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Abstract. In the semantic web context,the formal representation of
knowledge is not resourceful while the informal one with uncertainty
prevails. In order to provide an uncertainty reasoning service for seman-
tic web applications, we propose a probabilistic extension of Descrip-
tion Logic, namely Probabilistic Description Logic Program (PDLP). In
this paper, we introduce the syntax and intensional semantics of PDLP,
and present a fast reasoning algorithm making use of Logic Program-
ming techniques. This extension is expressive, lightweight, and intuitive.
Based on this extension, we implement a PDLP reasoner, and apply
it into practical use: Tourism Ontology Uncertainty Reasoning system
(TOUR). The TOUR system uses PDLP reasoner to make favorite travel
plans on top of an integrated tourism ontology, which describes travel
cites and services with their evaluation.

1 Introduction

The Semantic Web (SW) [1] aims at transforming traditional text-based web
and providing machine readable information for practical applications. Such in-
formation is based on three types of semantics: the implicit, the formal, and the
powerful semantics[2]. The implicit semantics describes informal and uncertain
information of the web, such as semantics in unstructured texts and document
links. While the formal semantics often refers to well-defined and structured
representation with definite meaning, such as ontologies upon Description Logic
(DL). The last but most powerful semantics owns abilities of both of the previous
ones, i.e. it describes both the informal (imprecise and probabilistic) and formal
aspects of the web. However, it is not easy to obtain a powerful semantics due
to the incompatibility between logic and probability. To resolve this incompat-
ibility, we propose PDLP to tightly combine description logic with probability
and provide a powerful semantics semantic web context.

As a formal representation, Description Logic[3] is a decidable fragment of
First Order Logic (FO). With DL, Knowledge Bases (KB) describe concepts,
roles (the relationship between concepts), axioms and assertions under a Tarski-
like semantics. Efficient algorithms have been devised to solve reasoning tasks in
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DL, such as highly optimized Tableau algorithms[4]. However, these algorithms
do not deal with uncertainty.

In the recent decades, uncertainty starts to play an important role in order
to supplement the expressivity of formal approaches. The changing web context
and intrinsic properties of information require this type of uncertainty, as one
example showed in our tourism ontology. However, pure DL does not lend a
hand to uncertainty reasoning. Several extensions have been made to combine
uncertainty and DL together[5,6,7]. In our attempt, we present Probabilistic
Description Logic Programs (PDLP), a lightweight probabilistic extension to
assertional knowledge in DL, and interpret probabilities in intentional semantics.
Queries of PDLP are answered using a translational approach: reducing DL to
logic programs in the same spirit as in [8].

The major differences between our PDLP and other related formalisms lie in
the following aspects:

– PDLP only attaches probability to world assertions rather than terminolog-
ical axioms;

– The syntax and semantics are carefully devised to meet both the DL and
LP restriction;

– PDLP adopts a translational approach rather than a hybrid approach, such
as [5,7].

As a result of these differences, PDLP achieves several highlights as follows:

– Expressive, PDLP owns the ability to deal with uncertainty, besides, the
queries for PDLP could be both DL-like and LP-like thus PDLP provides a
expressivity extension to queries;

– Lightweight, probability is only extended to world assertions rather than the
whole knowledge base;

– Intuitive, the semantics of probability in PDLP is clear and natural;
– Speedy, its reasoning algorithm is very fast thanks to the efficient inferencing

with logic programming techniques;
– Practical, we apply our implemented PDLP reasoner to Tourism Ontology

Uncertainty Reasoning system to evaluate and rank travel plans for users,
according to quality of service of travel cites.

The remaining part of this paper is organized as follows: in next section, we
will formalize the syntax and semantics of PDLP. In section 3, we describe the
reasoning tasks and the corresponding algorithm. In section 4, we present our
PDLP implementation and its application in tourism planning. Related work is
discussed in section 5. Finally, section 6 concludes the paper.

