y2

i + µ2
0)

2/4

)

= 2‖µi − (yi + µ0)/2‖2 + ‖yi‖2 + ‖µ0‖2 + 2β − ‖yi + µ0‖2/2

to obtain

p(yi|θi)G0(θi)

=
βα

4π2Γ(α)
(σ2

i )
−(α+3) exp

(
−‖µi − (yi + µ0)/2‖2

σ2
i

)
exp

(
−‖yi‖2 + ‖µ0‖2 + 2β − ‖yi + µ0‖2/2

2σ2
i

)

=
βα

4π2Γ(α)
πN

(
µi

∣∣∣∣∣
yi + µ0

2
,
σi√
2

)
Γ(α+ 1)

(β∗)α+1
Inv-Γ

(
σ2

i |α+ 1, β∗
)

=
αβα

4π(β∗)α+1
N

(
µi

∣∣∣∣∣
yi + µ0

2
,
σi√
2

)
Inv-Γ

(
σ2

i |α+ 1, β∗
)

where

β∗ =
‖yi‖2 + ‖µ0‖2 + 2β − ‖yi + µ0‖2/2

2
.

Sampling is now trivial as the conditional p(θi|θ−i, y) is identified as a mixture model, with

known mixture coefficients, of impulses (probability concentrated on a single element) and a normal-

inverse-Gamma model.

C The Volume Element of a Family of Metrics on the Simplex

This appendix contains some calculations that are used in Section 10. Refer to that section for

explanations of the notation and background.

C.1 The Determinant of a Diagonal Matrix plus a Constant Matrix

We prove some basic results concerning the determinants of a diagonal matrix plus a constant

matrix. These results will be useful in Appendix C.2.
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The determinant of a matrix detA ∈ Rn×n may be seen as a function of the rows of A, {Ai}n
i=1

f : Rn × · · · × Rn → R f(A1, . . . , An) = detA.

The multi-linearity property of the determinant means that the function f above is linear in each

of its components

∀j = 1, . . . , n f(A1, . . . , Aj−1, Aj +Bj , Aj+1, . . . , An) = f(A1, . . . , Aj−1, Aj , Aj+1, . . . , An)

+ f(A1, . . . , Aj−1, Bj , Aj+1, . . . , An).

Lemma 1. Let D ∈ Rn×n be a diagonal matrix with D11 = 0 and 1 a matrix of ones. Then

det (D − 1) = −
m∏

i=2

Dii.

Proof. Subtract the first row from all the other rows to obtain




−1 −1 · · · −1

0 D22 · · · 0

· · · · · · . . . · · ·
0 0 · · · Dmm



.

Now compute the determinant by the cofactor expansion along the first column to obtain

det (D − 1) = (−1)

m∏

j=2

Djj + 0 + 0 + · · · + 0.

Lemma 2. Let D ∈ Rn×n be a diagonal matrix and 1 a matrix of ones. Then

det (D − 1) =
m∏

i=1

Dii −
m∑

i=1

∏

j 6=i

Djj .

Proof. Using the multi-linearity property of the determinant we separate the first row of D − 1 as

(D11, 0, . . . , 0) + (−1, . . . ,−1). The determinant detD − 1 then becomes detA+ detB where A is

D− 1 with the first row replaced by (D11, 0, . . . , 0) and B is the D− 1 with the first row replaced

by a vector or −1.

Using Lemma 1 we have detB = −∏n
j=2Djj. The determinant detA may be expanded along

the first row resulting in detA = D11M11 where M11 is the minor resulting from deleting the first

row and the first column. Note that M11 is the determinant of a matrix similar to D − 1 but of

size n− 1× n− 1.
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Repeating recursively the above multi-linearity argument we have

det (D − 1) = −
n∏

j=2

Djj +D11


−

n∏

j=3

Djj +D22


−

n∏

j=4

Djj +D33


−

n∏

j=5

Djj +D44(· · · )








=
n∏

i=1

Dii −
n∑

i=1

∏

j 6=i

Djj.

C.2 The Differential Volume Element of F
∗
λJ

We compute below detV −1|nΛ2V −1|n⊤. See Proposition 12 for an explanation of the notation.

