

Answering Why and Why Not Questions in User Interfaces
Brad Myers, David A. Weitzman, Andrew J. Ko, and Duen Horng Chau

Human Computer Interaction Institute
Carnegie Mellon University

Pittsburgh, PA 15213
bam@cs.cmu.edu

http://www.cs.cmu.edu/~bam

ABSTRACT
Modern applications such as Microsoft Word have many
automatic features and hidden dependencies that are fre-
quently helpful but can be mysterious to both novice and
expert users. The “Crystal” application framework provides
an architecture and interaction techniques that allow pro-
grammers to create applications that let the user ask a wide
variety of questions about why things did and did not hap-
pen, and how to use the related features of the application
without using natural language. A user can point to an ob-
ject or a blank space and get a popup list of questions about
it, or the user can ask about recent actions from a temporal
list. Parts of a text editor were implemented to show that
these techniques are feasible, and a user test suggests that
they are helpful and well-liked.

Author Keywords
Why, Help, Questions, Natural Programming.

ACM Classification Keywords
D.2.2 Design Tools and Techniques: User interfaces; D.2.6
Programming Environments: Graphical environments;
H.5.2 User Interfaces: Interaction styles, Training, help,
and documentation; D.2.11 Software Architectures.

INTRODUCTION
One of the classic guidelines for user interface design is to
have “visibility of system status” to “keep users informed
about what is going on” [18]. And yet, in an informal sur-
vey of novice and expert computer users, everyone was able
to remember situations in which their computer did some-
thing that seemed mysterious. For example, sometimes Mi-
crosoft Word automatically changes “teh” into “the”, but it
does not change “nto” into “not”. The spacing above a
paragraph can be affected by properties in the “Format
Paragraph” dialog box, along with the heights of the actual
characters on the first line of the paragraph (even the
heights of invisible characters such as spaces). In the Win-
dows desktop and Windows Explorer “Icon” view, some-

times the icons go where you put them but sometimes they
auto-arrange into columns. A command that hides all the
windows can be invoked by accident, making users wonder
where their windows went.

All of these features, and the dozens of others that we col-
lected (and that the reader can undoubtedly think of), are
quite useful to most users, and have been added to user in-
terfaces because they help most people most of the time.
However, when a novice or expert is unfamiliar with these
features, or when something happens that is not desired,
there is no mechanism to figure out why the actions hap-
pened, or how to control or prevent them. It is even more
difficult when an expected action does not happen, for ex-
ample, why did the spelling not get corrected? No help sys-
tem built into any of today’s systems can answer these
questions. As applications inevitably get more sophisti-
cated, such a facility will be even more necessary.

Inspired by the Whyline research [11] that answers “why”
and “why not” questions about a program’s execution to aid
debugging, we created an application framework called
Crystal that helps programmers build applications that can
answer questions about an application (see Figure 1). Crys-
tal provides Clarifications Regarding Your Software using
a Toolkit, Architecture and Language. The idea is that the
system makes things “crystal clear.” At this point Crystal is

Figure 1: The answer for why “Teh" was changed into “The”.
The pink “?” in the upper left shows where the F1 key was hit.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
CHI 2006, April 22–28, 2006, Montréal, Québec, Canada.
Copyright 2006 ACM 1-59593-178-3/06/0004...$5.00.

primarily a feasibility demonstration, but it does show that a
system can helpfully answer users’ “why” and “why not”
questions.

Instead of supporting natural language, Crystal builds ques-
tion menus dynamically based on the current state of the
application. The user can ask questions either by hitting a
key (currently F1) while the mouse cursor is over the item
of interest, as was done in Figure 1, in which case Crystal
automatically builds a menu of questions about the objects
under the mouse. Crystal provides invisible objects under
every point in the window so users can ask questions by
pointing to where there are apparently no objects, such the
white space around paragraphs.

Alternatively, a “why” menu displays a list of the last few
operations that were or were not performed. This includes
explicit user actions (e.g., “hitting the ‘Backspace’ key”),
along with automatic actions like spelling correction, and
other actions which are normally not logged (e.g., hiding
windows). This list also includes actions that the user tried
to perform but did not actually execute, such as hitting Con-
trol-C for Copy with nothing selected. The application de-
signer can add to the menus questions about other things
that did not happen which might be mysterious to users.
Examples include when interdependencies or constraints
prevent an object from moving or cause automatic correc-
tion to not happen.

In response to any of these questions, Crystal displays a
window containing an automatically-created explanation
(see the bottom-left of Figure 1). Whenever possible, the
elements of the user interface that contributed to the value
are displayed, and a red highlight is put around the user
interface controls (also called “widgets”) relevant to the
question. In Figure 1, the “Replace text as you type” check-
box of the AutoCorrect dialog is highlighted. In cases
where the user interface controls cannot be so easily dis-
played, Crystals adds a “How Can I…” question to the bot-
tom of the explanation window, to allow the user to ask
how to control the features that were involved in the opera-
tion. Other systems have supported such “How Can I” ques-
tions, but not in the context of “why” questions, and Crystal
also differs in that it automatically determines how to en-
able the actions.

Like the Whyline [11], Crystal must store extra information
about a program’s execution to support answering the ques-
tions. Therefore, the question-answering cannot simply be
plugged into an existing application like Microsoft Word.
Instead, the application must be built in such a way as to
collect the appropriate information during execution. The
Crystal framework adds novel extensions to the command-
object model [16] to store the appropriate information. This
makes it easy to build applications which will support the
asking of questions.

