Privacy Preserving Techniques for Speech Processing

Manas A. Pathak

December 1, 2010

Language Technologies Institute
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee
Bhiksha Raj (chair)
Alan Black
Anupam Datta
Paris Smaragdis, UIUC
Shantanu Rane, MERL

PhD Thesis Proposal

Copyright (© 2010 Manas A. Pathak






Abstract

Speech is perhaps the most private form of personal communication but current speech processing techniques are not
designed to preserve the privacy of the speaker and require complete access to the speech recording. We propose to
develop techniques for speech processing which do preserve privacy. While our proposed methods can be applied to a
variety of speech processing problems and also generally to problems in other domains, we focus on the problems of
keyword spotting, speaker identification, speaker verification, and speech recognition.

Each of these applications involve the two separate but overlapping problems of private classifier evaluation and
private classifier release. Towards the former, we study designing privacy preserving protocols using primitives such as
homomorphic encryption, oblivious transfer, and blind and permute in the framework of secure multiparty computation
(SMC). Towards the latter, we study the differential privacy model, and techniques such as exponential method and
sensitivity method for releasing differentially private classifiers trained on private data.

We summarize our preliminary work on the subject including techniques such as SMC protocols for eigenvector
computation, isolated keyword recognition and differentially private release mechanisms for large margin Gaussian
mixture models, and classifiers trained from data belonging to multiple parties. Finally, we discuss the proposed direc-
tions of research including techniques such as training differentially private hidden Markov models, and a multiparty
framework for differentially private classification by data perturbation, and protocols for applications such as privacy
preserving music matching and keyword spotting, speaker verification and identification.






Contents

Introduction
I.1 Outline . . . . . . . e e e

Speech Applications and Privacy

2.1 BasicTools . . . . . . . .
2.1.1  Signal Parameterization . . . . . . . .. ... e
2.1.2  Gaussian Mixture Models . . . . . . . . ..o
2.1.3 Hidden MarkovModels . . . . . . . .. ..

2.2 Speech Processing Applications . . . . . . . . . . . . . i e e e e
2.2.1 Speaker Verification and Identification . . . . . . . ... ... ..o oL
222 Music Matching . . . . . . . . e e e e
223 Keyword Spotting . . . . . . .. e e e e
224 SpeechRecognition . . . .. . ... ...

Background on Privacy and Security

3.1 Secure Multiparty Computation . . . . . . . . . . ... e
3.1.1 Data Setup and Privacy Conditions . . . . . . . . . . . . . . ... e
3.1.2  Tools for Constructing SMC protocols . . . . . . . . . . . . . v i i i et
3.1.3 Related Work on SMC Protocols for Machine Learning and Speech Processing . . . . . . ..

3.2 Differential Privacy . . . . . . . . L e e
3.2.1 Related Work on Differentially Private Machine Learning . . . . . . ... ... ... ....

Preliminary Work

4.1 Techniques . . . . . . . .
4.1.1 Privacy Preserving Eigenvector Computation . . . . . . . ... ... ... ... .......
4.1.2 Differentially Private Large Margin Gaussian Mixture Models . . . . . . ... ... ... ..
4.1.3 Differentially Private Classification from Multiparty Data . . . . . . ... .. ... .....

4.2 Applications . . . . . . . L e e e e e e
4.2.1 Privacy Preserving Keyword Recognition . . . . . .. ... ... ... ... . ... ... .
422 A framework for implementing SMC protocols . . . . . . . .. ... ... ...

Proposed Work

5.1 Techniques . . . . . . . . . e e
5.1.1 Differentially Private Hidden Markov Models . . . . . . .. ... ... ... ... ......
5.1.2  Differential Private Classification by Transforming the Loss Function . . . . . . .. ... ..
5.1.3  Optional: Privately Training Classifiers over Data from Different Distributions . . . . . . . .

5.2 Applications . . . . . . L. e e e e e e e e e e e e
5.2.1 Privacy Preserving Music Recognition and Keyword Spotting . . . . . ... ... ... ...
5.2.2  Privacy Preserving Speaker Verification and Identification . . . . . .. ... ... ... ...
5.2.3 Optional: Privacy Preserving Graph Search for Speech Recognition . . . . . . ... ... ..

5.3 Estimated Timeline . . . . . . . . . . L

10
10
10
11
12
13
14

17
17
17
18
19
19
19

21
21
21
26
30
34
34
39



A Proofs of Theorems and Lemmas 49

A.1 Privacy Preserving Eigenvector Computation (Section4.1.1) . . . . . ... . ... ... ... .... 49
A.2 Differentially Private Large Margin Gaussian Mixture Models (Section4.1.2) . . . . . ... ... .. 49
A.3 Differentially Private Classification from Multiparty Data (Section4.1.3) . . . . . . . . ... ... .. 52



Chapter 1

Introduction

Speech is perhaps the most private form of personal communication. A sample of a person’s voice contains information
not only about the message but also about the person’s gender, accent, nationality, the emotional state. Therefore,
no one would like to have their voice being recorded without consent through eavesdropping or wiretaps — in fact,
such activities are considered illegal in most situations. Yet, current speech processing techniques such as speaker
identification, speech recognition are not designed to preserve the privacy of the speaker and require complete access
to the speech recording.

We propose to develop privacy-preserving techniques for speech processing. There have been privacy preserving
techniques proposed for a variety of learning and classification tasks, such as multiple parties performing decision
trees [Vaidya et al., 2008a], clustering [Lin et al., 2005], association rule mining [Kantarcioglu and Clifton, 2004],
naive Bayes classification [Vaidya et al., 2008b], support vector machines [Vaidya et al., 2008c] and rudimentary com-
puter vision applications [Avidan and Butman, 2006], but there has been little work on techniques for privacy preserv-
ing speech processing. While our proposed techniques can be applied to a variety of speech processing problems and
also generally to problems in other domains, we focus on the following problems where we believe privacy-preserving
solutions are of direct interest.

1. Keyword spotting. Keyword spotting systems detect if a specified keyword has occurred in a recording. It
is therefore useful if the the system can detect only the presence of the keyword without having access to the
speech recording. Such a system would find applications in surveillance applications and pass-phrase detection.
It would also enable privacy preserving speech mining applications for extracting statistics about the occurrence
of specific keywords in an collection of recordings, while not learning anything else about the speech data.

2. Speaker Identification. Speaker identification systems attempt to identify which, if any, of a specified set of
speakers has spoken into the system. In many situations, it would be useful to be permit speaker identification
without providing access to any other information in the voice. For instance, a security agency may be able to
detect if a particular speaker has spoken in a phone conversation without being able to discover who else spoke
or what was spoken in the audio.

3. Speaker Verification. Speaker verification systems determine if a speaker is indeed who the speaker claims to
be. Users may want the system not to have access to their voice and therefore the identity. In text-dependent
verification systems, users may not want the system to be able to discover their pass-phrase.

4. Speech Recognition. Speech recognition is the problem of automatically transcribing the text from the speech
recording. While the use of cloud based online services has been prevalent for many tasks, the private nature of
speech data is a major stumbling block towards creating such a speech recognition service. To overcome this,
it is desirable to have a privacy preserving speech recognition system which can perform recognition without
having access to the speech data.

It should be noted that we are not developing new algorithms which achieve and extend the state of the art perfor-
mance of the above applications. We are interested in creating privacy preserving frameworks for existing algorithms.

7



The proposed technology has broad implications not just in the area of speech processing, but to society at large.
As voice technologies proliferate, people have increasing reason to distrust them. With increasing use of speech recog-
nition based user interfaces, speaker verification based authentication systems, and automated systems for ubiquitous
applications, from routing calls to purchasing airline tickets, the ability of malicious entities to capture and misuse
a person’s voice has never been greater, and this threat is only expected to increase. The fallout of such misuse can
pose a far greater threat than mere loss of privacy but have severe economic and social impacts as well. This proposal
represents a proactive effort at developing technologies to secure voice processing systems to prevent such misuse.

1.1 Outline

We first review the basics of speech processing in Chapter 2 and privacy in Chapter 3. Each of the problems mentioned
above broadly involves two separate but overlapping aspects: function computation — training and evaluation of clas-
sifiers over private speech data and function release — publishing classifiers trained over private speech data. Towards
the former problem, we investigate cryptographic protocols in the secure multiparty computation framework (Section
3.1) and for the latter problem we investigate differentially private release mechanisms (Section 3.2). We discuss our
preliminary work towards this direction in Chapter 4 and the proposed work in Chapter 5.



Chapter 2

Speech Applications and Privacy

We first review some of the basic building blocks used in speech processing systems. Almost all speech processing
techniques follow a two-step process of signal parameterization followed by classification. This is shown in Figure 2.1.

Speech Signal

’ Feature Computation ‘

Features
Acoustic Model

’ Pattern Matching ‘

Language Model

Figure 2.1: Work flow of a speech processing system.

Output

2.1 Basic Tools

2.1.1 Signal Parameterization

The most common parametrization for speech is the mel-frequency cepstral coefficients (MFCC) [Davis and Mermel-
stein, 1980]. In this representation, we sample the speech signal at a high frequency and take the Fourier transform
of each short time window. This is followed by de-correlating the spectrum using a cosine transform, then taking the
most significant coefficients.

If X is a vector of signal samples, F' is the Fourier transform in matrix form, M is the set of Mel filters represented
as a matrix, and D is a DCT matrix, MFCC feature vectors can be computed as D log(M ((FX) - conjugate(F'X))).

9



Figure 2.2: An example of a 5-state HMM.

2.1.2 Gaussian Mixture Models

Gaussian mixture model (GMM) is a commonly used generative model for density estimation in speech and language
processing. The probability of each class generating an example is modeled as a mixture of Gaussian distributions.
For problems such as speaker identification, we have one utterance x which we wish to classify by the class label
y; € 1,..., K representing a set of speakers. If the mean vector and covariance matrix of the j" Gaussian in the
class y; are u;; and X;;, respectively, for an observation z, we have P(z|y;) = Zj wii N (g, ij), where w;; are
the mixture coefficients. The above mentioned parameters can be computed using the expectation-maximization (EM)

algorithm.

2.1.3 Hidden Markov Models

A hidden Markov model (HMM) (Fig. 2.2), can be thought of as an example of a Markov model in which the state is
not directly visible but output of each state can be observed. The outputs are also referred to as observations. Since
observations depend on the hidden state, an observation reveals information about the underlying state.

A hidden Markov model is defined as a triple M = (A, B, II), in which

e A = (ajy;) is the state transition matrix. Thus, a;; = Pr{g:41 = Sjl¢z = S;},1 < ¢,j < N, where
{81, 52, ..., Sy} is the set of states and ¢; is the state at time ¢.

e B = (bj(vy)) is the matrix containing the probabilities of the observations. Thus, b;(vy) = Pr{x; = vy|q; =
Sj}7 1 <5< N,1< k< M, where v, € V which is the set of observation symbols, and x; is the observation
at time ¢.

e II = (my, 7o, ..., mn) is the initial state probability vector, that is, 7; = Pr{q; = S;},i=1,2,..., N.

Depending on the set of observation symbols, we can classify HMMs into those with discrete outputs and those
with continuous outputs. In speech processing applications, we consider HMMs with continuous outputs where each
the observation probabilities of each state is modeled using a GMM. Such a model is typically used to model the
sequential audio data frames representing the utterance of one word.

For a given sequence of observations x1,Xs,...,x7 and an HMM A = (A, B,II), one problem of interest is
to efficiently compute the probability P(x1,Xa,...,x7|A). A well known solution to this problem is the forward-
backward algorithm.

2.2 Speech Processing Applications
We first introduce some terminology that we will employ in the rest of this document. The term speech processing
refers to pattern classification or learning tasks performed on voice data. A privacy preserving transaction is one where

no party learns anything about the others data. In the context of a speech processing system, this means that the system
does not learn anything about the user’s speech and the user does not learn anything of the internal parameters used by

10



the system. We often also refer to privacy-preserving operations as secure. We expand the conventional definition of
system to include the entity in charge of it who could log data and partial results for analysis. Current voice processing
technologies are not designed to preserve the privacy of the speaker. Systems need complete access to the speech
recording which is usually in the parameterized form. The only privacy ensured is the loss of information effected by
the parametrization. Standard parametrizations can be inverted to obtain an intelligible speech signal and provide little
protection of privacy. Yet, there are many situations in which voice processing needs to be performed while preserving
the privacy of subjects’ voices and processing may need to be performed without having access to the voice. Here, by
“access to voice” we refer to having access to any form of the speech that can be converted to an intelligible signal, or
from which information about the speaker or what was spoken could be determined.
There are three basic application areas where privacy preserving speech processing finds application.

1. Biometric Authentication.

As a person’s voice is characteristic to the individual, speech is widely used in biometric authentication systems.
This is also an important privacy concern for the user as the system always has access to the speech recording. It
is also possible for an adversary to break into the system to gain unauthorized access using pre-recorded voice.
This can be prevented by using privacy preserving speaker verification.

2. Mining Speech Data.

Corporations and call centers often have large quantities of voice data from which they may desire to detect
patterns. However, privacy concerns prevent them from providing access to external companies that can mine
the data for patterns. Privacy preserving speaker identification and keyword spotting techniques can enable the
outside company to detect patterns without learning anything else about the data.

3. Recognition.

Increasingly, speech recognition systems are deployed in a client server framework, where the client has the
audio recording and the server has a trained model. In this case, privacy is important as the server has complete
access to the audio which is being used for recognition and is often the bottleneck in using such speech recogni-
tion systems in contexts where the speech contains sensitive information. Similarly, it is also useful to develop
techniques for training the model parameters.

The objective of our proposal is to develop privacy preserving techniques for some of the key voice processing
technologies mentioned above. Specifically, we propose to develop privacy preserving techniques for speaker identi-
fication, speaker verification, and keyword spotting. Note that our goal is not the development of more accurate and
scalable speech processing algorithms; we focus will be to restructure the computations of current algorithms and
embedding them within privacy frameworks such that the operations are preserve privacy. Where necessary, we will
develop alternative algorithms or implementations that are inherently more amenable to having their computations
restructured in this manner. We review the above mentioned speech processing applications along with the relevant
privacy issues.

2.2.1 Speaker Verification and Identification

In speaker verification, we try to ascertain if a user is who he or she claims to be. Speaker verification systems can be
text dependent, where the speaker utters a specific pass phrase and the system verifies it by comparing the utterance
with the version recorded initially by the user. Alternatively, speaker verification can be text independent, where the
speaker is allowed to say anything and the system only determines if the given voice sample is close to the speaker’s
voice. Speaker identification is a related problem in which we identify if a speech sample is spoken by any one of
the speakers from our pre-defined set of speakers. The techniques employed in the two problems are very similar,
enrollment data from each of the speakers are used to build statistical or discriminative models for the speaker which
are employed to recognize the class of a new audio recording.

Basic speaker verification and identification systems use a GMM classifier model trained over the voice of the
speaker. We typically use MFCC features of the audio data instead of the original samples as they are known to provide
better accuracy for speech classification. In case of speaker verification, we train a binary GMM classifier using the

11



audio samples of the speaker as one class and a universal background noise (UBM) model as another class [Campbell,
2002]. UBM is trained over the combined speech data of all other users. Due to the sensitive nature of their use in
authentication systems, speaker verification classifiers need to be robust to false positives. In case of doubt about the
authenticity of a user, the system should choose to reject. In case of speaker identification, we also use the UBM to
categorize a speech sample as not being spoken by anyone from the set of speakers.

