
Using Machine Learning in the Automatic

Translation of Object Propositions

Ligia Nistor and Jonathan Aldrich

School of Computer Science, Carnegie Mellon University, USA
{lnistor,aldrich}@cs.cmu.edu

1 Introduction

Object propositions [5] are used for the modular veri�cation of object-oriented
code in the presence of aliasing, i.e., the existence of multiple references to the
same object. They are associated with object references and declared by pro-
grammers as part of method pre- and post-conditions in the process of formally
proving the correctness of object-oriented code. Object propositions use abstract
predicates [6] to characterize the state of an object. Those predicates are embed-
ded in a logical framework and aliasing information is speci�ed using fractions
[3].

If in the system there is only one reference to an object, that reference has a
fraction of 1 to the object, and thus full modifying control over its �elds. If there
are multiple references to an object, each reference has a fraction less than 1 to
the object and each can modify the object as long as that modi�cation does not
break a prede�ned invariant (expressed as a predicate). In case that modi�cation
is not an atomic action (and instead is composed of several steps), the invariant
might be broken in the course of the modi�cation, but it must be restored at
the end of the modi�cation.

To verify a method using object propositions, the abstract predicate in the
object proposition for the receiver object is interpreted as a concrete formula
over the current values of the receiver object's �elds.

A critical mechanism in the object propositions methodology is packing/un-
packing [4]. When the code modi�es a �eld, the speci�cation has to follow suit
and unpack the predicate that contains that �eld (unpacking a predicate gives
read/write access to the �elds of that predicate). At the end of a method, the
�elds have been modi�ed and after checking that a predicate holds, we are al-
lowed to pack back that predicate.

2 Example

The code in Figure 1 represents a class DoubleCount that has two integer �elds
val and dbl. The predicate OK states that the value of the �eld dbl is double
the value of the �eld val. This predicate is the invariant of the class. If there
are two aliases r1 and r2 to an object o of type DoubleCount, r1 can assume
that the invariant holds even if r2 has modi�ed object o by calling the method

increment on it. This is ensured by the pre- and postcondition of the method
increment. The precondition is this@k OK(), which states that the caller this
of the method satis�es the invariant OK. After the execution of the method the
same invariant holds, according to the postcondition.

class DoubleCount {

int val;

int dbl;

predicate OK() ≡ ∃v : int, d : int . val→ v ⊗ dbl→ d ⊗ d == v ∗ 2
void increment()

∃k : int . this@k OK() (this@k OK()
{val = val+1;

dbl = dbl+2;}

}
Fig. 1. DoubleCount class and OK predicate

3 Translation to Boogie

Below we present the manual translation of the code and speci�cations of Figure
1 into Boogie [2]. In our Boogie encoding, we created a type Ref to represent
references of type DoubleCount. We represented the heap by creating maps from
objects to their �elds: for example we represented the �eld val by var val: [Ref]int
which maps an object of type DoubleCount to its val �eld of type int. We created
a new map type to keep count of fractions type FractionType = [Ref, Predicate-
Types] int and another map type PackedType to keep track of which predicates
are packed, for a speci�c object. The �rst axiom represents the necessary condi-
tions that have to be met for this to be packed to the predicate OK, while the
second axiom is used when this is unpacked from the predicate OK.

type Ref ;
type PredicateTypes ;
type FractionType = [Ref , PredicateTypes] i n t ;
type PackedType = [Ref , PredicateTypes] bool ;
const nu l l : Ref ;
const unique okP : PredicateTypes ;
var va l : [Ref] i n t ;
var dbl : [Ref] i n t ;
var packed : PackedType ;
var f r a c : FractionType ;

axiom (f o r a l l t h i s : Ref , va l : [Ref] int ,
dbl : [Ref] int , packed : PackedType : :

(dbl [t h i s]==val [t h i s]∗2) ==> packed [th i s , okP]) ;

axiom (f o r a l l t h i s : Ref , va l : [Ref] int ,
dbl : [Ref] int , packed : PackedType : :

packed [th i s , okP] ==> (dbl [t h i s]==val [t h i s]∗2)) ;

2

procedure increment (t h i s : Ref)
mod i f i e s val , dbl , packed ;
r e qu i r e s packed [th i s , okP] && (f r a c [th i s , okP] >0);
ensure s packed [th i s , okP] && (f r a c [th i s , okP] >0);
{ va l [t h i s] := va l [t h i s]+1;

dbl [t h i s] := dbl [t h i s]+2; }

4 Using Machine Learning

Our goal is to automatically translate the code and speci�cations in Figure 1 to
the Boogie code in Section 3. We are currently de�ning the automatic translation
rules. They are going to be the most interesting feature of our compiler which will
do the translation. While most of the translation rules are clear, there are some
places where machine learning (ML) could be useful. The compiler could generate
most of the translation but use ML, more speci�cally structured prediction1 [1],
to help the compilation in the creation of the axioms.

If our ML algorithm has access to 20 2 programs that have been manually
translated into Boogie and proved correct, the ML algorithm could learn and
predict how the axioms will look like. The output generated by the ML algo-
rithm does not need to be precise; it would be very useful if it gives multiple
possible axioms from which the programmer can choose the one that looks cor-
rect. The programmer could also run all the variants suggested by the structural
prediction algorithm and see how each performs. Let's assume we create a new
class TripleCount that has two �elds val and trpl, and the invariant states that
trpl should always be triple the value of val. The ML algorithm, given enough
training translations, among which the translation presented in Section 3, could
suggest that the �rst axiom be:

axiom (f o r a l l t h i s : Ref , va l : [Ref] int ,
t r p l : [Ref] int , packed : PackedType : :

(t r p l [t h i s]==val [t h i s]∗3) ==> packed [th i s , okP]) ;

References

1. http://en.wikipedia.org/wiki/Structured_prediction.
2. http://rise4fun.com/Boogie/.
3. John Boyland. Checking interference with fractional permissions. In Static Analysis

Symposium, pages 55�72, 2003.
4. Robert DeLine and Manuel Fähndrich. Typestates for objects. In ECOOP, pages

465�490, 2004.
5. Ligia Nistor, Jonathan Aldrich, Stephanie Balzer, and Hannes Mehnert. Object

propositions. In 19th International Symposium on Formal Methods, 2014.
6. Matthew Parkinson and Gavin Bierman. Separation logic and abstraction. In POPL,

pages 247�258, 2005.

1 Thank you to Jayant Krishnamurthy for suggesting this technique.
2 or more, if we involve more people in the manual translation of object propositions
speci�cations into Boogie

3

