2008 IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC)

Usability Challenges for Enterprise Service-Oriented Architecture APIs

Jack Beaton, Sae Young Jeong, Yingyu Xie, Jeffrey Stylos, Brad A. Myers
School of Computer Science, Carnegie Mellon University
Jjackbeaton@cmu.edu

Abstract

An important part of many programming tasks is
the use of libraries and other forms of Application
Programming Interfaces (APls). Programming via web
services using a Service-Oriented Architecture (SOA)
is an emerging form of API usage. Web services in a
business context (called enterprise SOA or E-SOA) add
additional complexity in terms of the number of the
services, the variety of internal data structures, and
service interdependencies. After altering existing Hu-
man-Computer Interaction (HCI) methodologies to
address the unique context of software development for
SOA, we evaluated a large E-SOA API and identified
many usability challenges. Prominent results include
difficulties developers encountered while assembling
data structures in web service parameters, cycles of
errors due to unclear control parameters within data
structures, and difficulties with understanding long
identifier names. We recommend a tolerance for un-
specified objects in automatically-generated web ser-
vice proxy code, consistent data structures in parame-
ters across services, and encoding optional namespace
schemes into WSDL files.

1. Introduction

The informed design of Application Programming
Interfaces (APIs) is important to ensuring the effective-
ness of developers. Design choices can affect the levels
of efficiency and rates of adoption of APIs, but without
objective and empirical data to justify design decisions,
API usability is a difficult goal.

“Service-Oriented Architecture” (SOA) is a way to
divide software into services that communicate over a
network with the client and with other services, and
which can be combined into composite applications.
Enterprise SOA (E-SOA) is focused specifically on
supporting processes throughout an entire organization,
such as through Enterprise Resource Planning [9].

E-SOA, as supplied by many companies through
web services technology, is a new development para-
digm whose usability aspects have not yet been studied.
Complex business needs cause a tremendous increase
in complexity, in addition to the existing usability is-
sues with web service technology. Prior research has

1-4244-2528-0/08/$25.00 ©2008 IEEE

193

shown that programming using object-oriented APIs
has interesting and unique challenges with respect to
usability and API design [2, 3, 8], but the usability im-
plications of large SOA API frameworks for develop-
ers are interesting and unstudied.

We focused on the usability challenges of coding a
composite application using a large E-SOA API
framework provided by a cooperating company. This
paper summarizes the usability problems we found, and
discusses recommendations for future E-SOA projects.

2. E-SOA Web Service Model of Use

Web services are provided by a service provider,
and used by developers to create an application that
provides the service to end users. We call the developer
a “consumer” of the web service.

The typical steps when consuming web services us-
ing the common SOAP protocol involve first finding
the appropriate service in the online documentation,
and downloading the requisite Web Service Descrip-
tion Language (WSDL) file for that service from a ser-
vice registry. The WSDL file is entered into a stub ge-
nerator which creates a code reference “stub”, and
finally the developer writes the application code
against the stub. The stub code supports the service by
sending and receiving SOAP XML messages, and
makes the service appear like familiar “offline” code in
the developer’s Interactive Development Environment
(IDE). The WSDL file describes the supported mes-
sages and their parameters. The consuming application
can be written in any language that supports SOAP,
including Java, C#, C++, Ruby, etc.

API designers providing web services are limited in
their choices by the lack of support for richness in data
structures. The services in the API we studied, rather
than taking values as a series of parameters, primarily
take one data structure as a single parameter that must
be constructed and filled with values, many of which
are themselves data structures. The required data struc-
tures are fairly large and complex. Furthermore, vari-
ous fields serve as control parameters that select one of
multiple possible uses of each service. For each use,
some fields are required to be filled in, some fields are
required not to be filled in, and other fields are option-

Authorized licensed use limited to: Carnegie Mellon. Downloaded on October 8, 2008 at 14:17 from IEEE Xplore. Restrictions apply.

al. Patterns of values and fields that do not meet one of
the templates recognized by the service will result in
errors. We were working in C#, in which each data
structure is implemented as an object that users create,
but these objects have no methods relevant to consum-
ing the service.

The API naming scheme needed to ensure that each
of the tens of objects used within each of the hundreds
of services would remain uniquely named if any two
services were used in the same composite application.
As a result, the names of the objects were very long,
often over 100 characters.