In practice, we need a lot of data from one speaker to train an accurate speaker classification model and such
data is difficult to acquire. Towards this, Reynolds et al. [2000] proposed techniques for maximum a posteriori
adaptation to derive speaker models from the UBM. These adaptation techniques have been extended by constructing
“supervectors” consisting of the stacked means of the mixture components [Kenny and Dumouchel, 2004]. The
supervector formulation has also been used with support vector machine (SVM) classification methods. Campbell
et al. [2006] derive a linear kernel based upon an approximation to the KL divergence between the two GMM models.
It might be noted that apart from the conventional generative GMM models, large margin GMMs [Sha and Saul, 2006]
can also be used for speaker verification. A variety of other classification algorithms based on HMMs and SVMs have
been proposed for speaker verification and speaker identification [Reynolds, 2002; Hatch and Stolcke, 2006].

Privacy Issues

There are different types of privacy requirements while performing speaker verification or identification in terms of
training the classifier and evaluating a classifier.

1. Training. The basic privacy requirement here is that system should be able to train the speaker classification
model without being able to observe the speech data belonging to the users. This problem is an example of
secure multiparty computation (Section 3.1), and protocols can be designed for this using primitives such as
homomorphic encryption. The UBM is trained over speech data acquired from different users. The individual
contribution of every user is private and the system should not have access to the speech recording. Additionally,
even if the model is trained privately, the system should not be able to make any inference about the training data
by analyzing the model. The differential privacy framework (Section 3.2) provides a probabilistic guarantee in
such a setting. This will allow the participants to share their data freely without any privacy implications.

In case of speaker verification, we need to train one classification model per speaker. In this case, the privacy
requirement is that the system should not know which model is currently being trained, i.e., it should not be able
to know the identity of any of speakers in the system.

2. Testing. Once the system has trained the model, we need to perform classification on new audio data. Here,
the privacy requirement is that the system should not be able to observe the test data. Also, as the classification
model belonging to the system might be trained over valuable training data, it is not desirable for the system
to release the model parameters to the party with the test audio data. Finally, in both speaker verification and
identification, the system should be oblivious about the output of the classification. This problem is also an
example of secure multiparty computation and can be addressed using the appropriate primitives.

2.2.2 Music Matching

Music matching falls under the broad category of music retrieval or audio mining applications. In a client-server
model, we require to compare the input audio snippet of the client: Alice to a collection of longer audio recordings
belonging to the server: Bob. Music matching involves finding an audio recording of a song from a central database
which most closely matches a given audio snippet. When a match is found, information about the song such as the
title, artist, and album are transfered back to the user.

A simple algorithm to perform this matching is by computing the correlation between the music signals. This
method is fairly robust to noise in the snippets. Alternatively, if we are dealing with snippets which are also a copy of
the original recording, we can directly compare a binary fingerprint of the snippet more efficiently. This technique is
used in commercial systems such as [Wang, 2003]. To compare a short snippet to an audio recording of a song, we
need to perform a sliding window comparison for all samples of the recording, as shown in Figure 2.3. Bob needs to
compare every frame of every song in the collection with the snippet and choose the song with the highest score.

12



compare

Snippet (Alice)

Figure 2.3: Sliding window comparison of snippet frames and song frames.

Privacy Issues

Subsequently, if we need to perform music matching with privacy, our main requirement is that we need to do it without
the server observing the snippet provided by the client. Such a system would be very valuable in commercial as well as
military settings as discussed above. A trivial and completely impractical solution to this problem is that Bob sends his
entire music collection to Alice. Instead, we are interested in solutions in which Alice and Bob participate in a protocol
which uses secure multiparty computation primitives (see Section 3.1) to perform the matching securely. Alice will
give to Bob an encryption of her audio snippet and Bob will be able to perform the matching operations privately and
obtain all the sliding window scores in an encrypted form. Alice and Bob can then participate in an secure maximum
finding protocol to obtain the song with the highest score without the knowledge of Bob. Even doing this tends to be
computationally expensive, as it is performing operations on encrypted data is costly and still requires some amount
of data transfer between Alice and Bob. In the secure protocol, we need to streamline the sliding window comparison
operation. Another potential direction is to perform an efficient maximum finding algorithm which determines an
approximate maximum value by not making all the comparisons.

2.2.3 Keyword Spotting

Keyword spotting is a similar problem in which we try to find if one or more of a specified set of key words or phrases
has occurred in a recording. The main difference of this problem from music matching is that the keywords can have
different characteristics from the original recording as they can spoken at a different rate, tone, and even by a different
speaker. Instead of representing the snippet by set of frames, a common approach consist of using an HMM for each
keyword trained over recordings of the word. For a given target speech recording, Bob can find the probability of
the HMM generating a set of frames efficiently using the forward algorithm. Given all such speech recordings in his
collection, Bob needs to find the one having the set of frames which results in the maximum probability. Alice can
also use a generic “garbage” HMM trained on all other speech is used in opposition to the model for the key words.
Spotting is performed by comparing the likelihoods of the models for the keywords to that of the garbage model on
the speech recording.

The above technique suffices in the case of keyword spotting with a single keyword. If Alice is using a key-
phrase, she can model this as a concatenation of HMMs trained on individual keywords along with the HMM for
the garbage model as shown in Figure 2.4. The garbage model is matched to all other words except those in the key-
phrase. Similar to continuous speech recognition, keyword spotting proceeds by processing the given speech recording
using the concatenated HMM and then identifying the most likely path using Viterbi decoding. By performing this
processing on all the recordings in the dictionary, Bob can determine the position in which each word of the key-phrase
occurs.

Privacy Issues

The main privacy requirement in keyword spotting is that Bob should not know which keywords are being used by
Alice and also be able to communicate to her the positions in which the keywords occur oblivious to himself. The
second requirement is important because if Bob learns the position of the keyword occurrence, he can try to identify the

13



Figure 2.4: Concatenated HMMs for keyword spotting.

keyword from the original recording. For each HMM in the model, Alice and Bob need to perform Viterbi decoding
securely, this makes privacy preserving keyword spotting very expensive in terms of computation and data transfer
costs. The same ideas for privacy preserving music matching can be used to make keyword spotting more efficient.

2.2.4 Speech Recognition

Speech recognition is a type of pattern recognition problem, where the input is a stream of sampled and digitized speech
data and the desired output is the sequence of words that were spoken. The pattern matching involves combining
acoustic and language models to evaluate features which capture the spectral characteristics of the incoming speech
signal. Most modern speech recognition systems use HMMs as the underlying model.

We view a speech signal as a sequence of piecewise stationary signals and an HMM forms a natural representation
to output such a sequence of frames. We view the HMM to model the process underlying the observations as going
through a number of states, in case of speech, the process can be thought of as the vocal tract of the speaker. We model
each state of the HMM using a Gaussian mixture model (GMM) and correspondingly we can calculate the likelihood
for an observed frame being generated by that model. The parameters of the HMM are trained over the labeled speech
data using the Baum-Welch algorithm. We can use an HMM to model a phoneme which is the smallest segmental unit
of sound which can provide meaningful distinction between two utterances. Alternatively, we can also use an HMM
to model a complete word by itself or by concatenating the HMMs modeling the phonemes occurring in the word.

A useful way of visualizing speech recognition of an isolated word using an HMM is by a trellis shown in Fig-
ure 2.5. Every edge in the graph represents a valid transition in the HMM over a single time step and every node
represents the event of a particular observation frame being generated from a particular state. The probability of an
HMM generating a complete sequence of frames can be efficiently computed using the forward algorithm. Similarly,
the state sequence having the maximum probability for an observation sequence can be found using the Viterbi al-
gorithm. In order to perform isolated word recognition, we train an HMM model for each word in the dictionary
as a template. Given a new utterance, we match it to each of the HMM model and choose the one with the highest
probability as the recognized word.

However, we cannot directly use this approach of training multiple HMMs for continuous speech recognition as
extremely large number of sentences are possible and there much greater amount of variation in speaking rate. This is
circumvented by concatenating the HMM:s trained over individual words as shown in Figure 2.6. We introduce optional
silence HMMs to model silences between the words. The recognition is performed by running Viterbi decoding to
find the most path of states through the composed HMM and thereby finding the most likely sequence of words.

However, such an HMM composition graph needs to be specified to the speech recognition system and connecting
all the models manually becomes complicated for recognition of a non-trivial set of sentences. A common approach
is to develop a probabilistic context-free grammar for our recognition task and automatically perform the graph com-
position using it. This is used in simple dialog systems and other command and control settings. To recognize uncon-

14



O
O
O
O
O

HMM state index

)
<@
= oy (s, t)
<@
<@

t—1

feature vectors (time)

O

O
I
t

Figure 2.5: A trellis showing all possible paths of an HMM while recognizing a sequence of frames.

silence word 1 silence word 2 silence word 3 silence

Figure 2.6: Concatenated HMMs for continuous speech recognition.

strained word sequences, state of the art large vocabulary speech recognition systems use n-gram language models
where the probability of a word is assumed to be dependent only on the previous n — 1 words. The n-gram models are
learned from training data with the application of techniques such as smoothing and back-off to account for unseen
n-grams. Using the Bayes rule, we model the posterior probability of a signal given the target word sequence.

wordy, . .., word, = argmax P(signal|wy,...,w,) P(wi,...,wy). 2.1

W1 ,en, W,

text Acousticmodel(HM M)  Language Model

This allows us to compose the language graph containing individual word HMMs and the transition probabilities
derived from the language model. In Figure 2.7, we show a compact representation of a trigram graph for two words.

Any HMM based recognition involves searching through such a graph structure. It should be noted that a vast
majority of the paths will lead fail and the best path comparison can be made using only a small selection of such
paths. This significant reduction in complexity and size of the model is achieved by pruning across all active states at
any given time step. Using a state-level beam, we can prune poorly scoring states or alternatively using a word-level
beam, we can prune poorly scoring words.

Privacy Issues

We consider speech recognition as a service where the server has a speech recognition model and the client has
the audio data. For privacy preserving speech recognition, we require that the server performing the recognition
does not observe the input audio data and conversely, the party possessing the input data does not observe the system
parameters. The latter constraint is useful in settings where the server is interested in maintaining a pay per use system.
Also, if the HMM might be trained over valuable and possibly private training data, analyzing the system parameters
can potentially provide information about the training data. Analogously, training the HMM and language models
needs to be performed without having access to the private speech data. This problem of privacy preserving HMM

15



P(wordl|wordlwordl)

/(:rd 1

w
(wordl| < s > word?)\

P(word2|word2word2)

Figure 2.7: Trigram language graph for recognizing < s >,wordl, word2,< /s >.

inference falls under the area of secure multiparty computation (Section 3.1), and suitable protocols can be designed
using primitives such as homomorphic encryption. Isolated word recognition using a single HMM per word can be
performed using the forward algorithm. It is relatively straightforward to construct a practical privacy preserving
solution because of the linear complexity of the forward algorithm.

In continuous speech recognition by composite HMMs, the client and server need to collaborate in constructing a
trellis structure indexed by the HMM states and the input sequences, and performing Viterbi decoding to identify the
optimal path. While we need to match one HMM per word in case of isolated word recognition, the client privately
needs to compare each frame of the input sequence to a graph of HMMs. This poses a number of problems owing to
the size of the search space and the sheer number of operations that need to be performed privately. Pruning involves
eliminating search paths in the graph which are unlikely to be the best paths. By evaluating individual search paths,
the server will gain a lot of information about what words are likely or unlikely to be in the search path using the input
data belonging to the user. Hence, by its nature, pruning is contrary to the privacy constraints and we cannot make
advantage of it to increase the speed and scalability of the recognition.

Given the state of the art of research, we believe that continuous speech recognition with privacy constraints is
currently infeasible.

16



Chapter 3

Background on Privacy and Security

3.1 Secure Multiparty Computation

Secure Multiparty Computation (SMC) consists of the setting in which individual parties jointly compute a function of
their private input data with the constraint that no party should learn anything apart from the output and the intermediate
steps of the computation. Informally, the security of an SMC protocol is defined as computational indistinguishability
from an ideal functionality in which a trusted arbitrator accepts the input from all the parties, performs the computation
and returns the results to all the parties. The actual protocol is secure if it does not leak any information beyond what
is leaked in the ideal functionality. Please refer to [Beaver, 1991; Canetti, 2000; Goldreich, 2004] for formal definitons
and theoretical models for analyzing SMC protocols.

Yao [1982] originally illustrated SMC using the millionaire problem where two parties are trying to identify who
has more money without disclosing the actual values of their amounts. In this seminal work, Yao also showed that any
polynomial-time multiparty computation can be performed with privacy in general but the generic techniques result
in computationally impractical solutions. Recent research has focused on constructing efficient privacy preserving
protocols for specific problems.

3.1.1 Data Setup and Privacy Conditions

We formally define the problem, in which multiple parties are interested in computing a function over their collectively
held datasets without disclosing any information to each other. For simplicity, we first consider the case of two parties,
Alice and Bob. The parties are assumed to be semi-honest which means that the parties will follow the steps of the
protocol correctly and will not try to cheat by passing falsified data aimed at extracting information about other parties.
The parties are assumed to be curious in the sense that they may record the outcomes of all intermediate steps of the
protocol to extract any possible information.

We assume that both the datasets can be represented as matrices in which columns and rows correspond to the data
samples and the features, respectively. For instance, the individual email collections of Alice and Bob are represented
as matrices A and B respectively, in which the columns correspond to the emails, and the rows correspond to the words.
The entries of these matrices represent the frequency of occurrence of a given word in a given email. The combined
dataset may be split between Alice and Bob in two possible ways. In a horizontal split or data split, both Alice and
Bob have a disjoint set of data samples with the same features. The aggregate dataset is obtained by concatenating
columns given by the data matrix M = [A  B] and correlation matrix M M. In a vertical split or feature split,
Alice and Bob have different features of the same data. The aggregate data matrix M is obtained by concatenating

g} and correlation matrix MM ™.

rows given by the data matrix M = {

17



3.1.2 Tools for Constructing SMC protocols

1. Homomorphic Encryption. A homomorphic encryption (HE) cryptosystem allows for operations to be per-
form on the encrypted data without requiring to know the unencrypted values. If - and + are two operators and
2 and y are two plaintext elements, a homomorphic encryption function £() satisfies F[z] - Ely] = E[x + y].

Owing to this property, simple operations can be performed directly on the ciphertext, thereby resulting in
some desirable manipulations on the underlying plaintext messages. Additively homomorphic cryptosystems
have been proposed in the literature by Benaloh [1994], Paillier [1999] and Damgard and Jurik [2001]. The
protocols that we construct in this paper can be executed with any of these cryptosystems. We primarily use
the asymmetric key Paillier cryptosystem [Paillier, 1999] which provides additive homomorphism as well as
semantic security.

(a) Key Generation. Choose two large prime numbers p, g, and let N = pq. Denote by Z},, C Zy=> =
{0,1,..., N? — 1} the set of non-negative integers that have multiplicative inverses modulo N2. Select
g € L} such that ged(L(g® mod N?),N) = 1, where A = lem(p — 1,¢ — 1), and L(z) = £, Let
(N, g) be the public key, and (p, ¢) be the private key.

(b) Encryption. Let m € Zy be a plaintext. Then, the ciphertext is given by
&(m)=g¢™ -V mod N? 3.1

where r € ZY is a number chosen at random.

(c) Decryption. Let c € Z 2 be a ciphertext. Then, the corresponding plaintext is given by

L(¢* mod N?)

_ N 2
L(g> mod N?) m  mod (3.2)

P(&r(m)) =

Note that decryption works irrespective of the value of r used during encryption. Since r can be chosen at
random for every encryption, the Paillier cryptosystem is probabilistic, and therefore semantically secure. It can
now be verified that the following homomorphic properties hold for the mapping (3.1) from the plaintext set
(Zn , +) to the ciphertext set (Z}2, -),

(&, (M1)ér, (M2)  mod NQ) =m1+my mod N
Y([&-(m1)]™  mod Nz) =mymy mod N

where 11,79 € Z3} and r1 # 2 in general.

