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Abstract

We propose a new condition to test for the impos-
stbility of jamming in three-dimensional, quasistatic
multi-rigid-body systems. Our condition can be writ-
ten as a feasibility problem for a system of linear in-
equalities and therefore can be checked using linear
programming techniques. To demonstrate the use of
our jamming test, we apply it to a simple dexterous
manipulation task and to the well-known peg-in-hole
msertion problem.

1 Introduction

To plan successful parts-mating operations, one
must be able to determine whether a candidate plan
or plan segment is prone to jamming. In this paper,
we develop sufficient conditions for the tmpossibility
of jamming. The basic idea is simple. We consider a
compliant manipulation task with one or more sliding
contacts. Then we consider the possibility that one or
more sliding contacts converts to rolling. If this were
to occur, the position-controlled joints could not follow
their planned trajectories, and efforts associated with
position errors would accrue. As the errors build, the
converted contacts would either continue to roll (sus-
taining the jam) or convert back to sliding. Here we
assume that the jam will be sustained if, in order to
resist the building control forces, the contact force of
at least one contact has to move strictly inside its fric-
tion cone. Otherwise, we assume that a sustained jam
1s impossible.
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2 Previous Work

Jamming must be well understood before reliable
automatic manipulation and assembly planners can be
developed. However, progress has been slow for gen-
eral systems. Several authors have studied the jam-
ming of (nominally) rigid parts, but this has been done
mostly for special geometries, such as a peg and a hole

(see [1, 8, 12]).

Donald and Pai [3], and later Dupont [4] developed
jamming analyses for systems with more general ge-
ometries. Donald and Pai’s work grew out of the de-
velopment of a simulator designed to test plans for
assembling compliant parts. Compliant bodies were
approximated by connecting rigid parts with torsion
springs. They assumed Coulomb friction acted at the
contacts and that dynamic effects were negligible. In
order to simulate the assembly of such parts, they de-
veloped a technique to predict jamming. Dupont’s
work was more general. He also assumed dry friction
acted at the contacts, but his analysis was for three-
dimensional bodies and he included dynamic effects.

Our analysis of jamming applies to arbitrary qua-
sistatic, three-dimensional, multi-rigid-body systems
and allows for a subset of the joints to operate un-
der compliant control. We use the knowledge of the
planned joint trajectories and the errors that would
be induced by jamming to develop mathematical con-
ditions for which jamming is impossible.

3 Assumptions

Our basic assumptions are that the bodies are rigid,
the joints of the manipulator can be position- or effort-
controlled as desired, ! and Coulomb friction acts at
the contact points. Further, we will assume that the
conditions of first-order stability with friction [9] are
met by the manipulation plan. First-order stability

1By effort-controlled, we mean that a prismatic joint is force-
controlled and a revolute joint is torque-controlled.



implies that a contact mode has been chosen and the
joints of the manipulator have been partitioned into
position- and effort-controlled subsets to guarantee
that:

1. The velocities of the position-controlled joints
uniquely determine the velocities of the effort-
controlled joints and the manipulated object.

2. The contact forces (for the planned contact mode)
and the efforts of the position-controlled joints
can be determined uniquely from the exter-
nally applied forces and the efforts of the effort-
controlled joints.

3. The contact forces at the rolling contacts lie
strictly within their respective friction cones.

Note that if a manipulation system maintains first-
order stability along its planned trajectory, then
rolling contacts will continue to roll and no contact
will separate in response to small disturbing forces.
However, as alluded to in the “Introduction,” it is pos-
sible for a sliding contact to convert to rolling, because
Coulomb’s Law is ambiguous with regard to sliding
and rolling when a contact force lies on the boundary
of its friction cone. When a sliding contact does switch
to rolling, it imposes kinematic constraints on the sys-
tem that are, in general, inconsistent with the planned
control modes of the joints. For this reason, we refer
to the system as jammed whenever a shiding contact
converts to rolling. Kinematic inconsistency also oc-
curs when a new contact is unexpectedly formed, but
that case will not be considered, because such events
can be predicted during planning and the appropri-
ate change in the control mode partition can be easily
determined.

