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Abstract

Dextrous manipulation planning is a problem of
paramount importance in the study of multi�ngered
robotic hands. In this paper, we show in general,
that all system variables (the �nger joint, object,and
contact velocities) need to be included in the di�er-
ential kinematic equation used for manipulation plan-
ning, even if the manipulation task is only speci�ed
in terms of the goal con�guration of the object or the
contacts only. The dextrous manipulation kinemat-
ics that relates the �nger joint movements to object
and contact movements is derived. With the results
of inverse and forward instantaneous kinematics, we
precisely formulate the problem of dextrous manipula-
tion and cast it in a form suitable for integrating the
relevant theory of contact kinematics, nonholonomic
motion planning, and grasp stability to develop a gen-
eral technique for dextrous manipulation planning with
multi�ngered hands.

1 Introduction

Given an object to be manipulated by a robotic
hand, the goal of dexterous manipulation planning al-
gorithms is to generate �nger joint trajectories that
can drive the object to the desired con�guration
and/or achieve the desired grasp. There are 3 types
of manipulation tasks for multi�ngered hand systems:

� Object Manipulation { achieve the desired ob-
ject con�guration without regard for contact lo-
cations;

� Grasp Adjustment { obtain desired contact loca-
tions without regard for object con�guration;
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� Dextrous Manipulation { achieve the goal con�g-
uration for the object and contact points simul-
taneously

Velocity kinematic relationships for the �rst two
types of manipulation tasks have been derived previ-
ously in [11, 6], respectively. The relationship for the
�rst type of task involves only the joint and object
velocities, while that of the second type contains only
the joint and contact velocities. These relationships
could be used as the basis of manipulatoin planning
algorithms, but they lead to certain di�culties that
can be avoided by using the velocity relationship im-
plied by the third type of task, which includs joint,
objectand contact velocities. For example, developing
object manipulation without considering the contact
variables, the contact locations may be undesirable,
since the stability of the grasp may be lost, as shown
in one example in section 3. On the other hand, plan-
ning without object velocity may give a solution that
causes the manipulated object collide with �nger links
or other objects in a crowded environment. In general,
all variables in the system (the �nger joint vairables,
the object con�guration and contact locations) need to
be considered when planning any three types of ma-
nipulation planing tasks de�ned above. Thus the cor-
responding velocities should appear in the kinematic
equations used for planning.

In this paper, we derive in detail the instantaneous
manipulation kinematics relating object and contact
movement to �nger joint movement, by incorporating
closed kinematic chain constraints[8] and the phys-
ical constraints imposed by the contact models(e.g.
sliding, rolling etc). The kinematic equation reveals
the constraints on the feasible velocities of the �nger
joints, the object, and the contact points to main-
tain a grasp with a given contact mode. We discuss
the existence and uniqueness of the kinematic solu-
tion for the dextrous manipulation problem. With
the results of the forward and inverse instantaneous
kinematics, we precisely formulate the problem of dex-
trous manpulation planning and cast it in a form suit-



able for integrating the relevant theories of contact
kinematics[7], nonholonomic motion planning [4, 9, 2]
and grasp stability[10] to develop a general technique
for dexterous manipulation with multi�ngered hands.

2 Kinematics of Manipulation

2.1 Mathematical Preliminaries

We denote by pab 2 R3 and Rab 2 SO(3) the po-
sition and orientation of a coordinate frame B rela-
tive to another coordinate frame A, and call gab =
(Rab; pab) 2 SE(3) the Euclidean transformation of B
relative to A. The velocity ofB relative to A is denoted
by Vab = (vab; !ab) 2 R6. The adjoint transformation
Adgab 2 R6�6 associated with gab is used to transform
velocity between coordinate frames.

Consider two smooth rigid bodies, F and O, in con-
tact. Let �f = (uf ; vf ) 2 R2 and �o = (uo; vo) 2 R2

be the local coordinates of the contact points on F

and O, respectively, and the corresponding Gaussian
frames be Cf andCo. A contact con�guration between
two bodies is described by � = (�o; �f ;  ) 2 R5, where
 is the contact angle and is de�ned by the respective
Gaussian frames Cf and Co. _� is called the contact
coordinate velocity.

