
1

Appendix A: LRF -Formulas and δ-Decidability

We will use a logical language over the real numbers that allows arbitrary com-
putable real functions [1]. We write LRF to represent this language. Intuitively, a
real function is computable if it can be numerically simulated up to an arbitrary
precision. For the purpose of this paper, it suffices to know that almost all the
functions that are needed in describing hybrid systems are Type 2 computable,
such as polynomials, exponentiation, logarithm, trigonometric functions, and
solution functions of Lipschitz-continuous ordinary differential equations.

More formally, LRF = 〈F , >〉 represents the first-order signature over the
reals with the set F of computable real functions, which contains all the functions
mentioned above. Note that constants are included as 0-ary functions. LRF -
formulas are evaluated in the standard way over the structure RF = 〈R,FR, >R〉.
It is not hard to see that we can put any LRF -formula in a normal form, such
that its atomic formulas are of the form t(x1, ..., xn) > 0 or t(x1, ..., xn) ≥ 0,
with t(x1, ..., xn) composed of functions in F . To avoid extra preprocessing of
formulas, we can explicitly define LF -formulas as follows.

Definition 1 (LRF -Formulas). Let F be a collection of computable real func-
tions. We define:

t := x | f(t(x)), where f ∈ F (constants are 0-ary functions);

ϕ := t(x) > 0 | t(x) ≥ 0 | ϕ ∧ ϕ | ϕ ∨ ϕ | ∃xiϕ | ∀xiϕ.

In this setting ¬ϕ is regarded as an inductively defined operation which replaces
atomic formulas t > 0 with −t ≥ 0, atomic formulas t ≥ 0 with −t > 0, switches
∧ and ∨, and switches ∀ and ∃.

Definition 2 (Bounded LRF -Sentences). We define the bounded quantifiers
∃[u,v] and ∀[u,v] as ∃[u,v]x.ϕ =df ∃x.(u ≤ x ∧ x ≤ v ∧ ϕ) and ∀[u,v]x.ϕ =df

∀x.((u ≤ x ∧ x ≤ v) → ϕ) where u and v denote LRF terms, whose variables
only contain free variables in ϕ excluding x. A bounded LRF -sentence is

Q
[u1,v1]
1 x1 · · ·Q[un,vn]

n xn ψ(x1, ..., xn),

where Q
[ui,vi]
i are bounded quantifiers, and ψ(x1, ..., xn) is quantifier-free.

Definition 3 (δ-Variants). Let δ ∈ Q+ ∪ {0}, and ϕ an LRF -formula

ϕ : QI11 x1 · · ·QInn xn ψ[ti(x,y) > 0; tj(x,y) ≥ 0],

where i ∈ {1, ...k} and j ∈ {k+ 1, ...,m}. The δ-weakening ϕδ of ϕ is defined as
the result of replacing each atom ti > 0 by ti > −δ and tj ≥ 0 by tj ≥ −δ:

ϕδ : QI11 x1 · · ·QInn xn ψ[ti(x,y) > −δ; tj(x,y) ≥ −δ].

It is clear that ϕ→ ϕδ (see [2]).

2

In [3], we have proved that the following δ-decision problem is decidable, which
is the basis of our framework.

Theorem 1 (δ-Decidability [3]). Let δ ∈ Q+ be arbitrary. There is an al-
gorithm which, given any bounded LRF -sentence ϕ, correctly returns one of the
following two answers:

– δ-True: ϕδ is true.
– False: ϕ is false.

When the two cases overlap, either answer is correct.

The following theorem states the (relative) complexity of the δ-decision problem.
A bounded Σn sentence is a bounded LRF -sentence with n alternating quantifier
blocks starting with ∃.

Theorem 2 (Complexity [2]). Let S be a class of LRF -sentences, such that
for any ϕ in S, the terms in ϕ are in Type 2 complexity class C. Then, for any
δ ∈ Q+, the δ-decision problem for bounded Σn-sentences in S is in (ΣP

n)C.

Basically, the theorem says that increasing the number of quantifier alternations
will in general increase the complexity of the problem, unless P = NP (recall
that ΣP

0 = P and ΣP
1 = NP). This result can specialized for specific families of

functions. For example, with polynomially-computable functions, the δ-decision
problem for bounded Σn-sentences is (ΣP

n)-complete. For more details and results
we again point the interested reader to [2].

References

1. Weihrauch, K.: Computable Analysis: An Introduction. Springer (2000)
2. Gao, S., Avigad, J., Clarke, E.M.: Delta-decidability over the reals. In: LICS. (2012)

305–314
3. Gao, S., Avigad, J., Clarke, E.M.: Delta-complete decision procedures for satisfia-

bility over the reals. In: IJCAR. (2012) 286–300

3

Appendix B: BCF Model in dReach

As an example of dReach’s modeling language, we report below the actual
dReach file for one of the BCF models (Run#7) analyzed in the paper.