To demonstrate the effectiveness of this framework, we
used it to build parts of a sample text editor which has some
automatic transformations like Microsoft Word. We then

used this editor in a small user study. The results suggest
that Crystal is effective in teaching users about these com-
plex features, and the interaction techniques were easy to
use and well-liked. Participants with the “why” features
were able to complete about 30% more tasks than those
without, and of the tasks completed, participants with the
“why” features were about 20% faster.

The Crystal framework is primarily intended to help explain
complex behaviors and interdependencies among the vari-
ous features. It is not intended to help the end-user find out
why things happened if the programmer introduced bugs
into the application. The assumption that Crystal makes is
that all the resulting behaviors are intended. If the pro-
grammer does not know why something happens, it is unre-
alistic to expect end-users to!

The rest of this paper summarizes the related work, de-
scribes the user interface features, and then explains in de-
tail the software architecture that makes asking the ques-
tions possible. The user study is then described, followed
by future work and conclusions.

RELATED WORK
Help systems for interactive applications have been studied
extensively. Norman discusses two important “gulfs” in
people’s use of their systems [19]. Many help systems (e.g.,
[7] [13] [20] [22]) are designed to help with the gulf of exe-
cution: teaching users how to perform actions, primarily to
learn about a command they already know the name of, or
learn how to perform tasks. For example, Cartoonist [22]
displays animated help showing the steps required, but it
must explicitly be given the name of a command or task. In
contrast, we believe that Crystal provides the first help sys-
tem to specifically target the gulf of evaluation: helping
users interpret what they are seeing on the screen and de-
termine how to fix it if it is not what they intended.

Many recent help systems focus on giving tutorials for how
to use a system. For example SmartAidè [20] uses AI plan-
ning methods to give step-by-step instructions when the
user has a goal in mind but does not know how to execute
it. “Stencils” focuses the user’s attention on certain parts of
the interface during a tutorial to prevent errors [8]. The
Crystal framework would probably be helpful in building
such systems, since it provides an explicit representation
between the user actions and the underlying behaviors, but
creating tutorials using Crystal is left for future work.

AI-based question answering systems (e.g., [13] [23]) focus
on improving the effectiveness of queries that use natural
language, which Crystal avoids by generating popup menus
containing specific relevant questions .

A number of systems have allowed the user to go into a
special mode and click on controls in the interface to get
help on them. This was available, for example, in the first
version of LabView [17] in 1986, and the “?” icon works
this way in some Windows dialog boxes. Eclipse will dis-
play “infopops” when the user presses F1 over any user

interface widget [7]. The infopops can contain links to vari-
ous topics. In these kinds of systems, however, the help text
is statically written by the programmer and does not help
with questions about why actions did or did not happen. In
Crystal, the question and answer text is automatically gen-
erated from the program’s execution history.

In its answers, Crystal highlights the actual widgets of the
interface. This approach has been used in Apple Guide [10],
Stencils [8], and the “Show me” feature of some modern
help systems. A difference from these is that Crystal auto-
matically determines which widgets should be highlighted.

The only systems we are aware of that try to use tracing and
dependency information to help users are programming
systems such as spreadsheets and debuggers. For example,
Microsoft Excel 2003 will show the cells on which the cur-
rent cell depends. Forms/3 goes further in providing visu-
alizations that try to focus the user’s attention on from
where faulty values may have come [21]. Production sys-
tems, such as ACT-R, have long had the ability to ask why
productions did or did not fire [3], and the Whyline [11]
generalizes this to any output statement in the program.
Dourish [5] speculates about how an open data model [9]
[14] might help applications explain their behavior, and
provides motivation and technical guidelines, but does not
describe any implementation. We are not aware of any ap-
plications for end users that dynamically generate a list of
“why” questions about the context, or dynamically create
the answers based on the history of users’ actions.

USER INTERFACE
Crystal makes contributions in two areas: the interaction
designs for asking and answering questions, and the frame-
work to make implementing this easier. Research has
shown that users are often reticent to use help systems and
that the help system’s own user interface can be a barrier to
its use [6]. Therefore, a key requirement for Crystal is that
it be very easy to invoke and that the answers be immedi-
ately helpful.

To address these issues, we designed the interface to the
“why” system with just two simple interaction techniques:
the F1 key and the “why” menu. The “why” menu also con-
tains an item to go into a mode that allows invoking loca-
tion-based questions, in case the user does not know how to
use the F1 key. Our observations suggest that virtually all
of the user’s questions will be about things that are visible
(or invisible in the case of white space) in their application,
or things that happened recently.

Which Questions To Include
The next important design issue is what questions belong in
the menus. In a simple direct manipulation application, such
as a drawing editor, the only things that happen are what the
user explicitly does, so the question menu will simply have
one entry for each user action. In this case, the question
menu is automatically built by Crystal from the commands
that are executed. However, any sophisticated application

will also have situations where there are hidden states or
invisible dependencies that affect what users see. Examples
include when a setting in one part of the user interface con-
trols whether other things happen, such as the auto-
corrections in Figure 1, and whether meta-information, such
as paragraph marks (¶), are displayed or not. These must be
added to the question menus as well. However, the applica-
tion designer must guard against having too many questions
in the menu, because then it will take too long for the user
to find the desired question. Crystal therefore provides a
way for the designers to note that certain actions should be
omitted from the question menus.