4 Formulation of Jamming Condition

We assume that a first-order stable manipulation
plan with at least one sliding contact has been pro-
vided. Our objective here is to determine whether or
not jamming is possible at a given configuration along
the planned trajectory.

Since the contact mode is known and the plan is
first-order stable, we can write the applicable kine-
matic constraints for any point on the manipulation
trajectory. Let ¢ € RS and 8 € R™?, be the general-
1zed velocity vectors of the workpiece and manipula-
tor, respectively, where R™ denotes n-dimensional Eu-
clidean space. Then the kinematic velocity constraint
implied by the planned contact mode is [11]:

whq—J,0=0 (1)

where the matrices W£ and J£ have three rows for
each rolling contact and one row for each sliding con-
tact (i.e., 3ng+ng, where ng and ng are the numbers
of rolling and sliding contacts respectively). These
matrices are partitions of the Jacobian of the posi-
tional kinematic constraints associated with the con-
tacts constraints.

At each sliding contact, the direction of the friction
force is known and proportional to the normal reac-
tion. Thus we can write the equilibrium equations as

[9]:
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where the unknown ¢4 1s referred to as the applicable
wrench intensity vector. This vector contains three
wrench intensities for each rolling contact, and one
wrench intensity for each sliding contact. Note that
the dimension of W 4, is the same as that of W 4 and
their columns corresponding to the rolling contacts are
identical. However, the columns of W 4, correspond-
ing to the sliding contacts are wrenches correspond-
ing to contact forces on the boundaries of the friction
cones (e.g., wiy in Figure 1), while those in W 4 corre-
spond to the normal directions at the sliding contacts
(e.g., w;, in Figure 1). The matrices J 4, and J 4 are
similarly related.

CONTACT
FORCE

SLIDING
VELOCITY

Figure 1: The Friction Cone and Wrench Basis

Now we are in a position to derive conditions under
which jamming is not sustainable. Consider a situa-
tion in which only contact ¢ is sliding. The system
will jam if the " contact force moves inside its fric-
tion cone. To test for this possibility, we reformulate
the equilibrium equations with additional wrench in-



tensities for the sliding contact as follows:

WAN Wiy Wiy ca —YG i
X X ey | = obj 3
gt it y - (3)
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where the vectors, 327;/ and Jlj;, are the columns of the
Jacobian matrix corresponding to the unit wrenches,
w;y and w;, (shown in Figure 1). Note that if the
contact continues to slide, the new wrench intensities,
¢iy and c¢;,, will be zero. Jamming cannot be sustained
if eq. (3) cannot be satisfied with ¢;, > 0.

Since the trajectory under consideration is first-
order stable, the matrix in the equilibrium equations
can be partitioned to yield (see [9] for details):

c
Qr vz S gr
Qrr Yir zir g TII = Imanil |’
1 (1
where Q7 exists (the structure of g; will be revealed
in the next equation). The vector of efforts at the

position-controlled joints, 777, can now be written as
a function of the efforts at the other joints, 7;:

T = QuQrt [ T :g;:fanj ] t Gmanir
+ (Wi — QurQr ' yir)ciy
+ (21— QuQ7 ' zir)ci (5)

Note that when ¢;; = ¢;, = 0, 777 takes on its value
just prior to jamming. This implies that the third and
fourth terms of the right hand side of eq. (5) repre-
sent the changes in the efforts, A7y, of the position-
controlled joints caused by the jam.

The last step in the analysis is to determine the
jam-induced changes in the joint torques and relate
them to the new wrench intensities. Of the posi-
tion controlled joints, a subset of those will jam if
one or more of the sliding contacts convert to rolling.
Let E; be the matrix of zeros and ones that selects
the jammed joint from the position-controlled joints.
Specifically, premultiplying A7y, by Ej removes the
elements corresponding to the joints that do not jam.
Finally, denote by X, the diagonal matrix with ** di-
agonal entry given by the sign of the accrued position
error at the i*® jammed joint. Then for the changes
in the joint efforts to be consistent (in sign) with their
positional errors, we have:

XE;Ar; > 0. (6)

Note that it is possible that inequality (6) be satisfied
by equality only if the conversion of sliding to rolling

happens to generate constraints that do not make the
kinematic velocity constraints (1) inconsistent. Since
this situation is rare, we will not consider the possi-
bility further.