2. Oblivious Transfer.

Oblivious transfer (OT) was originally introduced in Rabin [1981]. In an oblivious transfer protocol, the sender
sends a collection of items to the receiver but remains oblivious about which item is valid.

Suppose that Bob has n messages m, ma,...m, and Alice has the index 1 < 7 < n, oblivious transfer
ensures that (a) Alice obtains m; but discovers nothing about the other messages (b) Bob does not discover .
There are many known ways to implement oblivious transfer such as those given by Naor and Pinkas [1999].
Also, it has been shown that oblivious transfer is a sufficient primitive, i.e., it can be used for secure evaluation
any function, provided that function can be represented as an algebraic circuit. However, evaluating general
functions using oblivious transfer exclusively is very expensive in terms of data transfer and computational
costs; we use oblivious transfer sparingly in our protocols.

3. Blind and Permute. If the input cy,co,...,c, is additively split among two parties with one party having
ai,as,...,a, and other party having by, bs, ..., b,, the parties can participate in a blind and permute proto-
col [Atallah and Li, 2005] to obtain a randomly permuted additive split of the input such that the permutation
is not known to either of the parties. This is useful in cases such as computing max c; securely. The blind and
permute primitive in turn uses homomorphic encryption and oblivious transfer.

18



3.1.3 Related Work on SMC Protocols for Machine Learning and Speech Processing

There has been a lot of work on constructing privacy preserving algorithms for specific problems in privacy preserving
data mining such as decision trees [Vaidya et al., 2008a], set matching [Freedman et al., 2004], clustering [Lin et al.,
2005], association rule mining [Kantarcioglu and Clifton, 2004], naive Bayes classification [Vaidya et al., 2008b],
support vector machines [Vaidya et al., 2008c]. Please refer to [Lindell and Pinkas, 2009] for a summary of recent
work.

However, there has been somewhat limited work on SMC protocols for speech processing applications, which
is one of the motivations for this thesis. Probabilistic inference with privacy constraints is a relatively unexplored
area of research. The only detailed treatment of privacy-preserving probabilistic classification appears in [Smaragdis
and Shashanka, 2007]. In that work, inference via HMMs is performed on speech data using existing cryptographic
primitives. The protocols are based on repeated invocations of privacy-preserving two-party maximization algorithms,
in which both parties incur exactly the same protocol overhead.

3.2 Differential Privacy

The differential privacy model was originally introduced by Dwork [2006]. Given any two databases D and D’
differing by one element, which we will refer to as adjacent databases, a randomized query function M is said to be
differentially private if the probability that M produces a response .S on D is close to the probability that M produces
the same response S on D’. As the query output is almost the same in the presence or absence of an individual
entry with high probability, nothing can be learned about any individual entry from the output. Differential privacy is
formally defined as follows.

Definition. A randomized function M with a well-defined probability density P satisfies e-differential privacy if, for
all adjacent databases D and D’ and for any set of outcomes S € range(M),

P[M(D) € S|

log 5D € 5] (3.3)

Dwork et al. [2006] proposed the exponential mechanism for creating functions satisfying e-differential privacy by
adding a perturbation term from the Laplace distribution scaled by the function sensitivity and €, which is defined as
the maximum change in the value of the function when evaluated over adjacent datasets.

In a classification setting, the training dataset may be thought of as the database and the algorithm learning the
classification rule as the query mechanism. A classifier satisfying differential privacy implies that no additional details
about the individual training data instances can be obtained with certainty from output of the learning algorithm,
beyond the a priori background knowledge. An adversary who observes the values for all except one entry in the
dataset and has prior information about the last entry cannot learn anything with high certainty about the value of the
last entry beyond what was known a priori by observing the output of the mechanism over the dataset.

Differential privacy provides an ad omnia guarantee as opposed to most other models that provide ad hoc guar-
antees against a specific set of attacks and adversarial behaviors. By evaluating the differentially private classifier
over a large number of test instances, an adversary cannot learn the exact form of the training data. This is a stronger
guarantee than SMC where the only condition is that the parties are not able to learn anything about the individual
data beyond what may be inferred from the final result of the computation. For instance, when the outcome of the
computation is a classifier, it does not prevent an adversary from postulating the presence of data instances whose
absence might change the decision boundary of the classifier, and verifying the hypothesis using auxiliary information
if any. Moreover, for all but the simplest computational problems, SMC protocols tend to be highly expensive, requir-
ing iterated encryption and decryption and repeated communication of encrypted partial results between participating
parties.

3.2.1 Related Work on Differentially Private Machine Learning

The earlier work on differential privacy was related to functional approximations for simple data mining tasks and
data release mechanisms [Dinur and Nissim, 2003; Dwork and Nissim, 2004; Blum et al., 2005; Barak et al., 2007].

19



Although many of these works have connection to machine learning problems, more recently the design and analysis
of machine learning algorithms satisfying differential privacy has been actively studied. Kasiviswanathan et al. [2008]
present a framework for converting a general agnostic PAC learning algorithm to an algorithm that satisfies privacy
constraints. Chaudhuri and Monteleoni [2008] use the exponential mechanism [Dwork et al., 2006] to create a dif-
ferentially private logistic regression classifier by adding Laplace noise to the estimated parameters. They propose
another differentially private formulation which involves modifying the objective function of the logistic regression
classifier by adding a linear term scaled by Laplace noise. The second formulation is advantageous because it is in-
dependent of the classifier sensitivity which difficult to compute in general and it can be shown that using a perturbed
objective function introduces a lower error as compared to the exponential mechanism.

However, the above mentioned differentially private classification algorithms only address the problem of binary
classification. Although it is possible to extend binary classification algorithms to multi-class using techniques like
one-vs-all, it is much more expensive to do so as compared to a naturally multi-class classification algorithm. Jagan-
nathan et al. [2009] present a differentially private random decision tree learning algorithm which can be applied to
multi-class classification. Their approach involves perturbing leaf nodes using the sensitivity method, and they do not
provide theoretical analysis of excess risk of the perturbed classifier.

20



Chapter 4

Preliminary Work

We review the preliminary results of our research.

4.1 Techniques

4.1.1 Privacy Preserving Eigenvector Computation

We developed a protocol for computing the principal eigenvector of the combined data shared by multiple parties
coordinated by a semi-honest arbitrator Trent [Pathak and Raj, 2010c]. This protocol is significantly more efficient
than the previous approaches towards this problem which are based on expensive QR decomposition of correlation
matrices. This was our first attempt at designing privacy preserving protocols. While it is not directly related to speech
processing per se, many algorithms for probabilistic inference such as the forward backward algorithm for HMMs
perform computation which is similar to eigenvector computation.

The power iteration algorithm computes the principal eigenvector of M ™ M by updating and normalizing the
vector x; until convergence. Starting with a random vector x, we calculate

o MTM xX;
T T MTM a

We first consider the case in which two parties Alice and Bob with horizontally split data matrices Ay x., and Bgxy,
compute the principal eigenvector of the combined data in collaboration with an untrusted third party arbitrator Trent.
For privacy, we split the vector x; into two parts, «; and 3;. «; corresponds to the first m components of z; and j3;
corresponds to the remaining n components. In each iteration, we need to securely compute

ATA ATB QG| AT(AOQ—FBBz) . AT’U/i 4.1
BTA BTB Bi - BT(AOQ—‘FBﬁZ) - BT’U,i ()

where u; = Aoy + Bpf;. After convergence, «; and [3; will represent shares held by Alice and Bob of the principal
eigenvector of M7 M.

An iteration of the algorithm proceeds as illustrated in Figure 4.1. At the outset Alice and Bob randomly generate
component vectors ag and 3 respectively. At the beginning of the i*? iteration, Alice and Bob possess component
vectors «; and 3; respectively. They compute the product of their data and their corresponding component vectors as
Acay; and Bf;. To compute u;, Alice and Bob individually transfer these products to Trent. Trent adds the contributions

from Alice and Bob by computing

MT™Mz; =

He then transfers u; back to Alice and Bob, who then individually compute A7 u; and BT u;, without requiring data
from one other. For normalization, Alice and Bob also need to securely compute the term

|M7M ;| = /I ATwi |2 + || BTy 2. 42)

21



ATui

ATu; [ ATw? G = AT e+ BT

Alice

A\ il |AT1N /

ElAa; + BBi] = Elui] E[|ATu;||* + | B wi|?]
Trent
E[BV . BT/ \

Bob -

Bp; BT, | BT u;||? Bi1 = BT

VIAT w2+ BT ug|2

Figure 4.1: Visual description of the protocol.

Again, Alice and Bob compute the individual terms ||A7u;||? and || BT u;
earlier, Trent computes the sum

||? respectively and transfer it to Trent. As

AT wi[? + (|1 BT ws |
and transfers it back to Alice and Bob. Finally, Alice and Bob respectively update « and (3 vectors as

u; = Aa; + Bp;,

ATUi
Fitl = T. 12 T2’
VIAT w2 + | BTu,
BTU%'
Biy1 = 4.3)

VIIATw ]2 + [ BTuil?

The algorithm terminates when the e and 3 vectors converge.

The basic protocol described above is provably correct. After convergence, Alice and Bob end up with the princi-
pal eigenvector of the row space of the combined data, as well as concatenative shares of the column space which Trent
can gather to compute the principal eigenvector. However the protocol is not completely secure; Alice and Bob ob-
tain sufficient information about properties of each others’ data matrices, such as their column spaces, null spaces, and
correlation matrices. We present a series of modifications to the basic protocol so that such information is not revealed.

Homomorphic Encryption: Securing the data from Trent

The central objective of the protocol is to prevent Trent from learning anything about either the individual data sets
or the combined data other than the principal eigenvector of the combined data. Trent receives a series of partial
results of the form AATw, BBTu and M M7 u. By analyzing these results, he can potentially determine the entire
column spaces of Alice and Bob as well as the combined data. To prevent this, we employ an additive homomorphic
cryptosystem.

At the beginning of the protocol, Alice and Bob obtain a shared public key/private key pair for an additive homo-
morphic cryptosystem from an authenticating authority. The public key is also known to Trent who, however, does
not know the private key; While he can encrypt data, he cannot decrypt it. Alice and Bob encrypt all transmissions
to Trent, at the first transmission step of each iteration Trent receives the encrypted inputs F[A«;] and E[Bf3;]. He
multiplies the two element by element to compute E[A«;] - E[BB;] = E[Aa; + BfS;] = E|u;). He returns Efu;] to
both Alice and Bob who decrypt it with their private key to obtain u,. In the second transmission step of each iteration,
Alice and Bob send E[|| AT w;||?] and E[|| BT u;||?] respectively to Trent, who computes the encrypted sum

E[|ATw|?] - E [|B"w|?] = E [||A"ws]? + || BT w; )]

22



and transfers it back to Alice and Bob, who then decrypt it to obtain || AT wu;||? + ||Bu;||?, which is required for
normalization.

This modification does not change the actual computation of the power iterations in any manner. Thus the proce-
dure remains as correct as before, except that Trent now no longer has any access to any of the intermediate compu-
tations. At the termination of the algorithm he can now receive the converged values of « and 8 from Alice and Bob,
who will send it in clear text.

Random Scaling: Securing the Column Spaces

After Alice and Bob receive u; = Aa; + B3; from Trent, Alice can calculate u; — Aa; = BfS; and Bob can calculate
u; — Bf; = Aaq;. After a sufficient number of iterations, particularly in the early stages of the computation (when wu;
has not yet converged) Alice can find the column space of B and Bob can find the column space of A. Similarly, by
subtracting their share from the normalization term returned by Trent, Alice and Bob are able to find || B u;||? and
| AT u;||? respectively.

In order to prevent this, Trent multiplies u; with a randomly generated scaling term r; that he does not share with

anyone. Trent computes

by performing element-wise exponentiation of the encrypted vector by r; and transfers r;u; to Alice and Bob. By
using a different value of r; at each iteration, Trent ensures that Alice and Bob are not able to calculate BS; and Aq;
respectively. In the second step, Trent scales the normalization constant by rZ,

(B [IATwl?] - E (1B wl®])™ = E [} (1A ul® + | B u]®)]

Normalization causes the r; factor to cancel out and the update rules remain unchanged.

Uy = Aai + Bﬁh
riATui ATUZ‘
Qi1 = = ,
Vi (ATl + [BTwil?) /AT w2 + [ BTus[]?
r; BT u; BTu;
Bit1 = “4.4)

Ve (ATw]P + B ul?) AT w]? + [BTui[*

The random scaling does not affect the final outcome of the computation, and the algorithm remains correct as before.

Data Padding: Securing null spaces

In each iteration, Alice observes one vector 7;u; = r;(Ac; + B/3;) in the column space of M = [A B]. Alice can
calculate the null space H(A) of A, given by

H(A) ={z e R"|Az =0}
and pre-multiply a non-zero vector x € H(A) with r;u;, to calculate
ariu; = riz(Aa; + BB;) = rixBg;.

This is a projection of Bf3;, a vector in the column space of B into the null space H(A). Similarly, Bob can find
projections of Ac; in the null space H(B). While considering the projected vectors separately will not give away
much information, after several iterations Alice will have a projection of the column space of B on the null space of
A, thereby learning about the component’s of Bob’s data that lie in her null space. Bob can similarly learn about the
component’s of Alice’s data that lie in his null space.

In order to prevent this, Alice pads her data matrix A by concatenating it with a random matrix P, = 7l x, to
obtain [A Pa] where r, is a positive scalar chosen by Alice. Similarly, Bob pads his data matrix B with P, = 1y«

23



to obtain [B Pb] where 1}, is a different positive scalar chosen by Bob. This has the effect of hiding the null spaces
in both their data sets. In the following theorem, we prove that the eigenvectors of the combined data do not change
after padding, while every eigenvalue A of M M7 is now modified to X\ + 7, + r,. Please refer to appendix for the
proof.

Theorem 4.1.1. Let M = [M P] where M is a s X t matrix, and P is a s X s orthogonal matrix. If v = [:jf“] is
sx1

an eigenvector of MT M corresponding to an eigenvalue \, then v is an eigenvector of MT M.

While the random factors r, and r, prevent Alice and Bob from estimating the eigenvalues of the data, the com-
putation of principal eigenvector remains correct as before.

Oblivious Transfer: Securing Krylov spaces

For a constant ¢, we can show that the vector u; = Aa; + Bg; is equal to cM M Tyu;_1. The sequence of vectors
U = {ui, ug, ug, ...} form the Krylov subspace (M M7T)"u; of the matrix M M7T. Knowledge of this series of
vectors can reveal all eigenvectors of M M T Consider ug = c1v1 + cavs + - - -, where v; is the i*® eigenvector. If \;
is the jth eigenvalue, we have u; = c1 A\jv] +cadava+- - - . We assume wlog that the eigenvalues A are in a descending
order, i.e., \j > Ay for j < k. Let con, be the normalized converged value of u; which is equal to the normalized
principal eigenvector v;.

Let w; = u; — (U; * Ueony )u; Which can be shown to be equal to caAava + c3A3v5 + - - -, Le., a vector with no
component along v1. If we perform power iterations with initial vector w1, the converged vector weq,, Will be equal
to the eigenvector corresponding to the second largest eigenvalue. Hence, once Alice has the converged value, Ucony .,
she can subtract it out of all the stored u; values and determine the second principal eigenvector of M M 7. She can
repeat the process iteratively to obtain all eigenvectors of M M7, although in practice the estimates become noisy very
quickly. The following modification prevents Alice and Bob from identifying the Krylov space with any certainty and
they are thereby unable to compute the additional eigenvectors of the combined data.