2 Syntax and Semantics

2.1 Syntax of PDLP

The language of PDLP is obtained by tailoring DL in the same essence as DHL[8].
The tailoring is justifiable due to the different expressivity and complexity be-
tween DL and LP, thus it is necessary to build up a model to capture common
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abilities of the two. Primarily, our extension enhances the expressivity of uncer-
tain knowledge.

A probabilistic knowledge base of PDLP consists of two components: pKB :=
〈T, pA〉, where TBox T contains axioms about concepts (in other words, the
relationship between concepts):

C1
h ≡ C2

h (concept equivalence)
Cb � Ch (concept inclusion)

R � S (role hierarchy))
R ∈ R+ (transitive role)
R ≡ S− (inverse role)

where Ch, Cb are concepts and R,S are roles, defined as follows:

Ch → A |
Ch � Ch |
∀R.Ch

Cb → A |
¬A |
Cb 	 Cb |
Cb � Cb |
∃R.Cb

where A is an atomic concept and R is a role. Here, negation is allowed on
primitive concepts rather than arbitrary ones to meet the translating restriction
from DL to LP because LP cannot represent arbitrary negation.

The ABox of PDLP, pA, differs from that of normal DLs in the uncertainty
it asserts. An probabilistic assertion p ∼ ϕ could assert uncertainty beyond the
ability of ordinary assertion ϕ, where ϕ is a:C or 〈a, b〉:R. A probabilistic ABox
contains following assertions:

a:Ch, 〈a, b〉:S, p ∼ a:A, p ∼ 〈a, b〉:R,

where a, b are individuals, A a primitive concept, S a role and R a primitive
role1, and p, called asserted probability (AP), is a real number in the range of
[0, 1]. The first two assertions are deterministic, while the latter two are attached
with uncertainty on primitive concepts or roles (thus it is lightweight).

2.2 Semantics

In PDLP, an assertion is attached with a probability to indicate how much
likely it is consistent with respect to probabilistic knowledge base. In order to
assign probability to an assertion, we first recall some notations from Probability
Theory.

An interpretation of TBox is called a model of T , written as I |= T , where I
assigns to every concept C a set CI ⊆ 
I and to every role R a binary relation
RI ⊆ 
I × 
I , where 
I is the domain of the interpretation (Table 1). The
partial ordering � on interpretations is defined as I1 � I2 if CI1 ⊆ CI2 for every
concept C and RI1 ⊆ RI2 for every role R. I1 ≺ I2 if I1 � I2 and I1 �= I2.

1 Primitive concepts refer to atomic concepts with none occurrence in heads Ch of
TBox axioms, primitive role is similar.
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Table 1. Semantics of concept constructors

Constructor name Syntax Semantics

Atomic Concept A AI ⊆ �I

Atomic Negation ¬A �I \AI

Role R RI ⊆ �I ×�I

Conjunction C �D CI ∩DI

Disjunction C �D CI ∪DI

Exists restriction ∃R.C {x|∃y.〈x, y〉 ∈ RI ∧ y ∈ CI}
Value restriction ∀R.C x|∀y.〈x, y〉 ∈ RI → y ∈ CI

Definition 2.1. (Least Fixed Point Semantics) Let I0 be a base interpretation
only on primitive concepts and primitive roles, an extension I on a base inter-
pretation I0 is called a least fixed point model with respect to a TBox T if: (1)
I0 � I, I |= T ; (2) ∀I ′.I0 � I ′ ∧ I ′ |= T =⇒ I � I ′.

Hence, we define the sample space in PDLP as the model class C: the collec-
tion of least fixed point models with respect to TBox. We assume that µ is a
probability distribution on C with restriction µ(C) = 1.

Definition 2.2. A pair 〈C, µ〉 is called a probabilistic world of the knowledge
base pKB, where C and µ follow conditions mentioned above.

Intensional Semantics. An ABox assertion is in fact a logical formula. A
formula has its satisfied models: Mod(ϕ) := {I : I ∈ C ∧ I |= ϕ}.
Definition 2.3. The calculated ϕ probability (CP) of a classical deterministic
assertion is a function defined by:

ν(ϕ) := µ(Mod(ϕ)) =
∑

I∈C,I|=ϕ

µ(I)

where ϕ is a deterministic assertion (a:C or 〈a, b〉:R), 〈C, µ〉 is a probabilistic
world.