Substituting the third and fourth terms on the right
hand side of eq. (5) into inequality (6) yields the con-
ditions for possible jamming (i.e., the following are
necessary conditions for jamming):

(Yirr — QIIQl_lin)T ]T [ Ciy ]
XE, (zirr — Q1 Q7 zin)” Ciz >0

Cizy Z 0 (8)

We stress that satisfaction of the system (7) and (8)
implies that the situation is “ripe” for jamming. If a
conversion from sliding to rolling occurs, then ¢;, can
increase driving the contact force inside the friction
cone, thus sustaining the jam. However, if the system
of inequalities is not feasible, then contact ¢ cannot
convert to rolling, because the changes in the joint
efforts corresponding to the change in the i'* contact
force are not consistent with the joint position errors.

Note that constraints on ¢;, forcing it to be consis-
tent with Coulomb’s Law are not included here. This
is because we are interested in the infeasibility of sys-
tem (7) and (8). In particular, if the system (7) and (8)
is infeasible, then it is still infeasible if additional con-
straints are imposed. One could justify the inclusion
of constraints on ¢;;, on the grounds that our test (for
the impossibility of jamming) would then be less con-
servative, but we do not include them here.

Extending the possible jamming conditions, in-
equalities (7) and (8), to situations with more than
one sliding contact leads to:

(Y- QIIQI_lYI)T ]T [ ¢ ]
XE; (ZII_QIIQj_lzI)T CZ >0 (9)

c, >0 (10)

where the matrices Y7, Y7, Z1, and Z 5 are formed
by horizontally concatenating ng vectors y,;, yirr,
zir, and z;r; for the sliding contacts. The product
of the matrices appearing in ineq.(9), is referred to
as the jammaing matriz. The numbers of rows of the
matrices subscripted by I and /7 are 3ng + ng and
6+ng—3ng —ng, respectively, so the numbers of rows
and columns in the jamming matrix are the number of
position-controlled joints, 6 +ny —3ng —ng, and twice
the number of sliding contacts, 2ng, respectively.

The above development is summarized by the fol-
lowing theorem and corollary.



Theorem 1 An active, three-dimensional, multi-
riged-body system with Coulomb friction acting at the
contacts cannot jam if the system of inequalities (9)

and (10) is infeasible.
Proof: See [9] for a proof.

Corollary 1 An active, two-dimensional, multi-
riged-body system with Coulomb friction acting at
the contacts cannot jam if any row of the matriz,
XE;(Zi — QHQI_1ZI), has all nonpositive ele-
ments.

Proof:
tion and the jamming matrix reduces to XE j;(Z 1 —
QHQI_1ZI). Since ¢, is nonnegative, if any row of
the jamming matrix has all nonpositive elements, then
that row dotted with ¢, is clearly nonpositive, thus vi-
olating the corresponding inequality in (9). ... q.e.d.

In the planar case, ¢, is zero by defini-

4.1 Jamming Example: Block in Palm

Figure 2 shows a simple planar system in which
the stick finger begins at an angle just less than /2
and rotates clockwise under position control, pushing
the block to the right along the palm. The contact
mode of interest is the one maintaining the three con-
tacts shown (the edge-edge contact is modeled as two
point contacts between the palm and two corners of
the block). For the commanded clockwise finger mo-
tion, this system exhibits jamming in some configura-
tions and first-order stability in others. For simplicity,

FINGER _y\ ﬁﬁﬂi GRAVITY
a

Figure 2: A Planar Manipulation System

assume that the coefficients of friction, p;, at the three
contacts are equal. Then, given that the world frame
has its origin on the axis of the revolute joint of the
stick finger and the external force (in this example,
the gravitational force) acts in the —y-direction, the
relevant matrices are defined as follows:

0 0 sin(0)

w, = 1 1 —cos(0) (11)
v r+p -y

JIo= 10 0—7] (12)

[ =1 =1 cos(f)

W, = | 0 0 sin(0) ] (13)
L 0 0 0

J' = [0 0 0] (14)
[ —p  —p sin(0) — pcos(9)

Q, = 1 1 —cos(0) — psin(0) ](15)
Lz 240 -y

Qn = [0 0 =] (16)
[ u I sin(0) + pcos(0) ]

Z; = 1 1 —cos(0) + psin(6) | (17)
L v x40 -y

Zir = [0 0 _7] (18)

where v = Va2 + o?. Assuming ¢g,,,,,, = 0, the gener-

alized applied force is given as:

0
[ T:g;:fan ] = (x—i—%l/gQ)mg (19)

where m 1s the mass of the block and ¢ is the magni-
tude of the gravitational acceleration.

If a contact converts to rolling while the other con-
tacts are maintained, it is clear that motion will cease.
Hence, E; = 1. Then, since the planned finger mo-
tion was clockwise rotation, the controller error will
be negative, leading to X = —1.

To further simply our discussion and the algebra,
let 4 = 0.5, « =1 and § = 2. Maintaining the cho-
sen contact mode allows the elimination of the finger
joint angle from the quasistatic equations. Then, the
applicable wrench intensity vector, c4, is given as:

_ mg(34w)/4
217—3/2/4
5mg(l—ao
- 2gx(—3/2) (20)
_mg\/x2+1
25-3/2

C4qA =

and the (1 x 3) jamming matrix is:

2(z? 4+ 1) 2(z? 4+ 1) 2+1+5/2\/x2—|—1
2r—3/2 2z —3/2 v %z — 3/2

(21)

Note that all three elements of ¢4 are positive and
all the elements of the jamming matrix are negative
when 0 < # < 3/4. Thus the system is first-order
stable over that open interval. As « approaches 3/4
from the left, the elements of the jamming matrix go
to negative infinity, and the elements of the wrench
intensity vector, ¢4, and the joint torque, 7, go to
positive infinity. When 2 > 3/4, all the elements of the
jamming matrix are positive, so jamming is possible



and first-order stability is lost. In this particularly
simple example, the system must jam when x reaches
3/4 (assuming that it begins with # < 3/4). One can
show that no other contact mode is possible [11]. This
result is intuitively appealing, since the torque goes to
infinity at # = 3/4.

It is interesting to compare the results of the
block/hand example with results on frictional form
closure. One might expect that jamming will occur
when the block moves into a position of frictional form
closure. However, this is not the case. Observe that
at the point # = 3/4 the active edges of the friction
cones are all parallel, but that no pair of the cones
(or negative cones) see each other as is required for
frictional form closure [2, 10].2 In fact, only the cone
on the finger and the cone on the left side of the block
can ever see each other, and this first happens as x
increases beyond 2.0. However, as noted above that
the system jams when « reaches 3/4 even though form
closure is not achieved.

In trying to reconcile the unexpected difference be-
tween jamming and form closure, we thought that
perhaps we should not model the edge contact along
the palm as two distinct point contacts with friction.
Therefore, we used Omata’s idea to replace the two
friction cones on the palm by a single “equivalent”
friction cone [6]). This cone has its apex 2 distance
units below the center of the bottom of the block and
its edges are colinear with the outer edges of the two
individual friction cones. This cone and the cone on
the finger do not “see each other” until z > 1.0. So
jamming still will occur before frictional form closure
is achieved by Omata’s model. Our explanation for
this result is that previous form closure results do not
take the kinematic structure of the grasping mecha-
nism into account, but we do here.

4.2 Jamming Example: Peg-in-Hole

The peg-in-hole insertion problem (see Figure 3)
has been studied in great depth (so to speak) by
[12, 8, 1]. Tt was found by Whitney, that the peg
is most likely to jam when there are two points of
contact and the insertion depth is small. We derived
the jamming matrix for this compliant motion task
(assuming the maintenance of two points of contact)
and plotted the jamming matrix elements for a vari-
ety of clearances and coefficients of friction (possibly

?Recall that Nguyen refers to frictional form closure [2] as
“force closure” [5]. However, we reserve the use of the term
“force closure” for situations originally identified by Reuleaux

[7].

different at the two contacts). When the coefficients
of friction were zero, so were the elements of the jam-
ming matrix. When the coefficients were nonzero, at
least one jamming matrix element was positive at the
beginning of insertion. This corroborates Whitney’s

findings.