For example, when implementing the sample text editor, we
decided not to add regular typing to the menu, because it
seemed unnecessary to let the user ask why “b” appeared,
with the answer being “because you typed it.” Similarly, we
do not add questions about why characters move around
(characters move when you type before them). In general,
these are excluded because the actions and their feedback
are so common and so immediate that users already know
the answers. In other application domains, there are similar
types of basic operations that would be excluded by the
application designer (such as back and forward in a web
browser, automatically marking e-mails as read after five
seconds, changing tools in Photoshop, and other actions
with immediate and direct visual feedback). Note that de-
signers use similar heuristics today to decide what should
go into the undo menus, and at what granularity – scrolling
is not on the undo menu at all, and typing is grouped into
chunks for undo.

In the sample text editor, there are questions for all other
explicit user actions, including when typing causes the se-
lected text to be deleted. If the editor supported complex
mechanisms that moved text in non-intuitive ways (such as
the widow/orphan control in Word), then these would be
added to the menu as well.

The “why” menu also contains some actions that did not
happen. Of course, an infinite number of different things
could be added, but users only need to be able to find out
about things they expected to happen. Some of these can be
handled automatically by Crystal, including non-actions
that stem from explicit user input. For example, Crystal
adds to the menu questions for keystrokes that have no ef-
fect, such as typing Control-C with nothing selected (see
Figure 2). Also added are questions about actions that did
not do anything because they were explicitly disabled. For
example, if the auto-correct shown in Figure 1 was turned
off, and the user types “Teh”, the menu will let the user ask
why it was not corrected (see Figure 2). For background
tasks, however, the application designer will have to notify
Crystal when menu items should be added. The program-
mer specified that spelling corrections should be added to
the menus, but “Why Not” questions are not added for
words that are spelled correctly and therefore not corrected,
since this would quickly fill up the menu with questions
that are never likely to be of interest.

Figure 2: “Why” menu. The top item lets the user click for where
to get help. The next two actions in the menu did not happen.

(a)

(b)

Figure 3: Menus resulting from hitting F1, showing sub-menus
for the character (a) and paragraph (b) properties.

Figure 4: Questions about blank areas when hit F1.

Figure 5: The answer to “Why is the ‘p’ bold?”, when it was be-
cause the user set the property using the toolbar button.

Designing the Menus
When the F1 key is hit, Crystal looks at all objects under
the cursor to generate the list of questions. For example,
before getting the windows shown in Figure 1, the menu at
the left of Figure 3 would have appeared. The first level
menu has questions about the character and paragraph un-
der the mouse, and any global operations performed on that
object. Figure 1 resulted from choosing the last item in the
first menu. In Figure 3-a, the user has selected the question
about the properties of the character “h”.

The questions in the menus are designed to feature the val-
ues in an easy-to-find place (at the end of each question) so
that a quick scan will show all the properties’ values. To
display each value, Crystal uses a variety of built-in rules so
the menus are concise yet readable. For Boolean properties,
the value name or “not” the value name is used, such as
“bold” or “not italic”. For numeric properties, we use prop-
erty = value. These automatic rules can be augmented by
the designer with rules for application-specific types. For
example, for the sample text editor, we added a custom rule
to just use the style name for style values (such as “Default”
in Figure 3).

If the F1 key is hit while the mouse is over a blank part of
the window, Crystal includes questions in the menu about
why that white space is there. In Figure 4, the paragraph is
listed because it has an invisible portion that extends to the
left edge of the window, since paragraphs control indenting.
The designer of the editor has also added to the menu an
additional question about whitespace, which summarizes all
the different contributions to that whitespace (since charac-
ter and paragraph properties might both be involved in
other situations).

Like Eclipse [7], hitting F1 while the mouse cursor is over a
control, such as a dialog box or a menu item, will provide
help for that control. If the item is grayed out, Crystal will
generate an explanation for why it is disabled.

Providing Useful Answers
Answers to the questions typically have two parts: a textual
explanation and highlighting of the relevant user interface
controls (see Figure 5). The motivation is that users typi-
cally want to know more than why something happened—
they also want to know what they can do about it, such as
changing it to be different. Therefore, whenever possible,
answers highlight specific actions that users can take.

When the referenced control is in a dialog box, Crystal also
highlights all the controls necessary to making it appear, so
the user does not have to figure out how to get what the
answer discusses to happen. For example, in Figure 1, Crys-
tal has highlighted the AutoCorrect Options menu item in
the Tools menu, and the specific control used on the result-
ing dialog. All dialogs are “live” while they are highlighted,
so the user can operate them normally. This will often save
the user a number of steps if the property needs to be
changed. In fact, it is sometimes quicker to use the F1 fea-

ture to get to the desired dialog box instead of navigating to
it, even when the user knows why things happened.

While we expect that the controls and dialog boxes of the
application will be the primary focus for the user’s answers,
the textual explanation is necessary in some situations, such
as when there is a chain of causes for the situation. For ex-
ample, Figure 6 shows the answer explaining why the text
is size 20, which is inherited from its style. The explanation
is also useful when the user wants to learn how the applica-
tion works in detail.