Denote the contact velocity of F relative to O in
terms of the local Gaussian frames by

Vc
def
= V

cf
of = [vx; vy; vz; !x; !y; !z]

T

The contact is maintained if vz = 0. The contact
model will introduce more constraints, called physical
constraints, on the contact velocity, e.g., rolling con-
straint requires vx and vy to be zero and pure rolling
further requires !z to be zero.

The physical constraints will limit the admissible
contact coordinate velocities. For example, fromMon-
tana's kinematics of pure rolling contacts[7], ( _�f ; _ )
can be related to _�o by

[ _�f ; _ ]
T = Jroll _�o

where Jroll is a matrix in R3�2, whose entries depend
on the geometric parameters of the object and �ngers.
In general, the physical constraints on the contact co-
ordinate velocities can be represented in matrix form:

_� = Jgc _�gc (1)

where �gc represents the set of free parameters of con-
tact coordinate velocity and will be referred as the

generalized contact coordinate velocity; Jgc is the Ja-
cobian mapping the generalized contact coordinate ve-
locity to contact coordinate velocity. The equation (1)
for the pure rolling contacts and general contacts,i.e.
contacts that admit all possible contact velocities, are

pure rolling: _� =
�
I2�2 JTroll

�T
_�o (2)

general contacts: _� = I5�5 _�

2.2 Kinematics of Multi�ngered Hands

For a multi�ngered robotic hand system, let P be
the palm frame, O be the object frame, and Fi, be the
frame of �ngertip i. Denote the forward kinematic
map and the Jacobian of �nger i by

gpfi(�i) 2 SE(3); Vpfi = Jpfi (�) _�i

where Vpfi is the velocity of �nger i with respect to
the palm, �i = (�i1; � � ��ini) is the joint variable vector
of �nger i and ni is the number of joints of �nger i.
Let the contact con�guration between the object and
�nger i be �i = (�oi ; �fi;  i). For an m-�ngered hand,
let n =

Pm

i=1 ni and

� = (�1; � � ��m) 2 Rn; � = (�1; � � ��m) 2 R5m

Given qi = (�i; �i), the position and orientation of
the object can be obtained by composing the forward
kinematic map of �nger i with a transformation de-
�ned by �i,

gpo = gpfi(�i) � gfio(�i) (3)

Di�erentiating equation (3) yields the velocity of
the object with respect to the palm:

Vpo =
h
Adg�1

fio

Jpfi(�i) Jci(�i)
i� _�i

_�i

�

def
= Ji(qi) _qi: (4)

Ji(qi) 2 R6�(ni+5) relates the object velocity to the
rate of change of the extended joint coordinates qi =
(�i; �i), and is referred to as the extended Jacobian of
�nger i.

By equating the right hand side of (3) and (4) for
i = 1; � � �m, we have the following closed-kinematic
chain (or simply closure) constraints

gpo = gpf1 (�1)gf1o(�1) = � � � = gpfm(�m)gfmo(�m)

(5)
and

Vpo = J1(q1) _q1 = � � � = Jm(qm) _qm (6)



Equations (5) and (6) are called the position and ve-
locity closure constraints,respectively.

By substituting equation(1) to the equation (4), we
can incorporate the physical constraints into the kine-
matic chain:

Vpo =
h
Ad

g
�1

fio

Jpfi JciJgci

i � _�i
_�gci

�

def
=

h
Ad

g
�1

fio

Jpfi
~Jci

i � _�i
_�gci

�

def
= ~Ji(qi)

�
_�i
_�gci

�
(7)

where ~Ji is the extended Jacobian with respect to the
generalized contact coordinate velocity.

The corresponding closed kinematic chain con-
straints are:

Vpo = ~J1

�
_�1
_�gc1

�
= ~J2

�
_�2
_�gc2

�
= � � � = ~Jm

�
_�m

_�gcm

�

(8)
Equation(8) incoporates the closed kinematic chain

constraints and the physical constraints of the con-
tacts. It will be satisi�ed only if the contact mode of
the grasp is maintained.

2.3 Instantaneous Manipulation Kine-
matics

By straight-forward algebraic manipulation of
equation(7), we get

AdgfioVpo �Adgfio
~Jci _�gci = Jpfi

_�i: (9)

Stacking equation(9) for each �nger, we can write the
constraint for an m-�ngered hand in matrix form that
explicitly shows the dependence of the object and con-
tact velocities on the �nger joint velocities:

Joc ~Voc = Jf _� (10)

where

Joc =

2
64

Adgf1o �Adgf1o
~Jc1 0

...
. . .