We introduce a form of oblivious transfer (OT) [Rabin, 1981] in the protocol. We assume that Trent stores the
encrypted results of intermediate steps at every iteration. After computing F[r;u;], Trent either sends this quantity to
Alice and Bob with a probability p or sends a random vector E[u;] of the same size (k x 1) with probability 1 — p.
As the encryption key of the cryptosystem is publicly known, Trent can encrypt the vector u}. Alice and Bob do not
know whether they are receiving r;u; or uj. If a random vector is sent, Trent continues with the protocol, but ignores
the terms Alice and Bob return in the next iteration, E[A«; 1] and E[Bf;41]. Instead, he sends the result of a the last
non-random iteration j, E[r;ju;], thereby restarting that iteration.

This sequence of data sent by Trent is an example of a Bernoulli Process [Papoulis, 1984]. An illustrative example
of the protocol is shown in Figure 4.2. In the first two iterations, Trent sends valid vectors 711y and rous back to Alice
and Bob. In the beginning of the third iteration, Trent receives and computes F[rsus] but sends a random vector u.
He ignores what Alice and Bob send him in the fourth iteration and sends back E[rsus] instead. Trent then stores the
vector E[rquy] sent by Alice and Bob in the fifth iteration and sends a random vector u/. Similarly, he ignores the
computed vector of the sixth iteration and sends uj}. Finally, he ignores the computed vector of the seventh iteration
and sends F[ryuy].

O

Figure 4.2: An example of the protocol execution with oblivious transfer.

This modification has two effects — firstly it prevents Alice and Bob from identifying the Krylov space with
certainty. As aresult, they are now unable to obtain additional Eigenvectors from the data. Secondly, oblivious transfer

24



essentially obfuscates the projection of the column space of B on to the null space of A for Alice, and analogously for
Bob by introducing random vectors. As Alice and Bob do not know which vectors are random, they cannot completely
calculate the true projection of each others data on the null spaces. This is rendered less important if Alice and Bob
pad their data as suggested in the previous subsection.

Alice and Bob can store the vectors they receive from Trent in each iteration. By analyzing the distribution of
the normalized vectors, Alice and Bob can identify the random vectors using a simple outlier detection technique. To
prevent this, one possible solution is for Trent to pick a previously computed value of r;u; and add zero mean noise
e;, for instance, sampled from the Gaussian distribution.

ul = rju;+ e, e; ~N(0,0%).

Instead of transmitting a perturbation of a previous vector, Trent can also use perturbed mean of a few previous 7;u;
with noise. Doing this will create a random vector with the same distributional properties as the real vectors. The
noise variance parameter o controls the error in identifying the random vector from the valid vectors and how much
error do we want to introduce in the projected column space.

Oblivious transfer has the effect of increasing the total computation as every iteration in which Trent sends a ran-
dom vector is wasted. In any secure multi-party computation, there is an inherent trade-off between computation time
and the degree of security. The parameter p which is the probability of Trent sending a non-random vector allows us
to control this at a fine level based on the application requirements. As before, introducing oblivious transfer does not
affect the correctness of the computation — it does not modify the values of the non-random vectors ;.

Extension to Multiple Parties

As we mentioned before, the protocol can be naturally extended to multiple parties. Let us consider the case of N
parties: Py, ..., Py each having data A1, ..., Ay of sizes k X ny, ..., k X ny respectively. The parties are interested
in computing the principal eigenvector of the combined data without disclosing anything about their data. We make
the same assumption about the parties and the arbitrator Trent being semi-honest. All the parties except Trent share
the decryption key to the additive homomorphic encryption scheme and the encryption key is public.

In case of a data split, for the combined data matrix M = [Al Ay - A N} , the correlation matrix is
ATA, .. AT Ay
AT A - AT AN
We split the eigenvector into IV parts, oy, ..., an of size ny, ..., ny respectively, each corresponding to one party.

For simplicity, we describe the basic protocol with homomorphic encryption; randomization and oblivious transfer
can be easily added by making the same modifications as we saw in Sections 3.3. One iteration of the protocol starts
with the i*® party computing A;c; and transferring to Trent the encrypted vector E[A;«;]. Trent receives this from
each party and computes

HEA%— ZAOQ = Eu]

where u = ). Ao, and product is an element-wise operation. Trent sends the encrypted vector E[u] back to
Py, ..., Py who decrypt it and individually compute A7 u. The parties individually compute || A7 u||? and send its
encrypted value to Trent. Trent receives N encrypted scalars E [HAzTqu] and calculates the normalization term

HE (1l A7 ull] Z 1AT u])?

25



and sends it back to the parties. At the end of the iteration, the party P; updates a; as

w = ZAiOKEOld)7

AT
(new) _ &% 4.5)

V2 14T ull?

The algorithm terminates when any one party P; converges on «;.

4.1.2 Differentially Private Large Margin Gaussian Mixture Models

We developed a learning algorithm for discriminatively trained Gaussian mixture models which satisfies differential
privacy [Pathak and Raj, 2010a,b] and is the first multiclass classification algorithm doing so.

Large Margin Gaussian Classifiers

There has been work on learning GMM while satisfying the large margin property [Sha and Saul, 2006]. This leads to
the classification algorithm being robust to outliers with provably strong generalization guarantees.

We first consider the setting where each class is modeled as a single Gaussian ellipsoid. Each class is modeled by
a set of K Gaussian ellipsoids. The decision rule is to assign an instance Z; to the class having smallest Mahalanobis
distance [Mahalanobis, 1936] from &; to the centroid of that class. We apply the large margin intuition about the clas-
sifier maximizing the distance of training data instances from the decision boundaries having a lower error. Formally,
we require that for each training data instance &; with label y;, the distance from &; to the centroid of class y; is at
least less than its distance from centroids of all other classes by one.

Ve # vy &F @5 > 1+ T @, 7. (4.6)

Analogous to support vector machines, the training algorithm is an optimization problem minimizing the hinge loss
denoted by [f]+ = max(0, f), with a linear penalty for incorrect classification. We use the sum of traces of inverse
covariance matrices for each classes as a regularization term.

J@,25) =Y [1+7 (@, —®)&], + 1D trace(P.). 4.7

i cFYi

Generalizing to Mixtures of Gaussians

We extend the above classification framework to modeling each class as a mixture of K Gaussians ellipsoids. A simple
extension is to consider each data instance Z; as having a mixture component m; along with the label y;. The mixture
labels are not available a priori, these can be generated by training a generative GMM using the data instances in each
class and selecting the mixture component with the highest posterior probability. Similar to the single Gaussian per
class criterion, we require that for each training data instance Z; with label y; and mixture component m;, the distance
from Z; to the centroid of the Gaussian ellipsoid for the mixture component m; of label y; is at least one greater than
the minimum distance from Z; to the centroid of any mixture component of any other class.

. T . T -
Ve# yp cmind; @ep@; > 1+ & Py, m, Tse
m

In order to maintain the convexity of the objective function, we use the property min,, a,, > —log)_ e %" to
rewrite the above constraint as

Ve #£ y; : —log Z e~ Tems > 1+ ff@wmifi. 4.8)

26



1+ h
+

Figure 4.3: Hinge loss

As before, we minimize the hinge loss of misclassification along with the regularization term. The objective function
becomes

J(@,2,4) =Y > |1+& ®,F +log)y e E B A trace(Ie @ la). (4.9)
i cHFy; m + cm

It can be observed that after this modification, the optimization problem remains a convex semidefinite program and
is tractable to solve.

Making the Objective Function Differentiable

The hinge loss being non-differentiable is not convenient for our analysis; we replace it with a surrogate loss function
called Huber loss I;, [Chapelle, 2007] which has similar characteristics as the hinge loss for small values of h. Let us
denote 7] ®,,7; +log " e~ Tl Bei by M (x;, ®..) for conciseness. The Huber loss ¢;, computed over data instances
(Z;,y;) becomes

0 if M(x;, ®,) > h,
12
U (e, T3y yi) = { 2 [h — 7 ®,, % —log).,, e’z?q’cxi} if |[M(z;,®.)| <h (4.10)
—7l®, 7 —log Y, e P if M(x;, ®,) < —h.

Finally, the regularized Huber loss computed over the the training dataset (x, ) is given by

J(@,8,) => > Iy |1+ 3 ®,F +1log» e F BeTi| 4 ) > trace(Ie P, Ia)
i cHFY; m cm
= L(®,Z,7) + N(®), (4.11)

where L(®, Z, §) is the loss function and N (®) is the regularization term.

Differentially Private Formulation

We modify the large margin Gaussian mixture model formulation to satisfy differential privacy by introducing a
perturbation term in the objective function. We generate the size (d + 1) x (d + 1) perturbation matrix b with density

P(b) o exp (=5 bl ) . (“.12)

where || - || is the Frobenius norm (element-wise ¢ norm) and € is the privacy parameter. One method of generating
such a b matrix is to sample the norm ||b|| from I" ((d + 1)2, 2) and the direction of b at random.

27



Our proposed learning algorithm minimizes the following objective function J,(®, Z, %)

Tp(®,7,§) = L(®,&,) + N(®) + > bi;®eij. (4.13)

c iJ

As the dimensionality of the perturbation matrix b is same as that of the classifier parameters ® ., the parameter space
of @ does not change after perturbation. In other words, given two datasets (&, %) and (&,¢"), if ®P minimizes
Jp(®, Z,7), it is always possible to have ®P minimize J,(®,2”,7"). This is a necessary condition for the classifier
PP satisfying differential privacy.

As the perturbation term is convex and positive semidefinite, the perturbed objective function J,(®, Z, i) has the

—»

same properties as the unperturbed objective function J(®, Z, §)

Proof of Differential Privacy

We prove that the classifier minimizing the perturbed optimization function J,(®, &, ) satisfies e-differential privacy
in the following theorem. Given a dataset (Z,¥) = {(Z1,%1),-- -, (Zn—1,Yn-1), (Zn, yn)}, the probability of learning
the classifier @7 is close to the the probability of learning the same classifier @7 given an adjacent dataset (7', 3) =
{(@1,91)s -, (Tn1,Yn1), (&, y.)} differing wlog on the n'! instance. As we mentioned in the previous section,
it is always possible to find such a classifier ®” minimizing both J,(®, %, ¥) and J,(®, &, §’) due to the perturbation
matrix being in the same space as the optimization parameters.

Our proof requires a strictly convex perturbed objective function resulting in a unique solution ®” minimizing it.
This in turn requires that the loss function L(®, Z, y) is strictly convex and differentiable, and the regularization term
N(®) is convex. These seemingly strong constraints are satisfied by many commonly used classification algorithms
such as logistic regression, support vector machines, and our general perturbation technique can be extended to those
algorithms. In our proposed algorithm, the Huber loss is by definition a differentiable function and the trace regular-
ization term is convex and differentiable. Additionally, we require that the difference in the gradients of L(®, Z,y)
calculated over for two adjacent training datasets is bounded. We prove this property in Lemma A.2.1.

Theorem 4.1.2. For any two adjacent training datasets (Z, %) and (Z', "), the classifier ®F minimizing the perturbed
objective function J,(®, T, y) satisfies differential privacy.
P(®P|7, vy
log 2 )| <
P(®r|Z, )

2
where € = ¢ + k for a constant factor k = log (1 + i—‘;\ + #) with a constant value of .

Analysis of Excess Risk

The perturbation introduced in the objective function comes at a cost of accuracy; when applied to any training dataset,
the differentially private classifier will have an extra error as compared to the original classifier. We establish a bound
on this excess risk.

In the remainder of this section, we denote the terms J(®,x,y) and L(®,x,y) by J(®) and L(P), respectively
for conciseness. The objective function J(®) contains the loss function L(®) computed over the training data (x,y)
and the regularization term N (@) — this is known as the regularized empirical risk of the classifier ®. In the following
theorem, we establish a bound on the regularized empirical excess risk of the differentially private classifier minimizing
the perturbed objective function J,(®) over the classifier minimizing the unperturbed objective function J(®). We
use the strong convexity of the objective function J(®) as given by Lemma A.2.2.

Theorem 4.1.3. With probability at least 1 — 0, the regularized empirical excess risk of the classifier ®P minimizing
the perturbed objective function J,(®) over the classifier ®* minimizing the unperturbed objective function J(®) is
bounded as

J(®P) < J(®*) + %mg (g) .

28



The upper bound on the regularized empirical risk is in O(E%) The bound increases for smaller values of e which
implies tighter privacy and therefore suggests a trade off between privacy and utility.

The regularized empirical risk of a classifier is calculated over a given training dataset. In practice, we are more
interested in how the classifier will perform on new test data which is assumed to be generated from the same
source as the training data. The expected value of the loss function computed over the data is called the frue risk
L(®) = E[L(®)] of the classifier ®. In the following theorem, we establish a bound on the true excess risk of the
differentially private classifier minimizing the perturbed objective function and the classifier minimizing the original
objective function.

Theorem 4.1.4. With probability at least 1 — 6, the true excess risk of the classifier ®P minimizing the perturbed
objective function J,(®) over the classifier * minimizing the unperturbed objective function J(®) is bounded as

. . 4/d(d+1)*C d\ 8(d+1*C ,(d 16 1
Py < * R S — -~ 7 - — —_ — .
L(®P) < L(®*) + =Y log 5 + =)\ log 3 + g 32+ log 5

Similar to the bound on the regularized empirical excess risk, the bound on the true excess risk is also inversely
proportional to e reflecting the privacy-utility trade-off. The bound is linear in the number of classes C, which is a
consequence of the multi-class classification. The classifier learned using a higher value of the regularization parameter
A will have a higher covariance for each class ellipsoid. This would also make the classifier less sensitive to the
perturbation. This intuition is confirmed by the fact that the true excess risk bound is inversely proportional to \.

Experiments

We performed experiments with our differentially private large margin Gaussian classifier to observe how much error
is introduced by the perturbation. We implemented the classifier using the CVX convex program solver [Grant and
Boyd, 2008, 2010] .

We trained the classifier with the different random samples of the perturbation term b, each sampled with the
increasing values of ¢, and the regularization parameter A = 0.01. For training data we used 500 data points with
10 dimensions equally split into the five classes each randomly sampled from the Gaussian distributions with unit
variances. We tested the model on another 500 data points with 10 dimensions equally split into the five classes each
also sampled from Gaussian distribution. The test error results averaged over 100 runs are shown in Figure 4.4.

0.07f

0.065 -

test error

0.06

0.055

0.05 . L L . L L . L
0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18

Figure 4.4: Test error vs. €

We observe that for small value of € implying tighter privacy constraints, we observe a higher error. By increasing
€, we see that the error steadily goes down as predicted by the bound on the true excess risk.

29



4.1.3 Differentially Private Classification from Multiparty Data

In [Pathak et al., 2010a], we address the problem of learning a differentially private classifier from a set of parties
each possess data. The aim is to learn a classifier from the union of all the data. We specifically consider a logistic
regression classifier, but as we shall see, the techniques are generally applicable to any classification algorithm. The
conditions we impose are that (a) None of the parties are willing to share the data with one another or with any third
party (e.g. a curator). (b) The computed classifier cannot be reverse engineered to learn about any individual data
instance possessed by any contributing party.

We provide an alternative solution: within our approach the individual parties locally compute an optimal classifier
with their data. The individual classifiers are then averaged to obtain the final aggregate classifier. The aggregation
is performed through a secure protocol that also adds a stochastic component to the averaged classifier, such that the
resulting aggregate classifier is differentially private, i.e., no inference may be made about individual data instances
from the classifier. This procedure satisfies both criteria (a) and (b) mentioned above. Furthermore, it is significantly
less expensive than any SMC protocol to compute the classifier on the combined data.