∑
is well defined because C is enumerable.

Lemma 2.1 The CP of an assertion has following properties:

– ν(a:¬C) = 1− ν(a:C)
– Inclusion-exclusion principle: ν(a:C 	D) = ν(a:C) + ν(a:D) − ν(a:C �D)

where C,D are concepts.

Definition 2.4. A probabilistic world 〈C, µ〉 satisfies a probabilistic assertion
p ∼ ϕ, written as 〈C, µ〉 |≈ p ∼ ϕ, if ν(ϕ) = p (CP equals AP).

A probabilistic world satisfies ABox pA with respect to a TBox T ,
〈C, µ〉 |≈ pA, if it satisfies all assertions in pA. In this sense, it is also writ-
ten as 〈C, µ〉 |≈ pKB, for a probabilistic Knowledge Base pKB constituted by
T and pA.
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Definition 2.5. A pKB entails an assertion p ∼ ϕ, pKB |≈ p ∼ ϕ, if all
probabilistic worlds of pKB, satisfy the assertion.

pKB |≈ p ∼ ϕ iff ∀〈C, µ〉 |≈ pKB =⇒ 〈C, µ〉 |≈ p ∼ ϕ
Lemma 2.2 Probability Indicator

– if pKB |≈ p ∼ a:C, then pKB |≈ (1 − p) ∼ a:¬C;
– inclusion-exclusion principle: if pKB |≈ p ∼ a :C, pKB |≈ q ∼ a :D and
pKB |≈ r ∼ a:C �D, then pKB |≈ (p+ q − r) ∼ a:C 	D;

– a:∃R.C ≡ ∨
b∈HU

(〈a, b〉:R ∧ b:C), where HU denotes the Herbrand Universe.

This provides an approach to calculate existential assertions.

The lemma above is vitally important because it is the basis of our calculation
of the probability of a given assertion. And this also explains why we restrict
the syntax of probabilistic assertion in ABox: we would like to compute the
probability of complex assertions from some basic and simple facts. This is rather
useful in practical application as shown in our example: the ontology knows basic
facts while the reasoner can figure out complex events.

Our extension enhances the expressivity of uncertain knowledge. Meanwhile
it is its lightweight extension that enables an easy semantic model of proba-
bilistic knowledge base. The overall semantics is rather intuitive once we set up
probabilities for models of the knowledge base, which inspires our fast reasoning
scheme in the following section.

3 Reasoning

3.1 Reasoning Tasks

A DL reasoning system typically supports several kinds of reasoning tasks: mem-
bership, subsumption, satisfiability and hierarchy, all of which can be reduced
into retrieval problems [3]. While LP engines could typically answer two kinds
of queries: instance retrieval and membership check[8]. Since PDLP adopts the
translational approach, it supports similar queries as DHL[8], which enables us
to express information need either DL-like with concept constructors or LP-like
with variables. For example, we can represent our query “retrieve any instance
of ∃R.C” as:

– DL-like: ∃R.C
– LP-like: Query(x)← R(x, y), C(y)

The DL-like queries can be easily translated into LP-like queries, while LP
queries can express more than DL ones. Therefore PDLP is expressive in query
ability.

The query is answered in the following scheme:

1. Fast retrieval of any possible instances by making use of the below transla-
tion;

2. Calculate the probability corresponding to each instance (pair).



Providing an Uncertainty Reasoning Service for Semantic Web Application 633

3.2 Translation

In order to retrieve all possible results, a probabilistic knowledge base pKB can
be partially translated into a logic program[9] while preserving the semantics. We
follow the approach of [8] and define a mapping from PDLP to LP in the same
way as DHL except for atomic negations and probability assertions as follows:

Γ (A, x) −→ A(x)
Γ (¬A, x) −→ ∼ A(x)
Γ (C1 � C2, x) −→ Γ (C1, x) ∧ Γ (C2, x)
Γ (C1

b 	 C2
b , x) −→ Γ (C1

b , x) ∨ Γ (C2
b , x)

Γ (∀R.Ch, x) −→ Γ (Ch, y)← R(x, y)
Γ (∃R.Cb, x) −→ R(x, y) ∧ Γ (Cb, y)
Γ (Cb � Ch) −→ Γ (Ch, x)← Γ (Cb, x)

Γ (C1
h ≡ C2

h) −→
{
Γ (C1

h � C2
h)

Γ (C2
h � C1

h)
Γ (R � S) −→ S(x, y)← R(x, y)
Γ (R ∈ R+) −→ R(x, y)← R(x, z) ∧R(z, y)

Γ (R ≡ S−) −→
{
R(x, y)← S(y, x)
S(x, y)← R(y, x)

Γ (a : Ch) −→ Γ (Ch, a)
Γ (〈a, b〉 : R) −→ R(a, b)
Γ (p ∼ a : A) −→ A(a)
Γ (p ∼ 〈a, b〉 : R) −→ R(a, b)

A (retrieval) query could also be translated into LP conventions as the body
part of a rule without head.

This translation phase does not concern probability, with its primary target
on all possible result. The preservation of semantics relies primarily on transla-
tion of deterministic part of pKB, which is ensured and by the common Least
Fixed Point Semantics these two formal frameworks share[10]. Therefore the
semantics preserve, for the probability distribution is on the models of TBox,
which concerns no uncertainty.

3.3 Probabilistic Inferencing

Definition 3.1. A set of primitive assertions E is called a (basic) evidence of
an assertion p ϕ if

– 〈T,D(E)〉 |= D(p ∼ ϕ), where 〈T,D(E)〉 is a temporal knowledge base.
– ∀E ′ � E, 〈T,D(E ′)〉 � D(p ∼ ϕ)

where D(E) = {ϕ : p ∼ ϕ ∈ E}. E is a minimum set of primitive facts to
support ϕ.

Assuming the consistency of pKB, an answer of a query under the least fixed
point semantics is a result of bottom-up calculation while the evidence here in
essence is a result of top-down search of supporting facts. Hence, the procedure
to calculate the probability of an assertion can be summarized as follows:
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1. Inference all basic evidences E1 · · · Ek by LP engine

2. Calculate the probability by CP = CP (
k∨

i=1

∧Ei) by inclusion-exclusion prin-

ciple introduced in lemma 2.2.

In order to calculate probability, one vital property we assume here is the
independence of assertions in a basic evidence, that is, CP (p ∼ ϕ ∧ q ∼ ψ) =
AP (p ∼ ϕ) · AP (q ∼ ψ) = p · q, where ϕ, ψ are a : A or 〈a, b〉 : R, and A,R are
primitive.

4 Implementation and Application

In this section, we present an example application of our implemented PDLP rea-
soner, the Tourism Ontology Uncertainty Reasoning system(TOUR), to provide
a travel planning service for clients.

4.1 Implementation

We implement a PDLP reasoner based on intensional semantics. In order to
speed up its reasoning, PDLP reasoner adopts following optimizing techniques:
sideway information passing, magic set and semi-naive evaluation strategies[11].
The PDLP reasoning speed is really fast in the following practical tourism ap-
plication.

4.2 Scenario and Architecture

The TOUR system is built upon the tourism ontology (adapted from Protege2

ontology library). The system aims at making a tourism plan most conforming
to customer’s expectation. This system contains three components (Figure 1):

Fig. 1. Architecture of TOUR

– Ontology layer: The tourism ontology formally describes a set of available
destinations, accommodation, and activities. Tourism axioms (see Table 2)of

2 http://protege.stanford.edu/
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this ontology, are devised according to the WTO thesaurus3. The ontology
grades each instance with a score. These grades of travel cites and services
come from two sources: trusty tourism agencies like National Tourism Ad-
ministration (CNTA)4, and customer personalized favorite setup;

– Reasoning layer: make use of our implemented PDLP reasoner;
– Querying layer: transform user queries to DL-style or LP-style forms, and

put customer personalized assertions about travel cites and services into
ontology.