3. Related Work

Other research in this field has helped inform our
studies, but does not focus directly on the unique topic
of SOA API usability.

SOA API designers have debated the Documenta-
tion-style and Remote Procedural Call (RPC) WSDL
standards. RPC WSDL files allow the specification of
API design patterns consistent with certain target lan-
guages (such as naming specifications for languages
supporting namespaces) at the expense of compatibility
with other languages, restricting their popularity [1, 6].

Existing research on API usability focuses on non-
SOA development. Ko described learning barriers as-
sociated with programming, including the phenomenon
of misconceptions by developers leading to further
misconceptions [5]. Stylos developed methodologies
for studying APIs [3, 8], which we have adapted for the
current research.

Providing the correct “granularity” of services has
consequences for service usability. Jones listed anec-
dotal SOA “anti-patterns”, or common mistakes made
when developing SOA architectures. These include
problems caused by service hierarchies that are either
too fine-grained or too coarse-grained [4].

In the case of E-SOA, a fine-grained design with too
many services makes finding the correct service diffi-
cult. On the other hand, providing a coarse-grained
design of a few multipurpose services makes them dif-
ficult to understand, because they have many parame-
ters controlling variations of behavior. Large-
framework E-SOA vendors must supply functionality
for a vast variety of business needs, and so they simul-
taneously face both the challenges associated with fine-
grained services and those associated with coarse-
grained services. Jones’ solutions in both cases are to
move towards the opposite extreme [4], which compa-
nies with large business application frameworks, al-
ready arguably in the middle, cannot do without remov-
ing functionality and alienating customers.

194

4. Methodology

To better understand the challenges of consuming
E-SOA web services, we performed a user study focus-
ing on how well developers could code a composite
application using a large-framework web service API.

Six participants were recruited for the coding study.
All were recruited from university classes on web ser-
vices and were familiar with consuming web services
from class work. Of the six participants, two had sub-
stantial experience with enterprise applications and
business processes.

We identified services relating to the generation of
new sales orders using customer and product informa-
tion as likely to be heavily used. The scenario chosen
was a sales order creation application. Participants
were given product, supplier, and buyer string names,
and three services to translate each into the primary key
IDs required by a fourth service to create a sales order.

Participants used the Visual Studio .NET environ-
ment due to its current popularity among existing E-
SOA customers of the tested API. We provided the
coding study participants with a pre-configured C#
project, including code stubs generated from WSDL
files and a user interface of a sales order creation utility
for which the participants were asked to create working
code. Participants were given the service documenta-
tion and asked to consume services in this order: “Find
Customer”, “Find Supplier”, “Find Product”, and
“Create Sales Order”. Testing then proceeded using the
Think Aloud protocol.

5. Study Results

All six participants in the study implemented the
first service, “Find Customer”, but only with significant
advice from the moderator. Only two of the six also
implemented the “Find Supplier” service within the
time limit, one of whom had business application expe-
rience. None implemented the “Find Product” or
“Create Sales Order” services successfully.

We observed eight barriers that the participants ex-
perienced, and classified them by the errors that caused
them. Three of these were given informal names, be-
cause they were very disruptive and quickly became
familiar:

Assembly Error (“Some Assembly Required”):
This occurred when the developer failed to create and
combine some or all of the required message tree in the
correct way. For example, for the “Find Customer”
service, a Customer object must be sent that contains a
Common object that contains a Name object. Absences
caused unhelpful null reference exceptions, and often
occurred because, in the generated stub code, instantia-
tion of an object does not imply automatic instantiation

Authorized licensed use limited to: Carnegie Mellon. Downloaded on October 8, 2008 at 14:17 from IEEE Xplore. Restrictions apply.

of objects lower in the tree hierarchy. All users were
surprised to discover that they needed to create every
one of the objects themselves, instead of just the top-
level object used in the method parameter.

Exclusion Error (“Batteries Not Included”): In
addition to the data-carrying object, users must include
miscellaneous objects as parameters of the service me-
thod, such as a log object. Unlike the main data struc-
ture, they do not need to be combined or assigned val-
ues, but they must be supplied. Some of these were
undocumented, and were often left out by participants.

Specification Error (“Do Not Eat Silicon Gel”):
Certain objects should rot be created or given values
to accomplish the task, because doing so was inter-
preted as an incorrect, incomplete new branch of the
tree. Users filled an invalid combination of fields in the
data structure, usually because they thought they
needed an object that signified a different service func-
tionality, but this caused other unspecified fields to
become mandatory. This was the most time-consuming
error to overcome.