When there are multiple causes and actions as part of the
explanation, Crystal adds to the bottom of the answer win-
dow a link for each one (see Figure 6). When clicked, the
text window provides the answer and the appropriate con-
trols are highlighted. The back button in the answer window
can then be used to return to the original question. When
the user closes the answer window, the highlighting is re-
moved from all controls.

Figure 6: The answer shown for when a property’s value is inher-
ited from a style.

APPLICATION FRAMEWORK
An important contribution of this research is an object-
oriented framework that makes it easy to create applications
that support “why” and “why not” questions. The Crystal
framework is implemented on top of Java Swing 1.5 and
makes use of the standard Swing controls and architecture.
The key additions in the Crystal framework are abstractions
to represent application objects and their properties, and
command objects that support undo and questions. The
result is a framework where only a small amount of addi-
tional code is needed to support the “why” questions, be-
yond what is needed anyway to support undo. We used this
framework to implement a sample text editor as a test ap-
plication. We chose a text editor because it is a particularly
difficult kind of application to build. Also, the Microsoft
Word text editor contains many complex features that we
wanted to see if our system could help explain. Implement-
ing a graphical editor, as has been used to test most previ-
ous frameworks [2, 16], would be straightforward.

Hierarchical Command Objects
Crystal uses a “Command Object model” [2, 16] to imple-
ment all of the actions. As commands are executed, they are
stored on a command list which serves as a history of all the
actions that have been taken. This command list is used for
undo and the why menus.

Crystal uses hierarchical command objects [16]. The top-
level command objects are all the user-executed commands
(like when the user clicks on a menu item). The lower-level
command objects are for the individual actions that a com-
mand may include. For example, setting some text to the
“Heading” style might change the size, the font, and make
the text bold. Crystal separates these into three different
sub-commands of the Set-Style top-level command.

Each command object contains a variety of methods and
fields, as shown in Figure 7. The first six are typical of
other command object systems [2, 16], but the second six
are novel with Crystal, and are described next.

Dependencies: Crystal needs to know the dependencies
among commands and values. In particular, many com-
mands’ actions depend on the values of controls. For exam-
ple, the auto-correct command of Figure 1 depends on the
value of the Replace-Text-As-You-Type property, and
the answer wants to describe this for users. Using the saved
old values, the answer generator can fetch the value of the
control at the time when the command was executed. This
allows Crystal to generate a message like “the auto-correct
preference was disabled” even if the property is now en-
abled. When values are inherited for properties, such as
when the font size for a character comes from a named
style, the Dependencies parameter is used to record where
the value came from.

Invoking-Control: Each command records the specific
control used to invoke this command, since there may be
multiple ways to initiate any command (e.g., a keyboard

key, a toolbar button and a menu item can invoke the bold
command). The Invoking-Control value is used to high-
light the control in red as part of answers.

Questions-Method: When more specific questions and
answers are needed for an application, the designer can
implement this method. It can also be useful when the de-
signer wants to improve the naturalness of phrasing of the
answers. The method returns an object that contains a
method to generate the corresponding answer. This is used
in the sample text editor for example, by the background
auto-correction process. For standard property setting (e.g.,
“make bold”) and actions like creation and deletion, Crystal
automatically creates the questions and answers, and the
designer does not need to supply a method here.

Undoable/Undone: Whether this command can be un-
done, and if so, whether it was undone yet.

Show-In-Why-Menus: As discussed above, the program-
mer might determine that some commands should not be
shown to the user as part of “why” menus even though they
are undoable. For example, the Crystal text editor allows
regular typing to be undone, but does not add to the “why”
menus. The programmer can set Show-In-Why-Menus to
false for these kinds of commands. Conversely, normally
sub-commands are not shown to users in the “why” menus,
and instead just the top-level command would be included.
However, if the programmer wants to allow the user to ask
about a sub-command, then its Show-In-Why-Menus can
be set to true. An example is that when a new character is
typed, the top-level typing command is not displayed in the
“why” menus, but if the new character inherits its format-
ting from a named style, the programmer might want the
sub-command that sets the character’s properties from the
style to appear on the “why” menus, since that may be mys-
terious to some users.

When a command’s Enabled property specifies that it is
disabled, but the user tries to execute it anyway (e.g., typing
Control-C with nothing selected), then a command object is
put on the command list with its Enabled property set to
false to show that it was not actually executed. These un-
executed commands allow Crystal to support asking of
“why not” questions (Figure 2). Of course, these commands
are not undoable, since they were never executed.

Supporting Do/Undo/Redo
In the Crystal framework, an application object, such as a
character in a text editor or a rectangle in a graphics editor,
is represented as a set of “properties.” Examples of proper-
ties for a character include the value (e.g., “b”) and the font.
In order to support undo, the old values of properties must
be remembered. The Amulet command objects [16] stored
the old values in the command objects themselves. Instead
in Crystal (like the Whyline [11]) each property of an object
contains a list of all of the old values. Each value is marked
with a timestamp, which makes it easy to revert an object to
all the correct values at any previous point in the history. If
the old values were in the command objects instead, this
would require searching all the commands for the appropri-
ate values. Each old value also contains a pointer to the
command object that set it, and that command object will
contain the same timestamp. Note that making the proper-
ties be first-class objects like this is common in many mod-
ern toolkits. For example, Swing requires that some proper-
ties be objects so that other objects can install property-
listeners on them to be notified of changes.