Table 2. A fragment of the translated LP of axioms from tourism ontology

Axioms Translated rules

RuralArea �PreferredDest PreferredDest(X) ←RuralArea(X).
UrbanArea �PreferredDest PreferredDest(X) ←UrbanArea(X).

PreferredPark �RuralArea RuralArea(X)←PreferredPark(X).
PreferredFarm �RuralArea RuralArea(X)←PreferredFarm(X).
PreferredTown �UrbanArea UrbanArea(X)←PreferredTown(X).
PreferredCity �UrbanArea UrbanArea(X)←PreferredCity(X).

hasPart ∈ R+ hasPart(X,Z) ←hasPart(X,Y),hasPart(Y,Z).
Sports �Activity Activity(X)←Sports(X).

Adventure �Activity Activity(X)←Adventure(X).
Sightseeing �Activity Activity(X)←Sightseeing(X).

Hotel �Accommodation Accommodation(X) ←Hotel(X).
LuxuryHotel �Hotel Hotel(X) ←LuxuryHotel(X).
offerActivity ≡isOfferedAt− offerActivity(X,Y)←isOfferedAt(Y,X).

isOfferedAt(X,Y)←offerActivity(Y,X).

Probabilities in the tourism ontology have practical meanings about quality
of a tourism cites and services:

– p ∼ a:Accommodation denotes accommodation rating given by CNTA;
– p ∼ 〈d, a〉:hasAccommodation indicates the convenience of accommodation a

in destination d, e.g. the environment and traffic conditions in neighborhood;
– p ∼ 〈d, c〉:hasActivity describes the service probability of activity c in desti-

nation d, e.g. activities such as watching sun rising should be in clean days.

4.3 Querying on the Ontology

The TOUR system takes the following procedures to evaluate a travel plan for
a customer:

1. Setup probabilities for basic facts (assertions) in ontology (Probability Per-
sonalizer);

2. Specify the factors and rules to retrieve travel plans (Query Generator);

3 The World Tourism Organization, http://www.world-tourism.org
4 http://www.cnta.gov.cn/
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3. Make use of PDLP reasoner to infer possible travel plans with their proba-
bility (PDLP reasoner).

The following example concerning travelling in Beijing illustrates the whole
procedure.

In the first phase, suppose a customer grades travel cites and services in Bei-
jing (Figure 2) as follows (partially):

0.95

hasPart

Wangfujing Grand Hotel Beijing

hasAccomodation

0.9

Beijing

hasPart

Summer Palace

offerActivity

0.9

Tiananmen Square

Visiting

offerActivity

0.85

Fig. 2. Assertions about Beijing

0.95 ∼ Beijing:PreferredCity (1)
0.9 ∼ 〈Beijing,Wangfujing Grand Hotel〉:hasAccommodation (2)
0.9 ∼ 〈Summer Palace,Visiting〉:offerActivity (3)
0.85 ∼ 〈Tiananmen Square,Visiting〉:offerActivity (4)

〈Beijing,Summer Palace〉:hasPart (5)
〈Beijing,Tiananmen Square〉:hasPart (6)

Second, the optimal travel plan is specified as a triple of destination, accom-
modation and activity, judged by a combination of their service quality and
convenience. Thus the query rule is:

Q1: Query(X,Y,Z)← PreferredDest(X),hasAccommodation(X,Y),
hasPart(X,X1),offerActivity(X1,Z).

In the third phase, the PDLP engine infers a result RES1 = 〈Beijing, Wangfu-
jing Grand Hotel, Visiting〉 with two evidences: E1 ={(1),(2),(3),(5)} and E2 =
{(1),(2),(4),(6)}, thus the convenience (probability) of this plan is CP(RES1)=
CP(E1)V+CP(E2)−CP(E1 · E2)=0.842175.

Figure 3 shows results of Q1.