Adgfmo
0 �Adgfmo

~Jcm

3
75

~Voc =

2
6664

Vpo
_�gc1
...

_�gcm

3
7775 ; Jf =

2
64
Jpf1 0

.. .

0 Jpfm

3
75 ; _� =

2
64

_�1
...
_�m

3
75

The sizes of Joc; ~Voc; Jf ; and _� are, respectively, 6m�
(6 + CDOF ); (6 + CDOF ) � 1; 6m � n; and n � 1.

CDOF is the dimension of admissible contact velocity
components and de�ned as follows:

CDOF =
mX
i=1

dim( _�gci ): (11)

Pure rolling contacts have dim( _�gc ) = 2; and general
contacts have dim( _�gc ) = 5.

From equation(10), we can extract the the depen-
dency of the object velocity on the �nger joint velocity
and cast it to matrix form:

GTVpo = Jh _� (12)

Equation(12) is called fundamental grasp constraint
in [9], in which G and Jh are called Grasp Map and
Hand Jacobian,respectively. G is also known as the
wrench matrix in [5].

3 Object Manipulation

The problem of object manipulation is to determine
the velocity of the object relative to the palm Vpo,
without the concern for contact movement.

For an assumed set of contact locations and models,
equation (12) constrains the choice of _� for a given
Vpo or vice versa. If a solution doesn't exist, then
the contact mode, positions, and/or velocity values
determined by the planner must be changed. Once
equation(12) is satis�ed , the planner may continue to
progress.

Unfortunately, the satis�cation of equation(12) is
not su�cient for planning. Consider the current con-
�guration under consideration by the planner. Sup-
pose it is stable through force closure but the con-
tacts are located such that some small movement could
cause a loss of force closure. In this case, equation(12)
is not desirable for planning, because velocities satisfy-
ing equation(12) could destablize the grasp. For exam-
ple: suppose a ball of radius 1 is grasped by two spher-
ical �ngertips of radius 0.2 and the contacts undergo
pure rolling. The contact parameters, (�f ; �o;  ), are
(0; 0; 0; 0; 0) and (0; 0; 0; 2�3 ; 0). Suppose the coe�cient
of friciton is � = tan(30o), then it can be shown that
two contact points form a force closure grasp[10] but
they are at the boundary: the grasp will not be force
closure if two points move toward each other just a lit-
tle bit. However, if the ball is rotated about the axis
that is parallel to Z-axis and passes the point(1,0,0), it
can be shown that the �ngertip velocities determined
by the generalized inverse of Jh are (0; 0; 0; 0; 0;0) and
(�0:8660;�1:4423;0;0;0;�0:2885). The contact ve-
locities (wx; wy) are (1,0) and (1.2885,0), which will



move two contact points closer to each other. Then
the force closure grasp will be lost even if the equation
(12) is satisi�ed.

For the task of grasp adjustment, the kinematic
equation that only includes the contact and object
velocity can be derived from equation (10) and has
similar problem as equation(12): it may give a solu-
tion of grasp adjustment that causes the object collide
with obstacles. Therefore, in general, all system vari-
ables( the object, contact and �nger joint variables)
need to be considered for the manipulation planning
even if the task only speici�es goal con�gurations for
a subset of system variables, like in the cases of object
manipulation and grasp adjusment. Next we will dis-
cuss in detail the dextrous manipulation kinematics
which include all system states in the equation.

4 Dextrous Manipulation Kinematics

The kinematic problems to be solved are

� Forward Instantaneous Kinematics

Based on the kinematic constraints(10), given
joint velocity _�, are the object and contact ve-
locity ~Voc uniquely determined?

If so, the system is said to be Kinematically-

Determined.

� Inverse Instantaneous Kinematics

Given the desired object and contact velocity ~Voc,
is it possible to �nd appropriate �nger joint ve-
locity _� to obtain such a trajectory?

If the answer for the above question for any spec-
i�ed object and contact trajectory is yes , the
system is said to be Manipulable

4.1 Inverse Instantaneous Kinematics

Given ~Voc, a necessary condition for the existence
of joint velocity _� to satisfy equation(10) is

Joc ~Voc 2 <(Jf ): (13)

where <(Jf ) is the range space of Jf .