When the user performs undo and then performs a new
command, the undone commands can never be redone, so
most previous systems throw away the command objects.
However, in Crystal, we keep a complete history of all pre-
vious actions, even if they were undone, so nothing is ever
popped off the command list. Instead, undo causes a new
Undo-Command object to be added to the head of the list,
with a new sub-command that undoes the appropriate ac-
tion. Then, the command that was undone is marked as un-
done, so future undo commands will know to skip it.

Note that, as in Microsoft Word, the automatic correction
features are added as undoable commands, so, for example,
when the user types “teh ” and Crystal changes it to “the ”,
the auto-correct-command is added to the command
list, so the user can undo the auto-correction separately
from undoing the typing of the space.

Connecting Properties of Objects to Commands
As mentioned above, each property of objects in Crystal
contains a current value and a list of old values (see Figure
8). Each value is associated with a timestamp and a refer-
ence to the command object that caused it to have the cur-
rent value. Values that are inherited, for example from
styles, will still have a local value but there will be an asso-
ciated property that specifies that the value is inherited. The
command object associated with the property will be the

Name Function

Do-Method
Performs the action, e.g. changes the
font to bold

Undo-Method Undoes the action
Redo-Method Redoes the action

Object-Modified
Object affected by this action, so the
command can be undone.

Enabled
Boolean to determine if action can be
invoked now

Label String that describes this command

Dependencies
Which properties of which objects are
used by this command

Invoking-Control
Which control was used to invoke this
command

Questions-Method Supports application-specific questions

Undoable/Undone
Field that notes whether this command
was undone yet

Show-In-Why-Menus
Boolean that flags whether this com-
mand should appear in Why menus

Figure 7: Fields and methods of the command objects in
Crystal. Properties in bold are novel.

one that caused the inheritance to happen, and that com-
mand object will contain the reference to where the value
came from. For example, if a character’s font size is 18,
which is inherited from a style named “Header”, the charac-
ter’s font-size property will contain a value 18 with a
reference to an Inherit-From-Style-Command object,
which in turn will reference the Header style object. The
character will also have an internal Font-Size-
Inherited property with the value true.

Properties in Crystal have a number of additional parame-
ters beyond those needed just to support undo (see Figure
8). Internal properties like Font-Size-Inherited have
Show-In-Why-Menus set to false so they will not be
made visible to users in the “why” menus. Each property
also knows the full set of controls that can affect it directly.
For example, the bold property of a character knows about
Control-B, the “Toggle Bold” item in the Edit menu, and
the “b” button in the toolbar. However, the character bold
property does not need to know about the “b” button in the
paragraph window, since that operates on the bold property
of paragraph styles, and when appropriate, Crystal can de-
duce that it was used by following the dependency informa-
tion. The list of controls is used to tell the user how the
property can be changed.

To explain to the user how values were derived for proper-
ties that are never explicitly set, the application designer
must add a special non-undoable command to the beginning
of the command list which represents all the default, initial
values. Then, question and answers can be handled auto-
matically by Crystal, as can be seen in Figure 1, where
auto-correct has its default value. For systems such as
Microsoft Word where initial values can come from many
different places: such as various options, Normal.dot, etc.,
the designer would add multiple initialization command
objects with custom question methods, so each can describe
how the user would change the corresponding default value.

Generating the List of Questions
Generating the list of questions for the “why” menu is
straightforward. It is just the last few user-visible items in
the command list. Note that it will often include more than

what would be available in the undo history, since unexe-
cuted commands and the undo commands themselves will
be in the “why” menu. As discussed above, some com-
mands, such as regular typing, are not added to the “why”
menu as controlled by the Show-In-Why-Menus flag on
the commands. The questions used both fixed and dynamic
information about what happened (as shown in Figure 2).

Generating the list of questions for the F1 menu is more
involved. First, Crystal uses a Swing mechanism to iterate
through the components under the mouse, and checks each
to see if it implements the Question-Askable interface,
and if so, calls it. There are three basic ways this interface is
implemented by the Crystal framework.

The first is used when F1 is hit on a Swing control, such as
a menu or toolbar item, and then associated the command
object is used. The programmer can provide a string ex-
plaining what the command does. The Enabled property of
the associated command is automatically checked to see if
an additional question should be generated about why the
control is disabled. In this case, the programmer can pro-
vide a string to explain how to make it be enabled.

The second way is used for objects that have properties. In
this case, the framework can handle the questions and an-
swers without help from the programmer. All the user-
visible properties of the object, along with their current
values, are added in a sub-menu, as shown in Figure 3.

Figure 9: The user typed “g” in Figure 5 while “helpful” was
selected, so it was deleted. Crystal inserts an invisible marker in
the text so a question will appear about the deleted object.

The third way is used for describing why graphical objects
were created or deleted, and is also automatically handled
by Crystal. All graphical objects have a pointer to the com-
mand that created them so it can be added. Auto-correction
is actually implemented as a special kind of create, so a
question about auto-correction will be displayed for the
appropriate text. However, in this case we added a custom
question method to specifically describe the automatic fea-
tures and dependencies. Objects that are deleted by the user
leave invisible objects where they used to be, linked to the
commands that deleted them. In a regular graphical editor,
this would make it easy to ask about the object that used to
be at a location. In the sample text editor, the objects are
invisible markers that flow with the text (see Figure 9).