Structure Error: All users expressed confusion
about the basic structure of the object combinations
that must be created. Users were unsure of what the
fields meant, and what data should go where.

Default Error: Three users were unsure if default
values must be supplied or an object must be created,
and if so, what they should be. All three tried to guess
values, which led them to make Specification Errors.

Foundation Error: Web service providers cannot
know what API a third-party client-side stub generator
will create, and so documentation is vague and code
examples are missing. All users were confused by am-
biguous descriptions of the generated code stubs in the
online API documentation.

Naming Error: All six users either misread names
or were confused by them. All complained about the
length of the names and all made accidental Specifica-
tion Errors by mixing up two long object names that
are different only because of one word in the middle,
which may be a “blind spot” in long names.

Consistency Error: Before the think aloud test, all
six users asserted that the “Find Customer”, “Find Sup-
plier”, and “Find Product” services would share similar
API design patterns because they shared a similar pur-
pose. Of the two users who implemented the first two
tasks, one deliberately copied and pasted the “Find
Customer” code and tried to manually replace each
word “Customer” with “Supplier” before realizing the
correct code was quite different. This is because the
data structures of the “Find Customer” and “Find Sup-
plier” services carried similar information using a dif-
ferent pattern of branches.

195

6. Discussion

Coding errors due to invalid values were observed
leading to other errors, which steadily increased in se-
verity until the moderator had to intervene.

Of the three users who exhibited the Default Error
symptom, all three tried to guess field values and made
Specification Errors, and none implemented more than
one service. One attempted to set every field that could
be found until stopped by the moderator, one attempted
to avoid specifying bad values by setting them all to
NULL (which was also a bad value), and another user
refused to continue with the task until he was told
whether or not to specify the value of an incorrect field
after expressing the intuition that he ought to do so.

These appear to be symptoms of cascading pro-
grammer error, which we hypothesize is a condition in
which violated expectations cause the developer to
question their every assumption about the API and so
begin exploring a wider space of possible actions, re-
sulting in more errors that would not otherwise have
occurred and a vicious cycle. Ko found evidence of
developer misconceptions leading to further miscon-
ceptions [5]. During an earlier study on API design
patterns [8], it was observed that if users experienced
errors due to several unexpected requirements, they
would specify values they did not understand to try to
avoid another error message.

Structure, Foundation, and Consistency Errors pre-
ceded Assembly and Inclusion Errors, making the par-
ticipant suspect the documentation. To avoid further
error messages, the developer began specifying all
available fields. Without examples or descriptions, the
developer does not know which values belong where
(Structure Error); because they do not know if defaults
are set automatically they assume that the null refer-
ence errors experienced during Assembly will continue
until every possible field is specified (Default Error).
Because the values entered are incorrect, Specification
Errors cause new errors, creating a cycle that is self-
sustaining until all possibilities, or the developer’s pa-
tience, are exhausted.

Repeated Specification Errors were the most time-
consuming, because unless given outside help or work-
ing example code, developers could continue trying
random combinations indefinitely. The complexity of
available fields makes identifying one of the modes of
a multipurpose service by guesswork a monumental
task, resulting in loss of productivity and a general
sense of despair and intimidation.

Long names were used to uniquely identify the vast
number of objects in the large framework of services,
to avoid naming collisions when services are combined
into a composite application. Since the WSDL design-

Authorized licensed use limited to: Carnegie Mellon. Downloaded on October 8, 2008 at 14:17 from IEEE Xplore. Restrictions apply.

ers could not count on having a namespace feature in
the target programming language, the front of the name
was used for the service name. The end was used to
communicate the object’s position in the data structure.
This makes it more likely that other critical information
may occupy a “blind spot” in the middle of the result-
ing long names.

Long names are also harder to mentally process and
often cause code to extend horizontally off the screen,
requiring horizontal scrolling, a well-known problem
during normal text navigation [7]. In our study, the lack
of visibility of the surrounding code while scrolling to
the right was seen to interrupt and frustrate the devel-
oper’s concentration. On the other hand, names that
were too short to be descriptive were observed to be
misinterpreted in our study, causing Structure Errors.