#define EPI_TVP 1.4506
#define EPI_TV1M 60.0
#define EPI_TV2M 1150.0
#define EPI_TWP 200.0
#define EPI_TW1M 60.0
#define EPI_TW2M 15.0
#define EPI_TS1 2.7342
#define EPI_TS2 16.0
#define EPI_TFI 0.11
#define EPI_TO1 400
#define EPI_TO2 6.0
#define EPI_TSO1 30.0181
#define EPI_TSO2 0.9957
#define EPI_TSI 1.8875
#define EPI_TWINF 0.07
#define EPI_THV 0.3
#define EPI_THVM 0.006
#define EPI_THVINF 0.006
#define EPI_THW 0.13
#define EPI_THWINF 0.006
#define EPI_THSO 0.13
#define EPI_THSI 0.13
#define EPI_THO 0.006
#define EPI_KWM 65.0
#define EPI_KS 2.0994
#define EPI_KSO 2.0458
#define EPI_UWM 0.03
#define EPI_US 0.9087
#define EPI_UO 0.0
#define EPI_UU 1.55
#define EPI_USO 0.65
#define jfi1 0.0
#define jso1 (u/EPI_TO1)
#define jsi1 0.0
#define jfi2 0.0
#define jso2 (u/EPI_TO2)
#define jsi2 0.0
#define jfi3 0.0
#define jso3 1.0/(EPI_TSO1+((EPI_TSO2- EPI_TSO1)*(1/(1+exp(-2*EPI_KSO*(u- EPI_USO))))))
#define jsi3 (0 - (w * s)/EPI_TSI)
#define jfi4 (0 - v * (u - EPI_THV) * (EPI_UU - u)/EPI_TFI)
#define jso4 (1.0 / (EPI_TSO1+((EPI_TSO2 - EPI_TSO1)*(1/(1+exp(-2*EPI_KSO*(u- EPI_USO)))))))
#define jsi4 (0 - (w * s)/EPI_TSI)
#define stim 1.0

[0, 2.0] u;
[0, 2.0] v;
[0, 2.0] w;
[0, 2.0] s;
[0, 1] tau;
[0, 1] time;

{mode 1;
invt: (u >= 0);

(u <= 0.006);
(v >= 0);
(w >= 0);
(s >= 0);
(tau >= 0);

flow:
d/dt[tau] = 1.0;
d/dt[u] = (stim - jfi1) - (jso1 + jsi1);

4

d/dt[w] = ((1.0 -(u/EPI_TWINF) - w)/(EPI_TW1M + (EPI_TW2M - EPI_TW1M) *
(1/(1+exp(-2*EPI_KWM*(u - EPI_UWM))))));

d/dt[v] = ((1.0 - v)/EPI_TV1M);
d/dt[s] = (((1/(1+exp(-2 * EPI_KS * (u - EPI_US)))) - s)/EPI_TS1);

jump:
(u >= 0.006) ==> @2 (and (tau’ = tau) (u’ = u) (v’= v) (w’ = w) (s’ = s));

}

{mode 2;
invt:

(u >= 0.006);
(u <= 0.13);
(v >= 0);
(w >= 0);
(s >= 0);
(tau >= 0);

flow:
d/dt[tau] = 1.0;
d/dt[u] = (stim - jfi2) - (jso2 + jsi2);
d/dt[w] = ((0.94-w)/(EPI_TW1M + (EPI_TW2M - EPI_TW1M) *

(1/(1+exp(-2*EPI_KWM*(u - EPI_UWM))))));
d/dt[v] = (-v/EPI_TV2M);
d/dt[s] = (((1/(1+exp(-2 * EPI_KS * (u - EPI_US)))) - s)/EPI_TS1);

jump:
(u >= 0.13) ==> @3 (and (tau’ = tau) (u’ = u) (v’= v) (w’ = w) (s’ = s));

}

{mode 3;
invt:

(u >= 0.13);
(u <= 0.3);
(v >= 0);
(w >= 0);
(s >= 0);
(tau >= 0);

flow:
d/dt[tau] = 1.0;
d/dt[u] = (stim - jfi3) - (jso3 + jsi3);
d/dt[w] = (-w/EPI_TWP);
d/dt[v] = (-v/EPI_TV2M);
d/dt[s] = (((1/(1+exp(-2 * EPI_KS * (u - EPI_US)))) - s)/EPI_TS2);

jump:
(u >= 0.3) ==> @4 (and (tau’ = tau) (u’ = u) (v’= v) (w’ = w) (s’ = s));

}

{mode 4;
invt:

(u >= 0.3);
(v >= 0);
(w >= 0);
(s >= 0);
(tau >= 0);

flow:
d/dt[tau] = 1.0;
d/dt[u] = (stim - jfi4) - (jso4 + jsi4);
d/dt[w] = (-w/EPI_TWP);
d/dt[v] = (-v/EPI_TVP);
d/dt[s] = (((1/(1+exp(-2 * EPI_KS * (u - EPI_US)))) - s)/EPI_TS2) ;

jump:
(u > 2.0) ==> @4 (and (tau’ = tau) (u’ = u) (v’= v) (w’ = w) (s’ = s));

}

init: @1 (and (tau = 0) (u = 0.0) (v = 1.0) (w = 1.0) (s = 0.0));

goal: @4 (and (tau = 1) (u >= 0.3) (u <= 2) (v >= 0) (v <= 2)
(w >= 0) (w <= 2) (s >= 0) (s <= 2));