In the text editor, we added a custom method for
whitespace that adds an extra question that asks about the
whitespace itself. Alternatively, the programmer can pro-
vide special invisible objects in all the blank areas, and let
them generate questions about why the area is empty.

Name Function
Value Value of the property, e.g., “b”

My-Object
Backpointer to the object this is a
property of

Command-Which-
Last-Set-Me

Pointer to the command object which
caused the current value to be set

Inherited
Tells whether the current value is in-
herited, and if so, from what other
property

Old-Values Time-stamped list of previous values

Show-In-Why-Menus
Whether this property should be shown
in the “why” menus

Invoking-Controls
All the controls that could change this
property’s value

Figure 8: Fields and methods for Properties of Objects

Generating the Answers
For most questions, Crystal has built-in techniques for gen-
erating the answers. For properties of objects (e.g., “Why is
the ‘g’ not bold”), the answer for why it has its current
value is provided by showing the operation that caused it to
have that value, and recursively, why that operation hap-
pened. Therefore, asking about a property of an object is the
same as asking about the command that caused that prop-
erty to have its current value. This observation was also
made by the Whyline study [11] where the “Why is…”
questions that were originally in the menus were removed
because users were confused about the difference from the
“Why did” questions.

For a property that was set locally on the object (such as a
character that was explicitly set to bold), the answer says
that it was set by the user, as in Figure 5. The corresponding
control is also highlighted, by referencing the Invoking-
Control of the command.

When the property’s value is inherited, for example when a
font size property comes from a named style, then the an-
swer must include a discussion of the inheritance, as well as
the final place in which the value was set, as in Figure 6.
This required a custom answer method in the sample text
editor, to generate understandable messages. However, fa-
cilities in the Crystal framework automatically traverse the
command’s Dependencies to determine the properties
that contributed to the current value. If any of those proper-
ties themselves were inherited, then Crystal recursively
goes to those properties’ commands, and then to their De-
pendencies, etc. At each step, Crystal checks to see if the
property is marked as Show-In-Why-Menus. If so, another
sentence is added to the answer window. (Internal proper-
ties are often involved in dependencies, but should not be
shown because users cannot change them.) When there are
multiple steps, then a “How can I…” question is added to
the end of the answer, so the user can ask about each step
individually.

To highlight the controls, Crystal needs the ability to bring
up widgets programmatically, set them to specific values,
find their location, and highlight them, while still having
them be operational for the user. Furthermore, the dialog
boxes need to keep track of what causes them to be dis-
played, so Crystal can highlight the appropriate menu item.
We were able to implement all of these using the Swing
toolkit. Such support is also available in other commercial
toolkits such as Mac OS X’s Cocoa, where it has been used
to implement several types of universal access features.

Implementing the Sample Text Editor
We implemented parts of a sample text editor using the
Crystal framework as a test. We used a Model-View design,
where the view uses the Java Swing TextLayout to format
each line. Like Glyphs [4], Crystal’s model uses an object
for each character that stores the letter and all of its proper-
ties (font, size, bold, etc.) except location, which is handled
by the layout. Along with the regular characters, the Crystal

editor adds special invisible markers to show where various
operations occurred, such as deleting text. A marker moves
with the characters to its left (if any), and can never be de-
leted (although the question mechanism could decide not to
include old deletions in the “why” menus). Styles are im-
plemented as objects with sets of properties that can be in-
herited by characters. There are no additional structures
needed for words or paragraphs in Crystal. About 10% ex-
tra code (most of it quite simple) was needed to add support
for answering why questions to the text editor.

Other Kinds of Applications
We believe it would be straightforward to use the Crystal
framework to implement other types of applications. We
chose to implement a text editor because it seemed like the
most difficult. For a drawing editor like Microsoft Power-
Point, each graphical object would have a list of user-
settable properties and Crystal would automatically keep
track of which commands set them. For “smart” operations,
such as the automatic adjustment of font sizes, and moving
of attached lines when boxes are moved, the developer
would add extra commands to the command list to explain
why these happened. When the user hits F1, the system
should return all objects under the mouse, including indi-
vidual objects, groups, and background (“master”) objects,
and put these into the first-level menu. An implementation
for spreadsheets might combine the techniques described
here with techniques discussed elsewhere [21] [1] that ex-
plain how the values were calculated.

USER STUDY
A small lab study was performed to evaluate whether the
“why” menus in Crystal were usable, and to what extent
they helped users understand what was happening in their
user interfaces.

Experimental Setup and Participants
We used a between-participants design, because the key
issue is learning about how to use the system. One group
used the Crystal sample text editor as shown here, and the
other used the identical text editor, but with the “why”
menu removed, and F1 disabled. Each group contained 10
participants, all between the ages of 18 and 53 with an av-
erage age of 24. 12 participants were male and 8 female.
We recruited participants who reported “little or no” ex-
perience with Microsoft Word, although they all had exten-
sive general computer experience, and all but two had ex-
perience with other text editors. Those two happened to
both be in the group with the “why” menus. Participants
were randomly assigned to one of the two groups and were
paid to participate. The experiment was conducted on a
laptop and was recorded.