Multiparty Classification Protocol

The problem we address is as follows: a number of parties P, ..., Px possess data sets D1, ..., Dg where D; =
(x,y)|; includes a set of instances x and their binary labels y. We want to train a logistic regression classifier on the
combined data such that no party is required to expose any of its data, and the no information about any single data
instance can be obtained from the learned classifier. The protocol can be divided into the three following phases:

e Training Local Classifiers on Individual Datasets.

Each party P; uses their data set (X, y)|; to learn an ¢, regularized logistic regression classifier with weights w.
This is obtained by minimizing the following objective function

A . o1 —ywTx,
W, = argmin J(w) = argmin — Z log (1 +e y,,wa,) + xwlw, 4.14)
w w n; Z
where A > 0 is the regularization parameter. Note that no data or information has been shared yet.

o Publishing a Differentially Private Aggregate Classifier. The proposed solution, illustrated by Figure 4.5, pro-
ceeds as follows. The parties then collaborate to compute an aggregate classifier given by w® = % > j Wi +n,
where m is a d-dimensional random variable sampled from a Laplace distribution scaled with the parameter
TQ)@\ and (1) = min; n;. As we shall see later, composing an aggregate classifier in this manner incurs only
a well-bounded excess risk over training a classifier directly on the union of all data while enabling the parties
to maintain their privacy. We also show that the noise term 77 ensures that the classifier w* satisfies differential
privacy, i.e., that individual data instances cannot be discerned from the aggregate classifier. The definition of
the noise term 77 above may appear unusual at this stage, but it has an intuitive explanation: A classifier con-
structed by aggregating locally trained classifiers is limited by the performance of the individual classifier that
has the least number of data instances. We note that the parties P; cannot simply take their individually trained
classifiers w;, perturb them with a noise vector and publish the perturbed classifiers, because aggregating such
classifiers will not give the correct  ~ Lap(2 / (n(l)e)\)) in general. Since individual parties cannot simply add
noise to their classifiers to impose differential privacy, the actual averaging operation must be performed such
that the individual parties do not expose their own classifiers or the number of data instances they possess. We
therefore use a private multiparty protocol, interacting with an untrusted curator “Charlie” to perform the aver-
aging. The outcome of the protocol is such that each of the parties obtain additive shares of the final classifier
w?, such that these shares must be added to obtain w°.

Privacy Preserving Protocol. We use asymmetric key additively homomorphic encryption [Paillier, 1999]. A
desirable property of such schemes is that we can perform operations on the ciphertext elements which map
into known operations on the same plaintext elements. For an additively homomorphic encryption function &(-),

30



Py

P K

1

Iy -
H H-... =
— "

(0,.

Stage 1 }Jl m Stage 2 P14>‘ w1 |_> Stage 3
encryption additive
o o secret
additive o & o sharing of
secret L L4 noise term
sharing > i reverse P
curator Py NK permutations curator K WK & curator
& —1
& T2 additive
blind-and- secret
permute add noise N sharing of
vectors < ( ' ) local
™ classifers
.,0,1,0,....,0) 1) K+1
Indicator vector with permuted Encrypted Laplacian noise vector 7} perfectly private
index ’} of smallest database added obliviously by smallest database additive shares of
u 1 . ’
K EJ Wi +n

Figure 4.5: Multiparty protocol to securely compute additive shares of W*.

£(a) £(b) = &(a+b), &(a)’ = &(ab). The additively homomorphic scheme employed here is semantically
secure, i.e., repeated encryption of the same plaintext will result in different ciphertexts. For the ensuing pro-
tocol, encryption keys are considered public and decryption keys are privately owned by the specified parties.
Assuming the parties to be honest-but-curious, the steps of the protocol are as follows.

Stage 1. Finding the index of the smallest database obfuscated by permutation.

1.

N

. Each party decrypts the signal received from Charlie.

Each party P; computes n; = a; + b;, where a; and b; are integers representing additive shares of
the database lengths n; for j = 1,2,..., K. Denote the K-length vectors of additive shares as a and
b respectively.

The parties P; mutually agree on a permutation 7r; on the index vector (1,2, ..., K). This permutation
is unknown to Charlie. Then, each party P; sends its share a; to party P, (;, and sends its share b;
to Charlie with the index changed according to the permutation. Thus, after this step, the parties have
permuted additive shares given by 71 (a) while Charlie has permuted additive shares 71 (b).

The parties P; generate a key pair (pk,sk) where pk is a public key for homomorphic encryption and
sk is the secret decryption key known only to the parties but not to Charlie. Denote element-wise
encryption of a by £(a). The parties send (71 (a)) = 71 (£(a)) to Charlie.

Charlie generates a random vector r = (r1, 79, - - - , k) where the elements r; are integers chosen uni-
formly at random and are equally likely to be positive or negative. Then, he computes &(71(a;))&(r;)
= &(mi(a;) + r;). In vector notation, he computes &(71(a) + r). Similarly, by subtracting the same
random integers in the same order to his own shares, he obtains 71 (b) — r where 7; was the permuta-
tion unknown to him and applied by the parties. Then, Charlie selects a permutation 7o at random and
obtains ma(&(m1(a) +r)) = &(m2(m1(a) + r)) and 72 (71 (b) — r). He sends (72 (7 (a) + 1)) to the
individual parties in the following order: First element to P, second element to Px,...,K th element
to Pk.

At this point, the parties Py, Ps, ..., Pk
respectively possess the elements of the vector m(my(a) + r) while Charlie possesses the vector
mo(m1(b) — r). Since 71 is unknown to Charlie and 75 is unknown to the parties, the indices in both
vectors have been complete obfuscated. Note also that, adding the vector collectively owned by the
parties and the vector owned by Charlie would give 72 (71 (a) +r) +ma (71 (b) —r) =72 (71 (a+b)) =
7o (1 (n)). This situation in this step is similar to that encountered in the “blind and permute” protocol
used for minimum-finding by Atallah and Li [2005].

31



6. Letma(mi(a)+r) = aand ma(m (b)—r1) = b. Thenn; > n; = a;+b; > dj+5j = a;—a; > l~)j—l~7¢.
For each (i, j) pair with ¢, j € {1,2,..., K}, these comparisons can be solved by any implementation
of a secure millionaire protocol [Yao, 1982]. When all the comparisons are done, Charlie finds the
index j such that a; + lN)j = min; n;. The true index corresponding to the smallest database has
already been obfuscated by the steps of the protocol. Charlie holds only an additive share of min; n;
and thus cannot know the true length of the smallest database.

Stage 2. Obliviously obtaining encrypted noise vector from the smallest database.

1. Charlie constructs an K indicator vector u such that u; = 1 and all other elements are 0. He then

obtains the permuted vector 7, ' (u) where 7, ' inverts ;. He generates a key-pair (pk’,sk’) for
additive homomorphic function {(-) where only the encryption key pk’ is publicly available to the

parties P;. Charlie then transmits ¢ (7, ' (u)) = 7, *(¢(u)) to the parties P;.

2. The parties mutually obtain a permuted vector 7, * (75 ' (¢(u))) = ¢(v) where 7} ! inverts the per-
mutation 7y originally applied by the parties P; in Stage I. Now that both permutations have been
removed, the index of the non-zero element in the indicator vector v corresponds to the true index
of the smallest database. However, since the parties P; cannot decrypt ((-), they cannot find out this

index.
3. For j = 1,..., K, party P; generates n;, a d-dimensional noise vector sampled from a Laplace

distribution with parameter - i - Then, it obtains a d-dimensional vector ) j where fori =1,...,d,
J

;i) = C(i)™M D = ¢(v(5) 0 (4))-

4. All parties P; now compute a d-dimensional noise vector % such that, for i = 1,...,d, P(i) =

1, 5) = I, C0Gm; (@) = ¢ (32, 06y (0))-

The reader will notice that, by construction, the above equation selects only the Laplace noise terms
for the smallest database, while rejecting the noise terms for all other databases. This is because v has
an element with value 1 at the index corresponding to the smallest database and has zeroes everywhere
else. Thus, the decryption of 1) is equal to 17 which was the desired perturbation term defined at the
beginning of this section.

Stage 3. Generating secret additive shares of w”°.

1. One of the parties, say P;, generates a d-dimensional random integer noise vector s, and transmits
Y(i)((s(2)) forall i = 1,...,d to Charlie. Using s effectively prevents Charlie from discovering 7,
and therefore still ensures that no information is leaked about the database owners P;. P; computes
w; — K.

2. Charlie decrypts ()¢ (s(¢)) to obtain n(i) + s(i) for i = 1,...,d. At this stage, the parties and
Charlie have the following d-dimensional vectors: Charlie has K(n + s), P; has w; — Ks, and all
other parties P;, j = 2,..., K have w;. None of the K + 1 participants can share this data for fear
of compromising differential privacy.

3. Finally, Charlie and the K database-owning parties run a simple secure function evaluation protocol
[Ben-Or et al., 1988], at the end of which each of the K + 1 participants obtains an additive share
of Kw*. This protocol is provably private against honest but curious participants when there are no
collisions. The resulting shares are published.

The above protocol ensures the following (a) None of the K + 1 participants, or users of the perturbed aggre-
gate classifier can find out the size of any database, and therefore none of the parties knows who contributed 7
(b) Neither Charlie nor any of the parties P; can individually remove the noise 1 after the additive shares are
published. This last property is important because if anyone knowingly could remove the noise term, then the
resulting classifier no longer provides differential privacy.

e Testing Phase. A test participant Dave having a test data instance X' € R? is interested in applying the trained
classifier adds the published shares and divides by K to get the differentially private classifier w*. He can then

32



compute the sigmoid function ¢ = ﬁ and decide to classify x” with label —1 if ¢ < % and with label 1 if
t> 1

Proof of Differential Privacy

We show that the perturbed aggregate classifier satisfies differential privacy. We use the following bound on the sen-
sitivity of the regularized regression classifier as proved in Corollary 2 in [Chaudhuri and Monteleoni, 2008] restated
in the appendix as Theorem A.3.1.

Theorem 4.1.5. The classifier w® preserves e-differential privacy. For any two adjacent datasets D and D',

<e.

P (w’|D)
bgpwﬂn)

Analysis of Excess Risk

In the following discussion, we consider how much excess error is introduced when using a perturbed aggregate
classifier w® satisfying differential privacy as opposed to the unperturbed classifier w* trained on the entire training
data while ignoring the privacy constraints as well as the unperturbed aggregate classifier w.

We first establish a bound on the ¢» norm of the difference between the aggregate classifier w and the classifier w*
trained over the entire training data. To prove the bound we apply Lemma 1 from [Chaudhuri and Monteleoni, 2008]
restated as Lemma A.3.2 in the appendix. Please refer to the appendix for the proof of the following theorem.

Theorem 4.1.6. Given the aggregate classifier w, the classifier w* trained over the entire training data and ny) is the
size of the smallest training dataset,

K-1

n(l))\ '

W —w2 <

The bound is inversely proportional to the number of instances in the smallest dataset. This indicates that when
the datasets are of disparate sizes, w will be a lot different from w*. The largest possible value for n(;) is z in which
case all parties having an equal amount of training data and w will be closest to w*. In the one party case for K = 1,
the bound indicates that norm of the difference would be upper bounded by zero, which is a valid sanity check as the
aggregate classifier w is the same as w*.

We use this result to establish a bound on the empirical risk of the perturbed aggregate classifier W* = w + 1 over
the empirical risk of the unperturbed classifier w* in the following theorem. Please refer to the appendix for the proof.

Theorem 4.1.7. If all data instances x; lie in a unit ball, with probability at least 1 — 0, the empirical regularized
excess risk of the perturbed aggregate classifier w® over the classifier w* trained over entire training data is

J) < T (K-1P0+1) | 2P0 +1) o, <d) L 2E DA+ o <d) .

2n%1))\2 n?l)ez)\2 ) n%l)e/\2

4]

The bound suggests an error because of two factors: aggregation and perturbation. The bound increases for smaller
values of e implying a tighter definition of differential privacy, indicating a clear trade-off between privacy and utility.
The bound is also inversely proportional to ”%1) implying an increase in excess risk when the parties have training
datasets of disparate sizes.

In the limiting case ¢ — oo, we are adding a perturbation term 7 sampled from a Laplacian distribution of
infinitesimally small variance resulting in the perturbed classifier being almost as same as using the unperturbed
aggregate classifier w satisfying a very loose definition of differential privacy. With such a value of €, our bound
becomes

(K —-1)2(\+1)

2 2
2n(1)>\

J(W) < J(w*) + . (4.15)

33



Similar to the analysis of Theorem 4.1.6, the excess error in using an aggregate classifier is inversely proportional
to the size of the smallest dataset n(;y and in the one party case K = 1, the bound becomes zero as the aggregate
classifier w is the same as w*. Also, for a small value of ¢ in the one party case K = 1 and n(;y = n, our bound
reduces to that in Lemma 3 of [Chaudhuri and Monteleoni, 2008],

2
J) < J(w) + 2EATL oo (d) | 4.16)

- n2e2)\2 )

While the previous theorem gives us a bound on the empirical excess risk over a given training dataset, it is important
to consider a bound on the true excess risk of w* over w*. Let us denote the true risk of the classifier w* by .J (wW*) =
E[.J(W*)] and similarly, the true risk of the classifier w* by .J(w*) = E[.J(w*)]. In the following theorem, we apply
the result from [Sridharan et al., 2008] which uses the bound on the empirical excess risk to form a bound on the true
excess risk. Please refer to the appendix for the proof.

Theorem 4.1.8. If all training data instances x; lie in a unit ball, with probability at least 1 — 6, the true excess risk
of the perturbed aggregate classifier w® over the classifier w* trained over entire training data is

) < Jowry 4 2EZVPOHD AP D <d)

2n%1))\2 n?l)EQ)\Q )
4K~ 1)(A+1) . (d\ 16 1
log (£) + 22 1324 10g (1 )]
e G T [P G

Experiments

We perform an empirical evaluation of the proposed differentially private classifier to obtain a characterization of the
increase in the error due to perturbation. We use the Adult dataset from the UCI machine learning repository [Frank
and Asuncion, 2010] consisting of personal information records extracted from the census database and the task is to
predict whether a given person has an annual income over $50,000. The choice of the dataset is motivated as a realistic
example for application of data privacy techniques. The original Adult data set has six continuous and eight categorical
features. We use pre-processing similar to [Platt, 1999], the continuous features are discretized into quintiles, and each
quintile is represented by a binary feature. Each categorical feature is converted to as many binary features as its
cardinality. The dataset contains 32,561 training and 16,281 test instances each with 123 features.! In Figure 4.6, we
compare the test error of perturbed aggregate classifiers trained over data from five parties for different values of e.
We consider three situations: all parties with equal datasets containing 6512 instances (even split, 1) = 20% of n),
parties with datasets containing 4884, 6512, 6512, 6512, 8141 instances (na) = 15% of n), and parties with datasets
containing 3256, 6512, 6512, 6512, 9769 instances (n(;) = 10% of n). We also compare with the error of the classifier
trained using combined training data and its perturbed version satisfying differential privacy. We chose the value of
the regularization parameter A = 1 and the results displayed are averaged over 200 executions.

The perturbed aggregate classifier which is trained using maximum 71y = 6512 does consistently better than for
lower values of n;) which is same as our theory suggested. Also, the test error for all perturbed aggregate classifiers
drops with €, but comparatively faster for even split and converges to the test error of the classifier trained over the
combined data. As expected, the differentially private classifier trained over the entire training data does much better
than the perturbed aggregate classifiers with an error equal to the unperturbed classifier except for small values of e.
The lower error of this classifier is at the cost of the loss in privacy of the parties as they would need to share the data
in order to train the classifier over combined data.

