
 Verifying the State Design
Pattern using Object Propositions

Ligia Nistor

Computer Science Department

Carnegie Mellon University

Why verify programs?

2

•Verification vs. debugging
•Verification at compile time vs. testing at run time

Formal verification

• Use formal rules to reason about correctness
of programs

• Difficult because of aliasing

2

1 1

Reference A depends
on property

Reference B can break
property

A

B

Object Propositions

• New verification methodology

4

• Express specifications about objects 
 object propositions

• Single-thread

• Modularity  verify classes independently

Object propositions

5

I want to verify
that my program

satisfies this
property

Then I need to
provide a

specification

Object proposition: abstract predicate +
 fractional permission

I’ll write the
specification using
object propositions

Abstract Predicates

• Predicate MultipleOf(int a) = the divider field
of this object == a && the value field is a
multiple of divider

6

obj satisfies
MultipleOf(2)

[M. Parkinson]

value = 10
divider = 2

obj

Fractional permissions

7

0

 permission of 1
 read/write access

5

permission of 1/2
 read/write access,
as long as the initial
predicate is maintained

• dealing with aliases

[Boyland]

Contribution: The state referred to by a fraction < 1 is not immutable.
That state satisfies an invariant that can be relied on by other objects.

Putting it together

• Object proposition =
 abstract predicate + fractional permission

8

• a#1/2 MultipleOf(2)

a

c
• c#1 MultipleOf(3)

value=10
divider=2

value=15
divider=3

The Verification of a Method

• Using proof rules

9

Object propositions (properties about objects)

Statement (if, let, new..)

Object propositions
 …

Proof rule

Object propositions in pre-condition

Statement (if, let, new..)

Object propositions in post-condition

Proof rule

Method

Linear logic

• Classical logic: from A and (A ⇒ B) get (A ⋀ B)

10

A B

• Linear logic: from A and (A ⊸ B) get B (transform)

• Logic of resources
• ⊗ Simultaneous occurrence of resources

• ⊕ Alternative occurrence of resources
• Object propositions = resources consumed upon usage

Formal system

• Rules for splitting/adding fractions

11

[Boyland]

• x#1  x#1/2 ⊗ x#1/2
• x#k  x#k/2 ⊗ x#k/2 1

1/2
1/4

1/2
1/4

x

Pack, unpack

• unpack a predicate:
gain access to fields
of object

12

• pack to a predicate

• Abstraction:

 Predicate: from outside MultipleOf(c)

 from inside get to the fields

• packed predicate  consistent

• unpacked predicate  inconsistent

13

Consistency

• In a method, after the first assignment to a field, the
unpacked predicate is inconsistent

• We have aliasing and fractions, how come unpacking is
still sound?

• As long as we have a fraction to an object, we know that
the invariant of that object will not be broken. When we
pack back the predicate, the invariant is restored.

• We assume termination, so at end of program all objects
are packed

• Invariants are predicates that always hold at
the boundary of methods, for all references
pointing to the same object.

• Aliased objects can only depend on invariants,
not on any kind of predicates.

14

Invariants

Oprop Grammar

15

Oprop Grammar – cont.

16

Oprop Online Tool – 1st webpage

17

Oprop Online Tool – 2nd webpage

18

Oprop Online Tool – 3rd webpage

19

Oprop Online Tool – 4th webpage

20

Diagram of State Pattern

21

My Example of the State Pattern

22

Class IntCell

23

Interface Statelike

24

Class StateLive

25

Class StateLive – cont.

26

Classes StateLimbo and StateSleep

27

Class StateContext

28

Class StateContext – cont.

29

Class StateClient

30

main() function in StateClient class

31

Implementation and code on GitHub

• https://github.com/ligianistor/boogie/blob/m
aster/statelatest.bpl

• https://github.com/ligianistor/Oprop

32

https://github.com/ligianistor/boogie/blob/master/statelatest.bpl
https://github.com/ligianistor/boogie/blob/master/statelatest.bpl
https://github.com/ligianistor/boogie/blob/master/statelatest.bpl
https://github.com/ligianistor/Oprop
https://github.com/ligianistor/Oprop

Related work

• Bierhoff and Aldrich: access permissions

• Boyland: fractional permissions

• Parkinson: abstract predicates

• Barnett & Leino: Boogie verifier

• Krishnaswami: higher-order separation logic

• Nanevski: Hoare Type Theory

• Jacobs, Leino, Smans: multi-threaded OO
programs

33

• Augment features of Oprop language so that
state pattern can be verified using Oprop

• Extend for multi-threaded programs

34

Future Work

• Object proposition = abstract predicate +
fractional permission

• Verified instance of State Design Pattern

35

Conclusions