Both groups received the identical six tasks. These were
derived from real observations of Microsoft Word users,
published articles about difficulties with Word, and an in-
spection of Microsoft's support pages. The tasks represent
common issues that real Word users encounter. In sum-

mary, the tasks were (1) turn off automatic capitalization;
(2) turn off automatic spelling correction; (3) change para-
graph formatting; (4) explain why the “Paste” menu item is
grayed out; (5) use the Styles mechanism to change italics
of some headings; and (6) use the inheritance property of
the Styles mechanism to adjust the font size of all headings.
However, the tasks were not presented this way. We dem-
onstrated a problem or a surprising behavior (or let the user
do it), and then asked them to fix it. For example, the ex-
perimenter read the following script as the stimulus for the
first task:

1. Type in the following sentence “The abbreviation fl. oz.
stands for fluid ounce.”

2. You notice that the word processor has capitalized some
characters for you, but you don’t want this to happen.

3. Your task is to make the automatic capitalization not hap-
pen again.

4. When you think you’re done, type “fl. oz. stands” again to
make sure it works.

In order to make the experiment somewhat realistic, we
copied Microsoft Word 2003’s “Tools” menu and the “Op-
tions” and “Auto Correct Options” dialogs that are invoked
using the Tools menu (see Figure 1). All of the submenus
and the various tabs on each of these were live, so the users
would have to search through more places. Both tasks 1 and
2 required using the “Auto Correct Options” dialog (Figure
1), and no task required using the Options dialog. Tasks 3, 5
and 6 required using the paragraph styles dialog (Figure 6).

The dependent measures were whether the participants
were able to complete the tasks at all and how long they
took for the ones they completed. A few users got stuck and
required hints, and then we counted them as unsuccessful.
We were also interested in usability observations.

Results
Because not all participants completed all tasks success-
fully, the data could not be analyzed using a standard re-
peated-measures ANOVA. Therefore, we analyzed both the
number of tasks completed and the mean time per com-
pleted task using between-participants ANOVA. Partici-
pants in the “why” menus condition completed an average
of 5.60 (93%) of the tasks whereas those without “why”
menus completed an average of 4.20 (70%) of the tasks (F
[1, 20] = 12.60, p < .005). As shown in Figure 10, partici-
pants with “why” menus had an advantage in each of the
six tasks.

Figure 11 shows the average time per task for those partici-
pants who could finish it. Participants with “why” menus
completed each task in an average of 91.38 (SD = 51.66)
seconds, whereas those without “why” menus required an
average of 137.74 seconds (SD = 49.62). This difference
approached significance (F [1, 20] = 4.19, p = .06).

The anomalous value for task 6 seems to be due to a few
participants in the “without” group accidentally figuring out
a workable strategy during task 5, compared to the “why”

menu group who almost all used the “why” menus to try to
learn how inheritance works.

The participants who saw them really liked the “why” fea-
tures. Each of the statements got an average agreement
value of greater than 6.2 out of 7: “I understand how to use
the Why feature in Crystal”, “I found the Why feature easy
to use”, “The Why feature improved my word-processing
experience”, “The answers provided by the Why feature
were easy to understand”, “The answers provided by the
Why feature were what I wanted to know”, “I was comfort-
able using the Why feature”, and “I would really like a Why
feature like this in the programs I use.”

Completion Rate

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 3 4 5 6 AVERAGE

Task #

With Why Menu
Without

Figure 10: Percent of people in each group that completed the
tasks and the overall average. Taller bars are better.

Average Time To Complete Task (in seconds)

0

25

50

75

100

125

150

175

200

225

1 2 3 4 5 6 AVERAGE

Task #

With Why Menu
Without

Figure 11: For the participants who could complete the task, the
average time they took, with bars showing the standard error of
the mean. Shorter bars are better.

Discussion
Clearly, the “why” menus were helpful to users. It is not
surprising that the later tasks fared worse, since these tasks
were quite difficult, even for some experts. For some peo-
ple, the “why” features played the crucial role of explaining
the concept to some of the participants, which directly led
to successful task completion. However, Crystal is not nec-
essarily designed to serve as a tutorial, and it probably did
not teach participants about the concept of inheritance if
they did not know it already.

We had a number of usability observations about the sys-
tem. Most of the participants preferred using the F1 key to
have more control over the questions they could ask. It

seemed that the most efficient people used the F1 key first.
Some participants were reticent to use the F1 key—this
apparently was not a natural interaction for them. They used
the “Ask about a location…” item in the “why” menu when
the desired question was not in the “why” menu directly.

Participants using the “why” features generally knew which
objects they should ask questions about, and the questions
that showed up matched their expectation. A lot of trial-
and-error clicking of menus happened for participants who
did not have the “why” features, while the “why” people
did not, and seemed to be more purposeful and effective.

FUTURE WORK AND CONCLUSIONS
An obvious next step for Crystal is to do a more complete
implementation of the framework so full applications can
be built with it, to verify that the ideas scale up and work
well in different domains. It would be useful to be able to
field-test applications supporting the “why” menus to see to
what extent they really help in practice. It would be inter-
esting to see if the Crystal framework would be easier to
implement on top of a toolkit with a constraint system such
as Citrus [12]. Another open question is how important it is
to save the Why information across sessions, so that later
users can ask questions about the contents of files read from
the disk. We know of no system that saves the undo or
command history with the files. The current framework
cannot answer questions about operations that are no longer
part of the command history.