If <(Joc) � <(Jf ), then any value of ~Voc is feasible,
such a system is called Manipulable. There are no
constraints for a manipulable system on the instanta-
neous object and contact trajectory, since the �nger
joints can generate any contact and object velocity. A
su�cient condition for a system to be manipulable is
that all �ngers have 6 joints and all �nger con�gura-
tions are nonsigular, since in this case <(Jf ) = <6m.

Denote by V ? the orthogonal complement of a

space V . Then since (V ?)
?
= V , a condition equiva-

lent to equation (13) is

Joc ~Voc 2 ((<(Jf ))
?)
?

(14)

Recall the fundamental theorem of linear algebra[12]:
N (AT ) = (<(A))?, where N (A) and <(A) denote null
space and range space of matrix A.

Suppose the singular value decomposition of matrix
Jf is

Jf = U

2
6664
�1 0 0

.. .
...

0 �r 0
0 : : : 0 0

3
7775V T = U

�
� 0
0 0

�
V � (15)

where U and V are orthogonal matrices of size 6m and
n respectively, �1 : : : �r are the singular values of Jf ,
and r is the rank of Jf .

Suppose U =
�
U1 U2

�
; V =

�
V1 V2

�
where U1 2 <6m�r; U2 2 <6m�(6m�r); V1 2
<n�r; V2 2 <n�(n�r). Then

R(Jf ) = Span(U1); N (JTf ) = Span(U2)

Thus condition(14) can be rewritten as the following:

UT
2 Joc

~Voc = 0 (16)

i.e., ~Voc 2 N (UT
2 Joc).

Put a basis of the null space of UT
2 Joc as columns to

form matrix Jocg , then the solution for equation(16)
is

~Voc = Jocg ~Vocg (17)

where ~Vocg represents the set of free parameters of
object and contact coordinate velocities, and we will
refer to ~Vocg as the generalized object and contact co-
ordindate velocities.

Suppose the condition(13) is satis�ed, then the nec-
essary and su�cient condition to uniquely determine
the �nger joint velocity _� is

rank(Jf ) = dim( _�) = n: (18)

When condition (18) is satis�ed, the �nger joint
velocities can be determined using the generalized in-
verse of Jf in equation(10),

_� = (Jf )
+
Joc ~Voc = (JTf Jf )

�1JTf Joc
~Voc: (19)

If condition (13) is satis�ed, we can substitute
equation(17) for ~Voc into above equation and get the
explicit dependence of the �nger joint velocity on
the generalized object and contact coordinate veloc-
ity ~Vocg :

_� = (Jf )
+
JocJocg ~Vocg (20)



4.2 Forward Instantaneous Kinematics

For a given joint velocity, _�, a necessary condition
for the existence of ~Voc satisfying equation(10) is

Jf _� 2 <(Joc) (21)

If the contacts are maintained and the contact mod-
els are correct, the above condition is automatically
satis�ed. A violation of the above condition indicates
the joint velocities will cause a change in the the con-
tact mode. When <(Jf ) � <(Joc), any value of the
joint velocity is valid.

For the general case, we can follow the steps
as we have done for the generalized object and
contact velocities(13) and get similar expression as
equation(17) for feasible _�:

_� = Jfgf
_�gf (22)

where _�gf is the real free parameters of feasible _� and
will be referred as generalized �nger joint velocity.

Suppose condition(21) is satis�ed. If Joc has full
column rank, then the object and generalized contact
velocity can be uniquely determined by the generalized
inverse of Joc:

~Voc = (Joc)
+
JfJfgf

_�gf
def
= Jocgf

_�gf : (23)

Otherwise, there is not a unique value for ~Voc, but
rather an in�nite set of possible values.

For a kinematically-determined system, it is suf-
�cient to use kinematic-based control to obtain a
speci�ed object/contact trajectory since actuating the
�nger joints to achieve the desired joint trajectories
forces the object and contact velocities to be desired.

When the system is kinematically underdeter-
mined, there are in�nite solutions for equation (10).
Then dynamic control needs be used to remove the
ambiguity of the motion of the object and contact
points. Therefore, dynamics can be thought of as addi-
tional constraints which could possibly fully determine
the system motions.

Note that when the system is manipulable and
kinematically determined, there will be no constraints
of instantaneous manipulation planning in terms of
the object and contact trajectory, and the kinematic-
based control is su�cient to achieve the desired tra-
jectory.