The inverse of V , as may be easily verified is,

V −1 =
1

〈x, λ〉




−x1λ2 〈x, λ〉 − x2λ2 −x3λ2 · · · −xn+1λ2

−x1λ3 −x2λ3 〈x, λ〉 − x3λ3 · · · −xn+1λ3

...
...

. . .

−x1λn+1 −x2λn+1 · · · · · · 〈x, λ〉 − xn+1λn+1

x1λ1 x2λ1 · · · · · · xn+1λ1




.

Removing the last row gives

V −1|n =
1

〈x, λ〉




−x1λ2 〈x, λ〉 − x2λ2 −x3λ2 · · · −xn+1λ2

−x1λ3 −x2λ3 〈x, λ〉 − x3λ3 · · · −xn+1λ3

...
...

. . .

−x1λn+1 −x2λn+1 · · · · · · 〈x, λ〉 − xn+1λn+1




=
1

〈x, λ〉P




−x1 〈x, λ〉 /λ2 − x2 −x3 · · · −xn+1

−x1 −x2 〈x, λ〉 /λ3 − x3 · · · −xn+1

...
...

. . .

−x1 −x2 · · · · · · 〈x, λ〉 /λn+1 − xn+1



.

where

P =




λ2 0 · · · 0

0 λ3 · · · 0
...

. . .
...

0 0 0 λn+1



.
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[V −1
n Λ2V −1⊤

n ]ij is the scalar product of the ith and jth rows of the following matrix

V −1
n Λ =

1

2
〈x, λ〉−3/2 P




−
√
x1λ1

〈x,λ〉√
x2λ2

−
√
x2λ2 −

√
x3λ3 · · · −

√
xn+1λn+1

−
√
x1λ1 −

√
x2λ2

〈x,λ〉√
x3λ3

−
√
x3λ3 · · · −

√
xn+1λn+1

...
...

. . .

−
√
x1λ1 −

√
x2λ2 · · · · · · 〈x,λ〉√

xn+1λn+1
−
√
xn+1λn+1



.

We therefore have

V −1
n Λ2V −1⊤

n =
1

4
〈x, λ〉−2 PQP

where

Q =




〈x,λ〉
x2λ2

− 1 −1 · · · −1

−1 〈x,λ〉
x3λ3

− 1 · · · −1
...

. . .
...

−1 −1 −1 〈x,λ〉
xn+1λn+1

− 1



.

As a consequence of Lemma 2 in Section C.1 we have

detQ = x1λ1
〈x, λ〉n
∏n+1

i=1 xiλi

− x1λ1

〈x, λ〉n−1∑n+1
j=2 xjλj

∏n+1
i=1 xiλi

= x2
1λ

2
1

〈x, λ〉n−1

∏n+1
i=1 xiλi

.

and we obtain

detV −1
n Λ2V −1⊤

n = (1/4)n 〈x, λ〉−2n

(
n+1∏

i=2

λi

)
x2

1λ
2
1

〈x, λ〉n−1

∏n+1
i=1 xiλi

(
n+1∏

i=2

λi

)
=
x2

1 〈x, λ〉n−1

4n 〈x, λ〉2n

n+1∏

i=1

λi

xi
.

D Summary of Major Contributions

Listed below are the major contributions of this thesis and the relevant sections and publications.
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Contribution Section Relevant Publications

Equivalence of maximum likelihood for 5, A Lebanon and Lafferty (2002)

conditional exponential models and minimum

exponential loss for AdaBoost

Axiomatic characterization of Fisher geometry for 6 Lebanon (2004)

spaces of conditional probability models Lebanon (to appear)

The embedding principle and the corresponding 7 Lafferty and Lebanon (2003)

natural geometries on the data space

Diffusion Kernels on Statistical Manifolds 8 Lafferty and Lebanon (2003)

Lafferty and Lebanon ((accepted))

Hyperplane Margin Classifiers on the 9 Lebanon and Lafferty (2004)

Multinomial Manifold

Learning framework for Riemannian metrics 10, B Lebanon (2003a)

Lebanon (2003b)
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