4.2 Applications

4.2.1 Privacy Preserving Keyword Recognition

In [Pathak et al., 2010b], we develop a privacy-preserving framework for hidden Markov model inference. We consider
the multiparty scenario in which the data and the HMMs belong to different individuals and cannot be shared. For

I'The dataset can be download from http://www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets/binary.html#a9a

34



test error
T

Figure 4.6: Classifier performance evaluated for w*, w* + 1, and w® for different data splits vs. ¢

example, Alice (the client) wants to conduct analysis on speech data from telephone calls. She outsources the speech
recognition task to Bob (the server), who possesses an accurate HMM obtained via extensive training. Alice cannot
share the speech data with Bob owing to privacy concerns while Bob cannot disclose the model parameters because
this might leak valuable information about his own training database.

Smaragdis and Shashanka [2007] present the only major work on privacy preserving HMMs using cryptographic
primitives. Those protocols are designed such that both the parties perform equal amount of computation. In contrast,
we present asymmetric protocols that are more suitable for client-cloud interactions; the client encrypts the data and
provides it to a server in the cloud which shoulders most of the computational burden. Further, since HMM-based
probabilistic inference manipulates probabilities and real numbers in general, the effect of finite precision, underflow
and exponentiation in the ciphertext domain are considered here for the first time.

Protocol for Secure Forward Algorithm
In the following, assume that Alice (a client) sets up a private and public key pair for the Paillier encryption function
&(+), and sends only the public key to Bob (a server). Consider the following protocols

Secure Logarithm Protocol

Input: Bob has input £(6);
Output: Bob obtains the encryption £(log #) of log 0, and Alice obtains no information about 6.

1. Bob randomly chooses 3, and sends £(0)° = £(36) to Alice
2. Alice decrypts 36, and then sends £(log 56) to Bob.
3. Bob computes £(log 56) - £(—log 8) = £(log 8 + log B) - £(— log B) = £(log 6)

Secure Exponent Protocol

Input: Bob has input £(log 6),
Output: Bob obtains the encryption £(6), and Alice obtains no information about 6.

1. Bob randomly chooses 3 € Z7};» and sends {(log, 0)¢(log, 3) = {(log, 6 + log, B) = &(log,, B0) to Alice.

35



2. Alice decrypts log,, 36, and then sends £(36) to Bob

3. Bob computes & (ﬁ@)% = £(6) where % is the multiplicative inverse of 3 in Z},.

Secure LOGSUM Protocol

Input: Bob has ({(log81),&(log0s),...,£(logh,)) and (a1, as,...,a,);
Output: Bob obtains &(log Y. | a;6;), and Alice discovers nothing about the 6;

1. With Bob’s input £(log 01),£(log 6s), . .., &(log
(

6..), Alice and Bob execute the Secure Exponent protocol re-
peatedly so that Bob obtains £(61),£(62), ..., £(0

2. Bob exploits the additive homomorphic property of Paillier encryption to obtain

£ (Z ai9i> = Hf(aiei) = Hf(ei)ai
i=1 i=1

i=1
3. Bob and Alice execute the Secure Logarithm protocol, at the end of which Bob obtains the encryption £(log Z?:l a;0;).

Secure Forward Algorithm Protocol

Input: Alice has an observation sequence X1, Xa, . . ., X7. Bob has the HMM \ = (A, B, 1I).
Output: Bob obtains &(log Pr{xy, X2, ..., x7|A) }.

Write the matrix B as [by, ba, ..., by], where for each j = 1,2,..., N, b; is a column vector with component
bj(vg), k=1,2,..., M. Now, a privacy-preserving version of the forward algorithm for HMMs proceeds as follows:

1. Foreacht =1,2,...,Tand j = 1,2, ..., N, Bob randomly chooses 7;; and generates a column vector logb; +
Ytj-

2. Based on the input x, Alice uses 1-of-M OT to obtain log b; (x¢) + ;.

3. Alice sends £(log bj(x¢) + 7¢;) to Bob

4. Using +y;; and the homomorphic property, Bob computes £(log b;(x:) + 7¢5) - (=) = £(logb;(x¢)) for
j=1,2..,N,t=12..T.

)

5. Bob computes £(log a1 (j)) = E(log 7;) - {(log bj(x1)) forj =1,2,..., N

)

6. Induction Step: For j = 1,2, ..., N, with Bob’s input £(log a;(5)), j = 1,2, ..., N and the transition matrix A =
(ai;), Alice and Bob run the secure LOGSUM protocol, at the end of which Bob obtains £(log Zf\il a(agy).

7. Forall1 <t < T — 1, Bob computes
N
(logaera(j)) = &(log > ay(l)ay;) - £(log by (xi41))
=1

8. Using the additively homomorphic property, Bob determines £(log P(x1, X2, ..., X7|\)) = Hj\/:l ¢(log ar(4))

Security Analysis

The Secure Logarithm, Secure Exponent and Secure LOGSUM protocols rely on multiplicative secret sharing to
prevent Alice from discovering 6. Bob cannot discover # because he does not possess the decryption key for the
Paillier cryptosystem. The security of the Forward Algorithm protocol derives from the security of the previous three
primitive protocols and the security of 1-of-M OT.

36



Secure Keyword Recognition

Consider the following scenario for privacy-preserving keyword recognition: Alice has a sampled speech signal, which
she converts into T frames, where each frame is represented by a 39-dimensional vector of Mel Frequency Cepstral
Coefficients (MFCCs). Thus Alice possesses x;, i = 1,2, ..., 7 where each x; € R?’. Derivation of MFCCs from
speech signals is an established practice in the speech processing literature Rabiner and Juang [1993]. Bob possesses
A different HMMs, each trained for a single keyword. Alice and Bob will execute a secure protocol, at the end of
which, Alice will discover the keyword that is most likely to be contained in her speech sample.

Let d = 39. Let a d-dimensional vector y of MFCCs have a multivariate Gaussian distribution, i.e., bj(y) =
N(uj,C;), where j = 1,2,..., N indexes the state of a HMM \. Let z = [y”,1]7. Then, logb;(y) = z” Wz,
where

and w; = 3 ujTCj_l p; — 5 In |Cj_1| — 21n 2. The above treatment considers y to be a single multivariate Gaussian

random variable, though an extension to mixture of multivariate Gaussians is also possible. Note that the matrix W;
is available to Bob. Further, note that log b; () is a linear function of products z;z; where ¢, j € {1,2,...,d+1}. This
allows us to simplify the Secure Forward Algorithm Protocol as follows:

Simplified Secure Forward Algorithm

1. Foreacht = 1,2,...,T, Alice sets z = [x{,1]7. Alice sends to Bob the encryptions of all z;z; with i,j €
{1,2,...,d+ 1}

2. For each HMM state j = 1,2, ..., N, Bob obtains the encryption {(log b;(x;)) = £(z” W ;z) using the additive
homomorphic property.

3. Bob executes steps 5—8 of the secure forward algorithm protocol.

Now, the protocol for secure keyword recognition is as follows.

Protocol for Secure Keyword Recognition

Input: Alice has the MFCC feature vectors X1, X2, ..., X corresponding to her privately owned speech sample. Bob
has the database of HMMs {1, Aa, ..., Aa } where each HMM \; corresponds to a single keyword, which is denoted
by 7s;

Output: Alice obtains §* = arg max;s Pr{x1, X2, ...,Xx1|As }.

1. Alice and Bob execute the simplified secure forward algorithm protocol for each HMM )y, at the end of which
Bob obtains &(ps) = {(log Pr{x1, X2, ...,xT|As}),d = 1,2, ..., A.

2. Bob chooses an order-preserving matrix> R = (7;;)axa with random coefficients. Using the additively homo-
morphic property of Paillier encryption, he computes the element-wise encryption given by (£(p}), ..., E(Ph)) =
(&(p1), .-, &(pa)) - R. Bob sends the result to Alice.

3. Alice decrypts and obtains ¢* = max; pjj = maxs ps. This is true because R is order-preserving mapping.

4. Alice and Bob perform a 1-of-A OT, and Alice obtains the word 7.

2See Rane and Sun [2010] for more details

37



Computational Complexity

Let us consider the computational overhead of the protocol in terms of the number of keywords (A), the number of
HMM states (/V), the time duration of the observation (7") and the size of each observation (d). Alice has an overhead
of O(d?T) encryptions at the beginning of the protocol. This initial computational overhead is independent of the
number of keywords and the size of the HMM. Bob has an overhead of O(d? N AT ciphertext multiplications and
exponentiations in order to determine the {(log b;(x;)) terms. Finally, to determine the &(ar (7)) terms, Alice and
Bob both have an overhead of O(NAT). Thus Alice’s protocol overhead is O((d? + NA)T) while Bob’s overhead
is O(d®* NAT), which means that Bob’s overhead grows faster than Alice’s.

Practical Issues: Fixed Precision and Numerical Underflow

The Paillier cryptosystem is defined over an integer ring but the speech data consists of real numbers causing the
protocol to introduce an error in the computation. In our implementation, we used numbers accurate to 6 decimal
places, which means that all floating point values were multiplied by a constant value 10% before encryption and
divided by the same value after decryption. Furthermore, whenever there was a floating point number in the ciphertext
exponent — of the form &(a)® — then, the fractional part was truncated, and only the integer portion of b was used in
the calculation. These approximations introduce errors in the protocol which propagate during the iterations of the
forward algorithm.

When implementing the protocol in software, another problem is that the value of () gets progressively smaller
after each iteration, and causes an underflow after a only a few iterations. This problem would not be encountered if
the probabilities were always expressed in the form log a; (). However, it is necessary to consider the actual value
of a;(j); the underflow problem is resolved by normalizing c;(1), ..., a;(N) in each iteration, such that the relative
values are preserved.

Experimental Analysis

We performed speech recognition experiments on a 3.2 GHz Intel Pentium 4 machine with 2 GB RAM and running 64-
bit GNU/Linux. We created an efficient C++ implementation of the Paillier cryptosystem using the variable precision
integer arithmetic library provided by OpenSSL. The encryption and decryption functions were used in a software
implementation of the protocol.

The experiment was conducted on audio samples of length 0.98 seconds each. The samples consisted of spoken
words which were analyzed by ten HMMs each having 5 states. These 10 HMMs were assumed to be trained offline
(by Bob) on ten different words, viz., utterances of “one”, “two”, “three”, and so on up to “ten”. To perform speech
recognition, each test speech sample was converted into 98 overlapping vectors (called frames), a 39-dimensional
feature vector composed of MFCCs were extracted from each overlapping vector, as is common in speech processing.
These 39-dimensional vectors serve as the input observations x; owned by Alice.

The time required for processing an audio sample of length 0.98 seconds using the 10 HMMs was measured. The
results are tabulated in Table 4.1 for the case of using 256-bit and 512-bit keys for Paillier homomorphic encryption.
Using a longer key provides a stronger degree of security, but this it comes at the cost of a significant increase in
processing time. Note that, once Bob receives the encrypted input from Alice, the calculation of &(log b;(x;)) for all
10 HMMs can proceed in parallel. This is possible, for instance, in a cloud computing framework, where Bob has
access to several server nodes.

Activity 256-bit keys | 512-bit keys
Alice encrypts input data (only once) 205.23 s 1944.27 s
Bob computes £(log b;(x;)) (per HMM) 7947 s 230.30 s
Both compute (o (7)) (per HMM) 16.28 s 107.35 s

Table 4.1: Protocol execution times in seconds. Note that Alice’s encryption operation occurs only once at the begin-
ning of the protocol. The larger the dictionary of keywords, the larger is the computational overhead for Bob.

In order to observe the effect of error propagation, we compared the values of a7 (NN) for a given 0.98-second

38



speech sample derived using the the privacy preserving speech recognition protocol as well as a conventional non-
secure implementation which uses no encryption. This comparison of ar(N) with and without encryption was per-
formed for each of the 10 HMMs corresponding to the spoken words“one” through “ten”. The relative error in (V)
with respect to the true values was found to be 0.5179% for both 256-bit and 512-bit Paillier encryption.

4.2.2 A framework for implementing SMC protocols

We created a C++ framework for quickly implementing SMC protocols for machine learning and speech processing
algorithms. As we had seen before, the biggest bottleneck in implementing SMC protocols is the computational cost of
the encryption and decryption functions and similarly, we require efficient numerical computation and linear algebra
for implementing machine learning algorithms.

’ SMC Framework ‘

Cryptography ’ Linear Algebra ‘

OpenSSL |[BLAS|  |LAPACK|

Figure 4.7: Architecture of the SMC framework

The main computational cost of the cryptosystem comes from the variable precision arithmetic operations. We
used the variable precision arithmetic library provided by OpenSSL to implement the Paillier cryptosystem including
homomorphic operations on the encrypted data such as modular multiplication and exponentiations of ciphertexts.
Table 4.2 summarizes the time required to encrypt one number using our Paillier implementation across varying key
sizes.

key size | keygen | 1000 encryptions | # encryption/s
64 bits | 0.006's 0.063 s 15873.02
128 bits | 0.022 s 0.213s 4694.84
256 bits | 0.174 s 1.207 s 828.50
512 bits | 0.644 s 8.339 s 119.92
1024 bits | 42.757 s 62.907 s 15.90

Table 4.2: Encryption speeds.

We used BLAS and LAPACK libraries for fast matrix operations such as matrix inversion, multiplication, deter-
minant computation. we chose to use C++ because using a native implementation of these primitives is significantly
faster than using an virtual machine based implementation like Java or an interpreted one like Python. We chose
these libraries because they are ubiquitously available on most platforms and our framework can be used with just a
compilation.

Our objective was to create an efficient framework with an high level interface which abstracts most of these details
from the end developer. From our experiences in implementing SMC protocols using this framework, we believe that
it would greatly benefit the research community.

39



40



Chapter 5

Proposed Work

In this section, we describe some of the ongoing work that we propose to investigate in the scope of this thesis. Some
of the work is labeled optional in the sense that we recognize them as important future directions in our research and
we hope to make progress as much as possible in the available time.

5.1 Techniques

5.1.1 Differentially Private Hidden Markov Models

We plan to investigate differentially private hidden Markov models (HMMs). Using this framework, it will be possible
for a party to publish an HMM trained over private audio data. Such a release mechanism can be used as a guarantee
of privacy while collecting audio data from participants for training speech recognition systems. In general, the
differentially private formulation will greatly simplify the SMC protocols for speech recognition. The party with the
differentially private HMM can simply transfer the model parameters to the party with the data who can perform the
HMM inference necessary for speech recognition locally without the need for any data transmission.

A continuous density HMM is constituted by a finite set of states with an emission model giving the probability of
a state emitting an observation and a transition model giving the probability of transitioning from one state to another.
Our previous work on differentially private large margin GMM [Pathak and Raj, 2010b] can directly be used to model
the emission probabilities. We can apply it in an iterative algorithm to learn the transition probabilities. Also, we plan
to investigate differentially private mechanisms for the large margin HMM [Sha and Saul, 2007] and other structured
classification algorithms such as max-margin Markov networks [Taskar et al., 2003].

5.1.2 Differential Private Classification by Transforming the Loss Function

We have seen two mechanisms to create differentially private classifiers — the exponential mechanism [Dwork et al.,
2006] and the sensitivity method [Chaudhuri and Monteleoni, 2008]. The exponential mechanism proposed by adds
perturbation to the resultant optimal solution so that the classifiers trained on adjacent datasets are likely to have the
same optimum. The sensitivity method perturbs the convex objective function by a linear term to achieve the same
result. We propose to investigate the following mechanisms.

1. Adding randomization to the data. This technique involves modifying the loss function by adding random
perturbation to the data such that the resultant classifier satisfies differential privacy. One advantage of this
approach is that it will naturally allow multiple parties to contribute the data.

2. Kernel methods. Here we modify the loss function by adding perturbation in the kernel itself. As the dual
formulation of classifiers such as support vector machines involves the kernel trick dealing with only the dot
products, adding noise perturbing the kernel inner product should be adequate to satisfy differential privacy and
would introduce a much lower excess error.