5 Dexterous Manipulation Planning

The objective of manipulation planning is to gen-
erate joint trajectories for the �ngers so that the goal

con�guration of the object and/or contacts can be
achieved, without dropping the object. The concerned
state variables for dextrous manipulation are gpo and
�. From the equations(1) , we get

Vd
def
=

2
6664
Vpo
_�1
...
_�m

3
7775 =

2
6664
I 0 � � � 0
0 Jgc1 � � � 0
...

...
. . .

...
0 0 � � � Jgcm

3
7775

2
6664

Vpo
_�gc1
...

_�gcm

3
7775

def
= Jd ~Voc (24)

If the system is manipulable, then there will be no
constraints on the object and generalized contact co-
ordinate velocities to be feasible. Thus we can use the
above equation to do the manipulation planning di-
rectly with respect to ~Voc. If all the contact points are
general contacts, then dim(Vd) = dim( ~Voc) = 6+ 5m,
i.e. the DOF of velocity is equal to the dimension of
concerned variables. While for pure rolling contact
system, dim( ~Voc) = 6 + 2m < dim(Vd), the nonholo-
nomic motion planning problem [9] arises.

For a general system without manipulability, we
need to apply the constraints on ~Voc to equation(24)
and further formulate the manipulation planning
problem with respect to generalized object/contact
velocity(17):

Vd = JdJocg ~Vocg : (25)

The desired �nger joint velocity can be obtained using
inverse kinematic solution (20).

Also we can formulate the problem directly with
respect to the generalized �nger joint velocity (23):

Vd = JdJocgf
_�gf (26)

The corresponding �nger joint velocity can be ob-
tained using equation (22).

Treating ~Vocg and _�gf as the control inputs for
equations(25) and (26) respectively, systems (25) (26)
are referred to as standard nonholonomic systems in
[4, 9]. Thus we can use general nonholonomic motion
planning techniques to generate a trajectory for Vd,
and thus, achieve the object and grasp goal con�gura-
tions simultaneously.

For a manipulation task which only speci�es the
goal con�guration for the object, as we discussed in
the previous section, we also need to consider the con-
tact trajectory to maintain or optimize the grasp qual-
ity. Then we can further expand the original object
manipulation task to (1) achieve the goal object con-
�guration and (2) improve the quality of grasp. For
the second objective, we need to de�ne a measure of



grasp quality and then use the gradient search to move
the contact con�guration to a locally optimal grasp.
We have applied this methodology in the manipulation
planning to two special but important manipulation
cases: one 
at �nger rolling a ball on a plane and two

at �ngertips manipulating a ball. The experimental
results are reported in paper [3]. One particular point
to notice is that a grasp is characterized by the con-
tact points on the object f�oi ; i = 1:::mg and _�oi can
be used as the generalized contact coordinate velocity
for pure rolling contacts as indicated by equation(3).
Therefore, if all contacts in a manipulation system are
pure rolling and the system is manipulable, we can
determine _�oi �rst by optimizing some grasp quality
measure and then substitute it back to equation(24)
to further determine Vd. As for the grasp adjustment,
while only the goal contact points are speci�ed, the
object trajectory need to be collision free.

6 Conclusion

In this paper, we showed that in general all system
variables(the velocities of the �nger joints, the object
and contact points) need be considered in manipula-
tion planning even if the goal is only speci�ed as a sub-
set of the system states. We derived the dextrous ma-
nipulation kinematics which relates object and contact
movement to �nger joint movement. The existence
and uniqueness of the solution for the kinematic equa-
tion of the dextrous manipulation were discussed. Us-
ing the results from forward and inverse manipulation
kinematics, we precisely formulated the problem of
dextrous manipulation planning and cast it in a form
suitable for integrating the relevant theory of contact
kinematics, nonholonomic motion planning, and grasp
stability to develop a general technique for dexterous
manipulation with multi�ngered robotic hands.

The current theory will be generalized to incorpo-
rate issues like workspace limits of hands,uncertainty
and dynamic constraints. We are currently applying
the analysis methods presented in paper[1] to study
various properties of dextrous manipulation. While
the instantaneous kinematics reveals the kinematic
constraints clearly and is informative for local motion
planning, we still need a representation of con�gura-
tion space of the hand-object system and global mo-
tion planning techniques to enable us to implement au-
tomatic dextrous manipulation planning. This forms
part of our ongoing research topics.
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