
Interprocedural Variable Liveness Analysis
for Function Signature Recovery

MIGUEL ARAUJO AND AHMED BOUGACHA
{maraujo@cs, ahmed.bougacha@sv}.cmu.edu

Carnegie Mellon University
March 20, 2014

Project Proposal

Project webpage http://cs.cmu.edu/~maraujo/15745/

Project Description

We studied variable liveness as a key problem for register allocation in
procedures. Recently, interprocedural variable liveness grew in importance
as the increased number of registers available led to arguments being passed
in registers instead of in the stack; tracking the liveness of the arguments
and return values then becomes essential for register allocation. Another
scenario in which the interprocedural analysis is required is in signature
recovery in decompilers, i.e. how to figure out the number and type of each
function’s parameters and return values?

We plan to build on an existing binary to LLVM IR decompiler, Dag-
ger. Currently, each function takes a single parameter (a register context
structure) and returns void. By determining which registers are live at the
beginning of a function and which are live after each callsite of the function,
we can determine which registers are used respectively as arguments and
as return values; our transformation would make the analyzed code more
closely match the initial function definition.

Evaluation will be done by comparing the recovered signature with the
actual source-level signature: one should be able to recover from unspecified
decompiled binary code, the combination of ABI calling convention and
function signatures for each analyzed function.

We propose the following goals:
75% Primary objective is to complete register liveness analysis on the
decompiled code.

1



100% Recovering and evaluating the function signatures from the register
liveness analysis.

125% Further research directions: code transformations to match the re-
covered function signatures; robust types recovery; including arguments
passed in the stack in the analysis.

Logistics

Schedule

Week Miguel Ahmed
20/3 - 27/3 Getting familiar with Dagger Further research, architecture

and algorithm definition
27/3 - 3/4 Basic liveness analysis framework
3/4 - 10/4 Liveness analysis complete
10/4 - 17/4 Intermediate report and signature recovery
17/4 - 24/4 Benchmarking and signature transformation
24/4 - 1/5 Poster and final report

Milestone

We plan to have fullfilled our 75% goal, register liveness analysis must be
working.

Literature Search

There has been related prior work, mostly on the UQBT and Boomerang
decompilers. UQBT [1] also used interprocedural dataflow analysis, though
for uses other than function signature recovery. Boomerang expands on
UQBT, using SSA form, and also doing generalized function signature
recovery [2]. Variants of SSA form, such as SSI, have also been used [3]: the
decompiler we work on (Dagger) generates a form similar to SSI, but the
need to fully maintain it during transformations wasn’t encountered yet.
Different approaches for function signature recovery have been proposed
[4]. A study of register liveness dataflow analyzes [5] also proposes useful
algorithms for our situation. Type recovery has also been explored with
good results [6].

2



Resources and getting started

Ahmed is the original creator of Dagger so he is completely familiar with
the decompiler. Progress can start immediately.

References

1. Cristina Cifuentes and K. John Gough. Decompilation of binary programs.
Softw. Pract. Exper., 25(7):811–829, July 1995.

2. Mike Van Emmerik. Static Single Assignment for Decompilation. PhD thesis,
The University of Queensland, 2007.

3. Jeremy Singer. Static program analysis based on virtual register renaming.
Technical report, University of Cambridge, 2006.

4. Lukas Durfina, Jakub Kroustek, Petr Zemek, and Bretislav Kabele. De-
tection and recovery of functions and their arguments in a retargetable
decompiler. In Proceedings of the 2012 19th Working Conference on Reverse
Engineering, WCRE ’12, pages 51–60, Washington, DC, USA, 2012. IEEE
Computer Society.

5. Robert Muth. Register liveness analysis of executable code. Technical
report, 1998.

6. JongHyup Lee, Thanassis Avgerinos, and David Brumley. Tie: Principled
reverse engineering of types in binary programs. In NDSS, 2011.

3