41



In our work on differentially private classification, the ultimate goal would be to create a mechanism which pre-
serves differential privacy while introducing the least amount of excess error and also to investigate under what situ-
ations would such a universally optimum mechanism exist. We propose to investigate this question in the context of
large margin classification. Our intuition is that compared to other classification algorithms, a large margin classifier
should be much more robust to perturbation.

5.1.3 Optional: Privately Training Classifiers over Data from Different Distributions

In [Pathak et al., 2010a], we considered the problem of training a differentially private classifier by aggregating locally
trained classifiers from multiple parties. In this setting, our main assumption was that the data instances though
belonging to multiple parties were sampled from the same source distribution. This assumption is found to be too
restrictive in practice especially for problem areas such as speech processing as the individual characteristics of the
participants play an important role. We aim to develop a differentially private aggregation mechanism where data
belonging to each party is assumed to be sampled from different distribution.

5.2 Applications

5.2.1 Privacy Preserving Music Recognition and Keyword Spotting

In the keyword spotting involves detecting the presence of a keyword in an audio sample. A keyword is typically
modeled as an HMM which a party can privately train using a audio dataset belonging to another party using a training
protocol for speech recognition as described above. Using this model, we aim to construct an SMC protocol for
iterative Viterbi decoding that efficiently finds the sub-sequence an observation sequence having the highest average
probability of being generated by a given HMM. Additionally, we can also apply some of these techniques towards
privately searching text documents, towards creating a “private grep.”

Keyword spotting systems that use word level HMMs are analogous to HMM-based speaker identification systems
in their operation, and would require similar approaches to them privately. However, when the system permits the
user to specify the words and composes models for them from sub-word units an additional complexity is introduced
if it is required that the identity of the keyword be hidden from the system. The approach will require composition of
uninformative sub-word graphs and performing the computation in a manner that allows the recipient of the result to
obtain scores from only the portions of the graph that represent the desired keyword. Ezzat and Poggio [2008] propose
a more fruitful approach where the keyword spotting problem is reduced to computation of correlations and a simple
SVM or boosted classifier. The approach is reportedly more accurate than the HMM-based system. Additionally, due
to its simplicity, the complexity of privacy-preserving computation is also much lower for the method.

5.2.2 Privacy Preserving Speaker Verification and Identification

We are interested in constructing SMC protocols for speaker identification problem, where one party — the client has
access to the audio data and another party — the server, wants to learn a multi-class classifier, typically, a Gaussian
mixture model, to label each audio sample according to its speaker. Here are some of the issues we propose to consider.

1. SMC Protocols for Speaker Verification. In this case, the simplest systems that can be converted to privacy-
preserving form are based on GMMs and HMMs. Speaker verification schemes employ a variety of “anti-
speaker” and “garbage” models. Scores computed from the various models contribute to normalization schemes
that must also be incorporated securely as done by [Bimbot et al., 2004]. These normalization schemes some-
times include selection of the models themselves that will used by the system. Also, in the more complex
scenario, it may be desired that the user is correctly verified, but the system itself remains unaware of who
exactly was verified. To do so, the privacy-preserving framework must keep all model types active at all times
and the precise model used must not be revealed at any time.

2. SMC Protocols for Speaker Identification Given the similarity to speaker verification, the approach taken to
the development of privacy preserving speaker identification systems will also be similar. However, in this case

42



we have an additional level of complexity of requiring that the number of speakers must also be hidden. Also,
the actual outcome of the identification may need to be handled differently — the intended recipient might be a
third party.

3. Releasing Differentially Private Speaker Identification/Verification Classifier. The speaker identification or
verification problem involves training a classifier, which is typically a Gaussian mixture model, for validating
a speaker’s identity using an audio sample. If there is such a classifier trained over private collection of speech
recordings, it can result in disclosure of information about the data. This limits the amount of analysis that can
be done on such data as well as the prospects of their auxiliary information being revealed inhibits participants
from contributing their audio data to such collections. Towards this, we created a mechanism for releasing a
differentially private speaker identification classifier.

5.2.3 Optional: Privacy Preserving Graph Search for Speech Recognition

We are interested in constructing a cryptographic protocol for graph search problems. Most problems in speech
recognition including model evaluation algorithms like dynamic time warping (DTW), Viterbi decoding, as well as
model training algorithms such as Baum-Welch can be formulated as graph search problems; an efficient protocol for
privacy preserving graph search can result in practical solutions for many of these problems.

The two specific directions we plan to investigate are:

1. Graph Traversal. We plan to study the general problem where one party has a graph and another party is
interested in performing a graph traversal privately. While this is applicable in continuous speech recognition,
we also plan to apply it to the general problem of matching finite automata and regular expressions with privacy
constraints.

2. Belief Propagation. Given a graph structure, we are interested in evaluating how a potential function such as
the probability of having a contagious disease spreads across the nodes in a private manner, i.e., without any
node knowing anything about the value of the function at its neighbors. Kearns et al. [2007] present a simplified
privacy preserving message passing solution for undirected trees. We plan to extend it to general graphs.

5.3 Estimated Timeline

We plan to make progress towards the proposed work using the following timeline as a guide.

Time Slot Task

Dec 2010 - Apr 2011 | Privacy Preserving Music Matching & Keyword Spotting

May - Aug 2011 Differential Private Classification via Loss function Transformation
(optional) Differentially Private Classification from Different Sources

Sep - Nov 2011 Privacy Preserving Speaker Identification/Verification

Dec 2011 - Mar 2012 | Differentially Private HMM

(optional) Privacy Preserving Graph Search
Apr - May 2012 Dissertation writing

Jun 2012 Defense

43



44



Bibliography

M. Atallah and J. Li. Secure outsourcing of sequence comparisons. International Journal of Information Security, 4
(4):277-287, 2005.

S. Avidan and M. Butman. Efficient methods for privacy preserving face detection. In Neural Information Processing
Systems, pages 57-64, 2006.

B. Barak, K. Chaudhuri, C. Dwork, S. Kale, F. McSherry, and K. Talwar. Privacy, accuracy, and consistency too: a
holistic solution to contingency table release. In Symposium on Principles of Database Systems, pages 273-282,
2007.

D. Beaver. Foundations of secure interactive computing. In CRYPTO, pages 377-391, 1991.

M. Ben-Or, S. Goldwasser, and A. Widgerson. Completeness theorems for non-cryptographic fault-tolerant distributed
computation. In Proceedings of the ACM Symposium on the Theory of Computing, pages 1-10, 1988.

J. Benaloh. Dense Probabilistic Encryption. In Proceedings of the Workshop on Selected Areas of Cryptography,
pages 120-128, Kingston, ON, Canada, May 1994.

F. Bimbot, J.-F. Bonastre, C. Fredouille, G. Gravier, I. Magrin-Chagnolleau, S. Meignier, T. Merlin, J. Ortega-Garcia,
D. Petrovska-Delacretaz, and D. Reynolds. A tutorial on text-independent speaker verification. EURASIP Journal
on Applied Signal Processing, 4:430-451, 2004.

A. Blum, C. Dwork, F. McSherry, and K. Nissim. Practical privacy: The suLQ framework. In Symposium on Principles
of Database Systems, 2005.

W. Campbell. Generalized linear discriminant sequence kernels for speaker recognition. In IEEE International Con-
ference on Acoustics, Speech and Signal Processing, 2002.

W. Campbell, D. Sturim, and D. Reynolds. Support vector machines using GMM supervectors for speaker verification.
IEEE Signal Processing Letters, 13:308-311, 2006.

R. Canetti. Security and composition of multiparty cryptographic protocols. Journal of Cryptology, 13(1):143-202,
2000.

O. Chapelle. Training a support vector machine in the primal. Neural Computation, 19(5):1155-1178, 2007.

K. Chaudhuri and C. Monteleoni. Privacy-preserving logistic regression. In Neural Information Processing Systems,
pages 289-296, 2008.

K. Chaudhuri, C. Monteleoni, and A. Sarwate. Differentially private empirical risk minimization. arXiv:0912.0071v4
[cs.LG], 2010.

I. Damgard and M. Jurik. A Generalisation, a Simplification and Some Applications of Paillier’s Probabilistic Public-
Key System. In 4" International Workshop on Practice and Theory in Public Key Cryptosystems, pages 119-136,
Cheju Island, Korea, Feb. 2001.

45



S. Davis and P. Mermelstein. Comparison of parametric representations for monosyllabic word recognition in con-
tinuously spoken sentences. IEEE Transactions on Acoustics, Speech, and Signal Processing, ASSP-28(4):357,
1980.

I. Dinur and K. Nissim. Revealing information while preserving privacy. In ACM Symposium on Principles of
Database Systems, 2003.

C. Dwork. Differential privacy. In International Colloquium on Automata, Languages and Programming, 2006.
C. Dwork and K. Nissim. Privacy-preserving datamining on vertically partitioned databases. In CRYPTO, 2004.

C. Dwork, F. McSherry, K. Nissim, and A. Smith. Calibrating noise to sensitivity in private data analysis. In Theory
of Cryptography Conference, pages 265-284, 2006.

T. Ezzat and T. Poggio. Discriminative word-spotting using ordered spectro-temporal patch features. In SAPA work-
shop at Interspeech, 2008.

A. Frank and A. Asuncion. UCI machine learning repository, 2010. URL http://archive.ics.uci.edu/ml.

M. Freedman, K. Nissim, and B. Pinkas. Efficient private matching and set intersection. In Advances in Cryptology -
EUROCRYPT, pages 1-19. Springer, 2004.

O. Goldreich. Foundations of cryptography: Volume Il Basic Applications. Cambridge University Press, 2004.

M. Grant and S. Boyd. Graph implementations for nonsmooth convex programs. In V. Blondel, S. Boyd, and
H. Kimura, editors, Recent Advances in Learning and Control, Lecture Notes in Control and Information Sciences,
pages 95-110. Springer-Verlag Limited, 2008.

M. Grant and S. Boyd. CVX: Matlab software for disciplined convex programming, version 1.21. http://cvxr.
com/cvx, Apr. 2010.

A. Hatch and A. Stolcke. Generalized linear kernels for one-versus-all classification: Application to speaker recogni-
tion. In IEEE International Conference on Acoustics, Speech and Signal Processing, 2006.

G. Jagannathan, K. Pillaipakkamnatt, and R. N. Wright. A practical differentially private random decision tree classi-
fier. In ICDM Workshop on Privacy Aspects of Data Mining, pages 114-121, 2009.

M. Kantarcioglu and C. Clifton. Privacy-preserving distributed mining of association rules on horizontally partitioned
data. IEEE Transactions on Knowledge and Data Engineering, 16(9):1026—-1037, 2004.

S. P. Kasiviswanathan, H. K. Lee, K. Nissim, S. Raskhodnikova, and A. Smith. What can we learn privately? In IEEE
Symposium on Foundations of Computer Science, pages 531-540, 2008.

M. Kearns, J. Tan, and J. Wortman. Privacy-preserving belief propagation and sampling. In Neural Information
Processing Systems, 2007.

P. Kenny and P. Dumouchel. Experiments in speaker verification using factor analysis likelihood ratios. In Odyssey,
pages 219-226, 2004.

X. Lin, C. Clifton, and M. Y. Zhu. Privacy-preserving clustering with distributed EM mixture modeling. Knowledge
and Information Systems, 8(1):68-81, 2005.

Y. Lindell and B. Pinkas. Secure multiparty computation for privacy-preserving data mining. Journal of Privacy and
Confidentiality, 1(1):59-98, 2009.

P. C. Mahalanobis. On the generalised distance in statistics. Proceedings of the National Institute of Sciences of India,
2:49-55, 1936.

46


http://archive.ics.uci.edu/ml
http://cvxr.com/cvx
http://cvxr.com/cvx

M. Naor and B. Pinkas. Oblivious transfer with adaptive queries. In Advances in Cryptology: CRYPTO, pages
573-590, Seattle, USA, 1999.

P. Paillier. Public-key cryptosystems based on composite degree residuosity classes. In EUROCRYPT, 1999.
A. Papoulis. Probability, Random Variables, and Stochastic Processes. McGraw-Hill, second edition, 1984.

M. Pathak and B. Raj. Large margin multiclass Gaussian classification with differential privacy. In ECML/PKDD
Workshop on Privacy and Security issues in Data Mining and Machine Learning, 2010a.

M. Pathak and B. Raj. Large margin Gaussian mixture models with differential privacy. In IEEE Transactions on
Dependable and Secure Computing (submitted), 2010b.

M. Pathak and B. Raj. Privacy-preserving protocols for eigenvector computation. In ECML/PKDD Workshop on
Privacy and Security issues in Data Mining and Machine Learning, 2010c.

M. Pathak, S. Rane, and B. Raj. Multiparty differential privacy via aggregation of locally trained classifiers. In Neural
Information Processing Systems, 2010a.

M. Pathak, S. Rane, W. Sun, and B. Raj. Privacy preserving probabilistic inference with hidden markov models. In
International Conference on Acoustics, Speech and Signal Processing (submitted), 2010b.

J. Platt. Fast training of support vector machines using sequential minimal optimization. In Advances in Kernel
Methods — Support Vector Learning, pages 185-208, 1999.

M. Rabin. How to exchange secrets by oblivious transfer. Technical Report TR-81, Harvard University, 1981.

L. Rabiner and B. H. Juang. Fundamentals of Speech Recognition. Prentice-Hall, Inc., Upper Saddle River, NJ, USA,
1993. ISBN 0-13-015157-2.

S. Rane and W. Sun. Privacy Preserving String Comparisons Based on Levenshtein Distance. In Proc. IEEE interna-
tional Workshop on Information Forensics and Security (WIFS), Seattle, USA, Dec. 2010.

D. Reynolds. An overview of automatic speaker recognition technology. In IEEE International Conference on Acous-
tics, Speech and Signal Processing, 2002.

D. Reynolds, T. Quatieri, and R. Dunn. Speaker verification using adapted Gaussian mixture models. Digital Signal
Processing, 10:19-41, 2000.

F. Sha and L. K. Saul. Large margin gaussian mixture modeling for phonetic classification and recognition. In /IEEE
International Conference on Acoustics, Speech and Signal Processing, pages 265-268, 2006.

F. Sha and L. K. Saul. Large margin hidden markov models for automatic speech recognition. In Neural Information
Processing Systems, pages 1249-1256, 2007.

P. Smaragdis and M. Shashanka. A framework for secure speech recognition. IEEE Transactions on Audio, Speech &
Language Processing, 15(4):1404-1413, 2007.

K. Sridharan, S. Shalev-Shwartz, and N. Srebro. Fast rates for regularized objectives. In Neural Information Process-
ing Systems, pages 1545-1552, 2008.

B. Taskar, C. Guestrin, and D. Koller. Max-margin Markov networks, 2003.

J. Vaidya, C. Clifton, M. Kantarcioglu, and S. Patterson. Privacy-preserving decision trees over vertically partitioned
data. TKDD, 2(3), 2008a.

J. Vaidya, M. Kantarcioglu, and C. Clifton. Privacy-preserving naive bayes classification. VLDB J, 17(4):879-898,
2008b.

47



J. Vaidya, H. Yu, and X. Jiang. Privacy-preserving svm classification. Knowledge and Information Systems, 14(2):
161-178, 2008c.

A. Wang. An industrial strength audio search algorithm. In International Conference on Music Information Retrieval,
2003.

A. Yao. Protocols for secure computations (extended abstract). In IEEE Symposium on Foundations of Computer
Science, 1982.