Figure 3: Peg-in-Hole Insertion

Figure 4 shows a typical plot of the elements of
the jamming matrix versus the tilt angle of the peg.
Insertion progresses from right to left on the abscissa,
as insertion is complete when the tilt angle is zero.
The extreme right of the plot corresponds to insertion
beginning with the right bottom corner of the peg in
contact with the right side of the hole at its top corner.
Note that as insertion proceeds, the jamming matrix
elements become negative, indicating that jamming
becomes impossible after a certain depth of insertion.
The depth at which this occurs moves rightward as
the coefficient of friction decreases.

5 Conclusion

In this paper, we have introduced a sufficient con-
dition for the impossibility of jamming for three-
dimensional, quasistatic, multi-rigid-body systems.
This condition applies to manipulator systems mov-
ing under position or compliant control and in contact
with a passive rigid body (e.g., a workpiece). The
condition can be extended to systems with multiple
passive rigid bodies and multiple manipulators with
kinematic loops.

We are currently running a series of experiments
on our prototype dexterous manipulator shown in Fig-
ure 5, and are finding that the coefficient of friction
can vary wildly for some materials. As a result, the
extension of the current theory to handle uncertain
friction coefficients is being pursued using the tools of
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Figure 4: Elements of Jamming Matrix

parametric linear programming.

References

(1]

[2]

M. E. Caine. The Design of Shape from Motion
Constraints. PhD thesis, MIT Department of Me-
chanical Engineering, forthcoming.

C. Z. Chammas.
tion of robust grasping behaviors. Master’s the-
sis, MIT Department of Mechanical Engineering,
May 1990.

Analysis and implementa-

B. R. Donald and D. K. Pai. On the motion
of compliantly-connected rigid bodies in contact,
part IT: A system for analyzing designs for assem-
bly. In Proceedings, IEEE International Confer-
ence on Robotics and Automation, pages 1756—

1762, May 1990.

P. E. Dupont and S. P. Yamajako. Jamming and
wedging in constrained rigid-body dynamics. In
Proceedings, IEFE International Conference on
Robotics and Automation, pages 2349-2354, May
1994.

V.-D. Nguyen. The synthesis of force closure
grasps in the plane. Master’s thesis, MIT De-
partment of Mechanical Engineering, September

1985. AI-TRS861.

T. Omata. Fingertip positions of a multifingered
hand. In Proceedings, IEEE International Con-

Figure 5: Prototype Planar Dexterous Manipulator

[7]

[10]

ference on Robotics and Automation, pages 1562—

1567, May 1990.

The Kinematics of Machinery.
Republished by Dover, New

F. Reuleaux.
Macmillan, 1876.
York, 1963.

S. Simunovic. Force information in assembly
processes.  In Proceedings, 5th International
Symposium of Industrial Robots, pages 415431,
September 1975.

J.C. Trinkle, A.O. Farahat, and P.F. Stiller.
First-order stability cells of active multi-rigid-
body systems. [IEFE Transactions on Robotics
and Automation, 11(4):545-557, August 1995.

J.C. Trinkle and D.C. Zeng. Planar quasistatic
motion of a lamina with uncertain contact fric-
tion. In Proceedings, IEFEE International Con-
ference on Intelligent Robots and Systems, pages
1642-1649, 1992.

J.C. Trinkle and D.C. Zeng. Prediction of the
quasistatic planar motion of a contacted rigid
body. IEEE Transactions on Robotics and Au-
tomation, 11(2):229-246, April 1995.

D. E. Whitney. Quasi-static assembly of compli-
antly supported rigid parts. Journal of Dynamic
Systems, Measurement, and Control, 104:65-77,
March 1982.