4.4 Performance

We have tested performance of the TOUR system using two sorts of queries.
One is a mixed query combining both probability and formal inquiry mentioned
above. Another is intended to test capacity of the system on simple queries:
Q2: Query(X,Y)←offerActivity(X,Y).
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Fig. 3. Partial result of Q1

Ontology Tour1 Tour2 Tour3 Tour4 Tour5

Ontology Size 489 1002 1524 1998 3099

Q1 Result size 296 638 986 1302 2036
Time Cost(s) 0.94 2.92 8.30 18.64 54.66

Q2 Result size 15 15 15 15 15
Time Cost(s) 0.19 0.14 0.16 0.17 0.19

Fig. 4. Performance of TOUR

Figure 4 shows the performance of TOUR system of two queries on two ontolo-
gies. The size of ontology is measured in instance number(both concept instances
and role instances). In the logarithmic graph, the reasoning time is in scale to
the ontology size, illustrating the attractive computability of PDLP. Theoreti-
cally, PDLP compute query answers in fast thanks to the tractable complexity
of LP[9]. Because PDLP reasoner is not dedicated to TOUR system, we could
also expect high performance of PDLP’s reasoning in general applications.

5 Related Work

Previously there are several related approaches to probabilistic description log-
ics which can be classified according to: (1) what component the uncertainty be
attached to (1a) TBox[12,13,14] (1b) ABox[7,15] (1c) both[16,6,5,17,18,19,20];
(2) what approach is applied to reasoning. For the latter aspect, (2a) fuzzy logic
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inferencing[16,17], (2b) Bayesian Network[12,18], (2c) lattice-based approach[20],
(2d) combination of probabilistic DL with LP[6,7,5].

[16,17] extend DL (both TBox and ABox) with uncertainty interval by fuzzy
set theory, and devise a set of reasoning rules to inference uncertainty. [12,18]
translate probabilistic extension of DL into Bayesian Network approach with
different expressivities. The former [12] works based on extension to ALC TBox
while the latter [18] makes a probabilistic extension to OWL ontology. [20] man-
ages uncertainty in DL with lattice-based approach mapping an assertion to
a uncertain value in a lattice and reasoning in a tableaux-like calculus. Other
related work [13] concentrates on probabilities on terminological axioms, [15]
on world assertions while [14] on concept subsumption and role quantification.
[19] extends SHOQ(D) using probabilistic lexicography entailment and supports
assertional knowledge.

Concerning extension of uncertainty to combination of DL and LP, the works
most related to ours can be divided into: (i) hybrid approaches tightly combin-
ing DL with LP and adding uncertainty in order to extend expressivity [5][7]; (ii)
translational approaches reducing DL with uncertainty to probabilistic inferenc-
ing in LP in order to take advantage of powerful logic programming technology
for inference [6]. [5] adds an uncertainty interval to an assertion in a combination
of DL and LP under Answer Set Semantics. [7] presents combination of descrip-
tion logic programs (or dl-programs) and adds probability to assertions under the
answer set semantics and the well-founded semantics, and reduces computation
of probability to solving linear optimization systems. [6] generalizes DAML+OIL
with probability (in essence both on TBox and ABox), and maps it to four-valued
probabilistic datalog. Besides difference in four-valued extension, other difference
between [6] and our PDLP lies in that [6] attaches probability to both axioms and
assertions in DAML+OIL while we restrict probability only on ABox assertions
in order to achieve our three highlights, especially intuitive in semantical aspect.

6 Conclusion and Future Work

In this paper, we have extended DL with probability on assertional knowledge,
namely PDLP, and interpreted probabilistic ABox assertions under intensional
semantics. The syntax and semantics of PDLP are very lightweight, intuitive and
expressive to deal with uncertainty and practical applications in Semantic Web,
and its reasoning is very fast through LP techniques. We have implemented
a PDLP reasoner and apply it into a practical application TOUR system to
make optimal travel plans for users. The performance of the TOUR system is
encouraging for future use of PDLP in other applications.
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