48



Appendix A

Proofs of Theorems and Lemmas

A.1 Privacy Preserving Eigenvector Computation (Section 4.1.1)

proof of Theorem 4.1.1. We have,

— MTM  MTP
Tyr
MM = {PT]V[ 1 ]
Multiplying by the eigenvector v = { f“} gives us
sx1
v o] [MTMv+MTPY] v
M]V[[v’]{ PT My + o' =X v
Therefore,
MTMv+ MTPv =)o, (A.1)
PTMuv+v = . (A.2)

Since A\ # 1, Equation (A.2) implies v/ = ﬁPTM v. Substituting this into Equation (A.1) and the orthogonality
of P gives us

1
MTMv + ﬁMTPPTMU = %MTMU = \v.

Hence, MT Mv = (A — 1)v. O

A.2 Differentially Private Large Margin Gaussian Mixture Models (Section
4.1.2)

Lemma A.2.1. Assuming all the data instances to lie within a unit {5 ball, the difference in the derivative of Huber
loss function L(®, %, y) calculated over two data instances (Z;,y;) and (T}, y}) is bounded.

‘ 3]
oP cm 0 q’cm

Proof. For notational simplicity, let us denote the difference between the distance of The derivative of the Huber loss
function for the data instance Z; with label y; is

0 if M(z;,®.) > h,

» = _iT @7 e T ®eT o p .
a%L((I)’ f’h yl) = %[h o I?‘I’yfmi - log Em € qu)cmz] Ze e*fgécfi xix;r lf |M(xi7 ‘P(’)l S ha
cm m

L(@7fz,yl) — L(‘ﬁ :E" yl)

ey I

< 2.

e~ Tl ®c;

T =
e a2,
Zm e v

7T if M(z;,®.) < —h.

49



The data points lie in a ¢ ball of radius 1, Vi : ||Z;||2 < 1. Using linear algebra, it is easy to show that the Frobenius
norm of the matrix Z;Z7 is same as the {5 norm of the vector 7;, || Z;Z7 || = ||Z;]|2 < 1.
We have,

T g
e~ Ti ®.T;

1
N

1 o

- T
T;%;
=T ol Ak}

1 E: L€ Z; ®.7;

Z e~ ®eE T
m

&2 <1.

The term [h — Z7®,,Z; — log Y. e~ ®¥i] is at most one when |M(Z;, ®.)| < h, the Frobenius norm of the
derivative of the Huber loss function is at most one in all cases, Ha%L(Q, Zi, yl)H < 1. Similarly, for a data

instance 7] with label y/, we have || 72— L(®, 7, y/)|| < 1.

Finally, using the triangle inequality ||@ — b|| = ||@ + (—=b)|| < ||a@]| + [|5].

0 . 0 .
H 0P L(‘I’Ji,yi) - 6TL(‘I’»$;»ZJ§)

0 -
ai’c L(q’a Ty, yl)

L(®,7,y.)

y iy Jg

<2

4

oL -
O
proof of Theorem 4.1.2. As J(®, T, ) is convex and differentiable, there is a unique solution ®* that minimizes it. As

the perturbation term > . b;;®c;; is also convex and differentiable, the perturbed objective function J,(®, 7, /)
also has a unique solution ®? that minimizes it. Differentiating J,(®, &, §/) wrt ®.,,, we have

0 0
®.2,9) = L(®,2,y) + A1 b. A3
a(ﬁcm JP( vxvy) a@cm ( ,x7y) + D + ( )
Substituting the optimal ®2 _ in the derivative gives us
Mg +b=— 0 L(®P, Z,9)
P - aq)cm y Uy Y)-

This relation shows that two different values of b cannot result in the same optimal ®”. As the perturbed objective
function J,(®, Z, %) is also convex and differentiable, there is a bijective map between the perturbation b and the
unique ®” minimizing J,(®, Z, 7).

Let by and by be the two perturbations applied when training with the adjacent datasets
tively. Assuming that we obtain the same optimal solution ®” while minimizing both .J,(

b and J,(®, &, i) with perturbation by,

(Z,7) and (&', i), respec-
®, 7, ) with perturbation

AL b; = — L(®P 2y
&+ b 8¢cm, ( 7%3/),
— P 7
)\Iq’+b2 a(}cmL(q) 7l,y)a
b; — by = 0 L(®?, 7,y — 0 L(®P, Z,79) (A4)
1 2 a@cm ) ) 8¢)cm ) . .
We take the Frobenius norm of both sides and apply the bound on the the RHS as given by Lemma A.2.1.
0 0
by — bo|| = L(®?,7,7) — L(®P 2 ¢
b1~ ball = | G L7, ) ~ 5 L@ 2.7
n—1
0 0
= L(®P "i i L ¢p7 —/ , /
Hll aq)cm ( ’x’y)+a¢cm ( " n)
— 9 0
- L(®* _'757 i L va _’nv n
;%m (%, %, 1) = 5 —L(®",Tn, yn)
9] 0
= L(®P, %, y.) — L(®?, %, yn)|| < 2.
| L7080~ G L) <




Using this property, we can calculate the ratio of densities of drawing the perturbation matrices b; and by as

P(b=b;) m“bl\\dexp [—5lball]

P(b = by) m\\bg\\dexp [—%llbzll] 7
where surf(||b||) is the surface area of the (d + 1)-dimensional hypersphere with radius ||b|. As surf(||b|]) =

surf(1)||b||4, where surf(1) is the area of the unit (d + 1)-dimensional hypersphere, the ratio of the densities becomes

P(b=b,)
P(b = by)

= exp [ 5 ([bl| = [ba )]
< exp [ 5Dz — bu] < exp(e). (A5)

The ratio of the densities of learning ®? using the adjacent datasets (Z, %) and (&, ¢") is given by

P(®r|i’,if)  P(b=by)|det(J(®? — bao|a’,y))|~1’ '

where J(®? — b4|Z,7) and J(®P — bo|2”, ) are the Jacobian matrices of the bijective mappings from ®? to
b; and b, respectively. Following a procedure identical to Theorem 2 of Chaudhuri et al. [2010] (omitted due
to lack of space), it can be shown that the ratio of Jacobian determinants is upper bounded by a constant factor
exp(k) = 1+ %‘\ + ng—; for a constant value of «. Therefore, the ratio of the densities of learning ®” using the

adjacent datasets becomes
P(®*|7, )
IZCER) < exp(e + k) = exp(€). (A7)

Similarly, we can show that the probability ratio is lower bounded by exp(—e¢’), which together with Equation
(A.7) satisfies the definition of differential privacy. O

Lemma A.2.2. The objective function J(®) is A-strongly convex. For 0 < a < 1,
J(a®+ (1 —a)®) <aJ(®) + (1 —a)J(P)

Aa(l — «) 2
S e,

C

Proof. By definition, Huber loss is A-strongly convex, i.e.,

L(a®+ (1—a)®) <al(®)+ (1—a)L(P)

Aa(l -
= “(2 PR (A8)

where the Frobenius norm of the matrix set ® — ®’ is the sum of norms of the component matrices ®. — ®7,

& — | =@ — @ (A.9)

As the regularization term N (®) is linear,
N(a® + (1 — a)®')
=\ Ztrace(aLp@chq> +(1—-a)ls®, Is)

= al\ Z trace(Ie®cnla) + (1 — )X Z trace(Is P, Is)

cm cm

= aN(®) + (1 — a)N(®"). (A.10)
The lemma follows directly from the definition J(®) = L(®) + N(P).

51



Lemma A.2.3.
Ztrace Is(®. — ®)Is]| < Z||q> — 3.

Proof. Let ®.; ; be the (i, j)'" element of the size (d+1) x (d+ 1) matrix ®.— .. By the definition of the Frobenius
norm, and using the identity N Zf\il z2 > (Zivzl x;)?,

d+1d+1 d+1

POLE I AREDB DL AATED PP PL ¥

c i=1j=1 c =1

>ZZ<I>W > = <Z§:®c,i,¢>2

c =1 c =1
2

Z trace[ls(®,. — @ )1s]

Lemma A.2.4.

SITE AL (§)] <o

Proof. Similar to the union bound argument used in Lemma 5 in Chaudhuri and Monteleoni [2008].

A.3 Differentially Private Classification from Multiparty Data (Section 4.1.3)

Theorem A.3.1. Given a set of n training data instances lying in a ball of radius 1, the sensitivity of regularized
logistic regression classifier is at most -=. If wi and wy are classifiers trained on adjacent datasets of size n with
regularization parameter \,

2
w1 —wal[1 < —.

ni

Lemma A.3.2. Let G(w) and g(w) be two differentiable, convex functions of w. If wi = arg min,, G(w) and wy =

arg min, G(w) + g(w), then [[w1 — wao| < &t where g1 = max, |[Vg(w)| and G2 = min, min,, vI2G (w)v for

any unit vector v € R%.

Proof of Theorem 4.1.6. We formulate the problem of estimating the individual classifiers w; and the classifier w*
trained over the entire training data in terms of minimizing the two differentiable and convex functions g(w) and G (w).

w; = argmin J(w,x|;,y|;) = argmin G(w),
w w

w* = argmin J(w,X,y) = argmin L(w,x|;,y|;) + Z L(w,x|;,¥]1) + A|wl|?
b b le[K]—j
= argmin J(w,x|;,y|;) + Z L(w,x|;,y|;) = argmin G(w) + g(w).
b IE[K]~j ¢

52



Mo e —yiliwTzi )y

1
Z Z1—i-e vilwTa, 7 vl

ny
le[K]—j
1 —e —yihwT il T 1 fefyithmi‘l T 1
= < — - < —
IVa(wl Zl: n; 1+e 1t e-vihwTa S || = Xl: ny Z 1+ e~ viliwTazil: Yite || = ZZ: n’
7 K3

= max |[|[Vg(w)| < —. A1l
0 = mpx|Vewl < 3 (A1)

1 eviliwixil;
J P N AN
Substituting the bounds on ¢g; and GG in Lemma A.3.2,
1 1
wi —wr|| < — — A.13
¥ wll_Alen (A.13)
Applying triangle inequality,
~ * 1 ~ * ~ * 1 ~ * ~ *
I = w')| = }ZWJ‘_W S = Ew || = o (5 — W)+ (i — )|

J J

- %

1 X i} -1 1 K-1

<EXIm-wi- Y Z xS n
- 7 el 3 1)

where n(1) = min; n;. O]

proof of Theorem 4.1.5. Consider the case where one instance of the training dataset D is changed to result in an
adjacent dataset D’. This would imply a change in one element in the training dataset of one party and thereby a
change in the corresponding learned vector W . Assuming that the change is in the dataset of the party P;, the change
in the learned vector is only going to be in W;; let denote the new classifier by w . In Theorem A.3.1, we bound the

sensitivity of W, as ||W; — \?V;- I < e —2 . Following an argument similar to [Dwork et al., 2006], considering that we

learn the same vector w* using either the training datasets D and D', we have

(1) EN || A
P(W'|D)  P(w;+n|D eXP[ > ‘1} e
P((WS|D’)):P(”J mD’) = Tamaary | = (12) 1% = Wil
(W) +n|D’) exp[ & ||wj||1}

A2
< exp {71(12)5%)\] < exp [ (3)6] < exp(e),

by the definition of function sensitivity. Similarly, we can lower bound the the ratio by exp(—¢). O

Proof of Theorem 4.1.3. We use the Taylor series expansion of the function .J to have
A S ~ S * * 1 ~ S
TW) = J(W") + (W = w)TVI (W) + 5 (W — W) T V2T (w) (W — W)

for some w € RY. By definition, V.J(w*) = 0.
Taking /5 norm on both sides and applying Cauchy-Schwarz inequality,

S S * 1 S S *
[J(W°) = J(wW)] < S = wo|* [ V2T (w)]| (A.14)

53



The second gradient of the regularized loss function for logistic regression is
eyzWTXf,

1 1 1
VEIW) = 0 D g S N = 0D ek AL

Since the logistic function term is always less than one and all x; lie in a unit ball, ||V2J(w)|| < X + 1. Substituting
this into Equation A.14 and using the fact that J(w*) < J(w),Vw € R,

A+1
TOW) < (W) + S - w (A.15)
The classifier w* is the perturbed aggregate classifier, i.e., W = W + 7, with the noise term 17 ~ Lap (n(ie )\). We
apply Lemma A.3.3 to bound ||| with probability at least 1 — §. Substituting this into Equation A.15, we have
s « 1. N A+1
JW) < JW) 4 S IIW = w" + ) = J(w") + == [[W = W[ + [[n]|* + 2(% — w") "]
A1 [(K-1)2 4 o ()] . .
< J(w* 1 - A+1 —w" .
< I+ 5 | S+ e 087 () |+ O DIy
Using the Cauchy-Schwarz inequality on the last term,
. A+1[(K=1)2  4d® d
< * 1 - A+1
T < I0) + T | S+ g 08 (5 ) |+ O D =l
(K —1)2(\+1)  2d*(A+1) q 2 K—-1)(A+1) d
< J(w* - 1 - .
STV TR e Y ae 5 w2z %\G
(1) (1)
O

Proof of Theorem 4.1.8. Let w™ be the classifier minimizing the true risk J (w). By rearranging the terms,
JW*) = J(w*) + [TW°) = Jw)] + [Fw) = J(w")] < J(w") + [T (W) = F(w)].

Sridharan, et al. Sridharan et al. [2008] present a bound between the true excess risk of any classifier as an
expression of bound on the regularized empirical risk for that classifier and the classifier minimizing the regularized
empirical risk. With probability at least 1 — 6,

JOW°) — J(W) < 20T (W) — J(w*)] + % [32 +log ((m . (A.16)

Substituting the bound from Theorem 4.1.3,

< s ~ 2(K )2()\+ 1) 4d2(>\+1) 5 (d
J —J(w") < 1 - A.17
(W) = J(w") < e T (A1)
(1) (1)

4dd(K —1)(A+1) d 16 1
1 - — |32 +1 |- A.18
+ n%l)e)\Q \5) " tlos (5 (A1)
Substituting this bound into Equation A.16 gives us a bound on the true excess risk of the classifier w® over the
classifier w*. O

In]
Lemma A.3.3. Given a d-dimensional random variable n ~ Lap(f3) i.e., P(n) = %6_%, with probability at least

1 — 6, the {5 norm of the random variable is bounded as

d
Il < 245105 (5 ).
The proof is similar to Lemma 5 of Chaudhuri and Monteleoni [2008].

54



	Introduction
	Outline

	Speech Applications and Privacy
	Basic Tools
	Signal Parameterization
	Gaussian Mixture Models
	Hidden Markov Models

	Speech Processing Applications
	Speaker Verification and Identification
	Music Matching
	Keyword Spotting
	Speech Recognition


	Background on Privacy and Security
	Secure Multiparty Computation
	Data Setup and Privacy Conditions
	Tools for Constructing SMC protocols
	Related Work on SMC Protocols for Machine Learning and Speech Processing

	Differential Privacy
	Related Work on Differentially Private Machine Learning


	Preliminary Work
	Techniques
	Privacy Preserving Eigenvector Computation
	Differentially Private Large Margin Gaussian Mixture Models
	Differentially Private Classification from Multiparty Data

	Applications
	Privacy Preserving Keyword Recognition
	A framework for implementing SMC protocols


	Proposed Work
	Techniques
	Differentially Private Hidden Markov Models
	Differential Private Classification by Transforming the Loss Function
	Optional: Privately Training Classifiers over Data from Different Distributions

	Applications
	Privacy Preserving Music Recognition and Keyword Spotting
	Privacy Preserving Speaker Verification and Identification
	Optional: Privacy Preserving Graph Search for Speech Recognition

	Estimated Timeline

	Proofs of Theorems and Lemmas
	Privacy Preserving Eigenvector Computation (Section 4.1.1)
	Differentially Private Large Margin Gaussian Mixture Models (Section 4.1.2)
	Differentially Private Classification from Multiparty Data (Section 4.1.3)