Everyone to whom we have described the ideas in Crystal
has remembered situations in which they wished they could
have asked their applications and operating systems why
things happened. As even more sophisticated and “intelli-
gent” operations are increasingly added to future systems,
asking why will be even more important. Even if natural
language processing were to become successful, making the
need for Crystal’s popup “why” menus unnecessary, the
Crystal architecture would still be useful for collecting and
organizing the needed information.

ACKNOWLEDGMENTS
Thanks to Susan Fussell for extensive help with the statis-
tics for this paper. Thanks also to Jake Wobbrock and An-
drew Faulring for help with this paper. This work was par-
tially supported under NSF grant IIS-0329090 and by the
EUSES Consortium via NSF grant ITR-0325273. Opinions,
findings and conclusions or recommendations expressed in
this material are those of the author(s) and do not necessar-
ily reflect those of the NSF.

REFERENCES
1. Abraham, R. and Erwig, M. “Goal-Directed Debugging of

Spreadsheets,” in VL/HCC 2005. 2005. Dallas, TX: pp. 37-44.
2. Berlage, T., “A Selective Undo Mechanism for Graphical User

Interfaces Based on Command Objects.” ACM Transactions on
Computer Human Interaction, 1994. 1(3): pp. 269-294.

3. Bothell, D., ACT-R Environment Manual. Version 5.0, April 22,
2004. http://act-r.psy.cmu.edu/software/EnvironmentManual.pdf

4. Calder, P.R. and Linton, M.A. “Glyphs: Flyweight Objects for
User Interfaces,” in UIST 1990. Snowbird, Utah: pp. 92-101.

5. Dourish, P. “Accounting for System Behaviour: Representation,
Reflection and Resourceful Action,” in Proceedings of the
Third Decennial Conference on Computers in Context CIC'95.
1995. Aarhus, Denmark:

6. Dworman, G. and Rosenbaum, S. “Helping users to use help:
improving interaction with help systems,” in CHI 2004 Ex-
tended abstracts. Vienna, Austria: pp. 1717-1718.

7. Halsted, K.L. and Roberts, J.H. “Eclipse help system: an open
source user assistance offering,” in SIGDOC 2002: Proceed-
ings of the 20th annual international conference on Computer
documentation. Toronto, Ontario, Canada: pp. 49-59.

8. Kelleher, C. and Pausch, R. “Stencils-based tutorials: design
and evaluation,” in CHI 2005. Portland, OR: pp. 541-550.

9. Kiczales, G. “Towards a New Model of Abstraction in Software
Engineering,” in Proceedings of the IMSA'92 Workshop on Re-
flection and Meta-level Architectures. 1992.

10. Knabe, K., et al. “Apple guide: a case study in user-aided de-
sign of online help,” in CHI 1995 Conference companion. Den-
ver, CO: pp. 286-287.

11. Ko, A.J. and Myers, B.A. “Designing the Whyline, A Debug-
ging Interface for Asking Why and Why Not questions about
Runtime Failures,” in CHI. 2004. pp. 151-158.

12. Ko, A.J. and Myers, B.A. “Citrus: A Toolkit for Simplifying
the Creation of Structured Editors for Code and Data,” in UIST
2005. Seattle, WA: pp. 3-12.

13. Lin, J., et al. “The role of context in question answering sys-
tems,” in CHI 2003 extended abstracts. Ft. Lauderdale, FL: pp.
1006-1007.

14. Myers, B.A., The Case for an Open Data Model. Carnegie
Mellon University, School of Computer Science Technical Re-
port, CMU-CS-98-153, August, 1998.

15. Myers, B.A. “Scripting Graphical Applications by Demonstra-
tion,” in CHI 1998. Los Angeles, CA: pp. 534-541.

16. Myers, B.A. and Kosbie, D. “Reusable Hierarchical Command
Objects,” in CHI 1996. Vancouver, BC, Canada: pp. 260-267.

17. National Instruments, “LabVIEW. National Instruments Corpo-
ration, 11500 N Mopac Expwy, Austin, TX 78759-3504,” 2005.

18. Nielsen, J. and Molich, R. “Heuristic evaluation of user inter-
faces,” in CHI 1990. Seattle, WA: pp. 249-256.

19. Norman, D.A., The Design of Everyday Things. 1988, New
York: Doubleday.

20. Ramachandran, A. and Young, R.M. “Providing intelligent
help across applications in dynamic user and environment con-
texts,” in IUI 2005. San Diego, CA: pp. 269-271.

21. Ruthruff, J.R., et al., “Interactive, Visual Fault Localization
Support for End-User Programmers.” Journal of Visual Lan-
guages and Computing, 2005. 16(1-2): pp. 3-40.

22. Sukaviriya, P. and Foley, J.D. “Coupling A UI Framework
with Automatic Generation of Context-Sensitive Animated
Help,” in UIST 1990. Snowbird, Utah: pp. 152-166.

23. White, R.W., Ruthven, I., and Jose, J.M. “Finding relevant
documents using top ranking sentences: an evaluation of two al-
ternative schemes,” in SIGIR '02: The 25th annual international
ACM SIGIR conference on Research and development in infor-
mation retrieval. 2002. Tampere, Finland: pp. 57-64.