Other results from our study, which we do not have
room to discuss in depth here, include that business
domain knowledge is valuable when navigating for
appropriate services, that users are principally search-
ing for input and output parameters to better link up the
modular services, and users deliberately turn away
from areas of a documentation site with an inconsistent
visual design because they believe they have left the
site.

7. Recommendations

To prevent Assembly Errors entirely, generated stub
code could arrange for all fields of an object to be au-
tomatically instantiated in the constructor of the top-
level object, using default values that signify the object
is uninitialized. Provided services should also tolerate
objects supplied as parameters with fields that are un-
initialized or empty. This requires the cooperation of
stub generator tool designers and SOA API designers.
Such coordination may require substantial effort, but
could make the largest difference in the usability of
web service APIs and the long-term adoption of SOA.

A more easily achievable goal by individual service
providers is to standardize services so that the code for
each is consistent. Although the service provider may
know that the backend for each service is very differ-
ent, if the consuming developer perceives the services
as similar, they will expect a similar interface. Services
sharing the same business object or appearing to per-
form similar operations should “inherit” the same com-
prehensible data structure. This will preserve developer
expectations by presenting greater consistency across a
large API framework.

Current naming may result in long, difficult names
in large-framework SOA APIs because all objects in all
services must be unique, so multiple services can be
used in a composite application. Documentation-style

196

WSDL files could encode an optional namespace
schema for stub generators for languages using names-
paces, like RPC WSDL files can. Research is needed to
determine how multiple web services could be com-
bined into the same namespace structure. If name
lengths cannot be reduced, research is needed to quan-
tify the effects of name length on usability.

8. Conclusions

We found that users have significant challenges in
consuming enterprise SOA web services that can po-
tentially be overcome. There is a large space for future
research into the benefits of SOA API usability, and we
hope to start an ongoing dialogue based on empirical
data about current problems and feasible solutions. We
hope our research will help create improved APIs,
clearer documentation for the APIs, and better tools to
support the use of the APIs.

9. References

[1] Akram, A. and Meredith, D., “Approaches and Best Prac-
tices in Web Service Style, Data Binding, and Valida-
tion,” in Securing web services: practical usage of stan-
dards and specifications, P. Periorellis, Editor 2007, Idea
Group Inc. pp. chap. 13., pp. 7.
http://epubs.cclre.ac.uk/bitstream/1542/AsifAkramDaveM
eredithChapter.pdf.

[2] Clarke, S., “Measuring API Usability.” Dr. Dobbs Jour-
nal, May, 2004. pp. S6-S9.

[3] Ellis, B., Stylos, J., and Myers, B. “The Factory Pattern in
API Design: A Usability Evaluation,” in International
Conference on Software Engineering (ICSE'2007). May
20-26, 2007. Minneapolis, MN: pp. 302-312.

[4] Jones, S., “SOA Anti-Patterns,” Jun 19, 2006. C4Media
Inc.: InfoQ.com. http://www.infoq.com/articles/SOA-anti-
patterns.

[5] Ko, A.J. and Myers, B.A. “Development and Evaluation
of a Model of Programming Errors,” in /EEE Symposium
on End-User and Domain-Specific Programming
(EUP'03), part of the IEEE Symposia on Human-Centric
Computing Languages and Environments. October 28-31,
2003. Auckland, New Zealand: pp. 7-14.

[6] Loughran, S. and Smith, E. “Rethinking the Java SOAP
Stack,” in [EEE International Conference on Web Servic-
es (ICWS). 12-15 July, 2005. Orlando, FL:
http://www.hpl.hp.co.uk/techreports/2005/HPL-2005-
83.pdf.

[7] Nielsen, J., “Scrolling and Scrollbars. Useit Alertbox,”
July 11, 2005. NielsenNorman Group:
http://www.useit.com/alertbox/20050711.html.

[8] Stylos, J. and Clarke, S. “Usability Implications of Re-
quiring Parameters in Objects' Constructors,” in Interna-
tional Conference on Software Engineering (ICSE'2007).
May 20-26, 2007. Minneapolis, MN: pp. 529-539.

[9] Woods, D. and Mattern, T. 2006 Enterprise SOA: De-
signing it for Business Innovation. O'Reilly Media, Inc.

Authorized licensed use limited to: Carnegie Mellon. Downloaded on October 8, 2008 at 14:17 from IEEE Xplore. Restrictions apply.

