

Jadeite: Improving API Documentation
Using Usage Information

Abstract
Jadeite is a new Javadoc-like API documentation sys-
tem that takes advantage of multiple users’ aggregate
experience to reduce difficulties that programmers have
learning new APIs. Previous studies have shown that
programmers often guessed that certain classes or
methods should exist, and looked for these in the API.
Jadeite’s “placeholders” let users add new “pretend”
classes or methods that are displayed in the actual API
documentation, and can be annotated with the appro-
priate APIs to use instead. Since studies showed that
programmers had difficulty finding the right classes
from long lists in documentation, Jadeite takes advan-
tage of usage statistics to display commonly used
classes more prominently. Programmers had difficulty
finding the right helper objects and discovering how to
instantiate objects, so Jadeite uses a large corpus of
sample code to automatically identify the most common
ways to construct an instance of any given class.

Keywords
APIs, documentation, Javadoc

ACM Classification Keywords
D.2.7. Software Engineering: Documentation

Copyright is held by the author/owner(s).

CHI 2009, April 4 – 9, 2009, Boston, Massachusetts, USA.

ACM 978-1-60558-247-4/09/04.

Jeffrey Stylos
Carnegie Mellon University
5000 Forbes Ave
Pittsburgh, PA 15217 USA
jsstylos@cs.cmu.edu

Brad A. Myers
Carnegie Mellon University
5000 Forbes Ave
Pittsburgh, PA 15217 USA
bam@cs.cmu.edu

Zizhuang Yang
Carnegie Mellon University
5000 Forbes Ave
Pittsburgh, PA 15217 USA
zizhuang@cs.cmu.edu

CHI 2009 ~ Spotlight on Works in Progress ~ Session 2 April 4-9, 2009 ~ Boston, MA, USA

4429

Introduction
An Application Programming Interface (API) is the user
interface of a library of functionality to the programmer
who uses it. A growing body of evidence has made it
clear that many APIs are difficult to use
[2][4][7][8][9]. This same research has also shown
that not all of this difficulty is intrinsic; APIs can be de-
signed so that they are significantly easier to use. In

many cases APIs can
achieve a goal of being
“self documenting” [3],
where users can learn the
APIs simply by trying to
use them.

However, this knowledge of
how to design more usable
APIs does little for the
many widely used APIs that
have already been
released. In addition, there
are important considera-
tions other than usability
that designers must take
into account [1][3], includ-
ing performance and future
extensibility, which can lead
to designing harder-to-use
APIs for legitimate reasons.

Different approaches for
improving the usability of existing APIs (written in ex-
isting programming languages) include: creating wrap-
per APIs, changing the integrated development envi-
ronment (IDE), and changing the API documentation.
Because previous observations showed that many Java

programmers rely heavily [5] on Javadoc-based docu-
mentation [6], we have been exploring ways that API
documentation can be used to improve the usability of
existing APIs. This paper presents Jadeite (see Figure
1), a prototype documentation system that embodies
these ideas. Jadeite stands for: Java API Documenta-
tion with Extra Information Tacked-on for Emphasis.
Jadeite is a system for displaying API documentation
that uses other programmers’ previous API usage to
make common tasks easier. Jadeite’s features are mo-
tivated by the specific problems observed in previous
user studies [7][4][8].

PLACEHOLDERS
Placeholder Design
Typical API documentation lists the classes and meth-
ods that exist in an API. The idea behind our API
“placeholders” is that the documentation should also
list the classes and methods that programmers expect
to exist, and these placeholders should contain forward
references to the actual parts of the APIs that should
be used instead.

The motivation for this feature comes from observing
programmers become frustrated with APIs that did not
contain the expected classes and methods. For exam-
ple, a programmer might reasonably wonder why
Java’s Message and MimeMessage classes lack a send()
method, why classes like SSLSocket lack a public con-
structor, or why the File class lacks read() and write()
methods. Even when there are valid reasons for omit-
ting expected parts of an API, we conjectured that the
simplest and most effective way to explain these is by
including placeholders in the context of the actual API
documentation, where they would appear if they actu-
ally existed.

Figure 1. Novel features of the Jadeite documentation sys-
tem. Font sizes are varied based on usage data (a); users
can add new placeholder classes or methods (b) to stand in
for expected parts of an API; and common methods of class
construction (c) are automatically determined.

CHI 2009 ~ Spotlight on Works in Progress ~ Session 2 April 4-9, 2009 ~ Boston, MA, USA

4430

Displaying these placeholders alongside the documen-
tation for the actual API is a key aspect of this idea.
Otherwise users would be required to prematurely de-
cide where to look, in the actual API documentation or
a separate site, before knowing whether the particular
class or method they wanted existed.

One of the primary goals of the placeholder design was
to provide a scalable way for programmers to edit and
add to API documentation. One goal of the design was
to work with many different users and edits. Since
methods are displayed for browsing concisely by signa-
ture, with additional details available when clicked on, it
is practical to browse classes with dozens of methods,
and adding a few more placeholder methods will not
appreciably increase the size of what users must inves-
tigate. In contrast, viewing dozens of separate exam-
ples or dozens of paragraphs of textual documentation
would take much longer.

An API designer might intentionally seed an API with
placeholders for the classes and methods they consid-
ered including but chose not to. Programmers trying to
use the API might later add other placeholders for op-
erations that the original designers never thought of.
Other programmers, or the same programmers once
they figure out a solution, can then annotate any of the
placeholders with replacement code explaining how to
accomplish the desired functionality with the available
APIs. Programmers can add placeholders for the benefit
of others or so that they themselves do not need to re-
learn the API when returning to it in the future.

We mark a method as a placeholder by displaying it in
the method summary list with a green background,
adding “Edit” links in the summary and description, and

by displaying “This is a placeholder method” in the de-
scription. We wanted to avoid any possible confusion of
placeholder methods with actual methods, while still
displaying them in the same part of the documentation.
Placeholders are currently authored using a form inter-
face, but a WYSIWYG editor is planned.

Unlike the other features described below (which take
advantage of aggregate information currently available
from large corpora) placeholders are based on the idea
of community collaboration and evolution. Similar to a
wiki, we imagine that sufficient use will evolve the
documentation into a more useful state.

Placeholder Implementation
Jadeite is based on the Javadoc documentation system,
in part because this is the standard form of documenta-
tion for Java APIs that many programmers are used to.
The standard tool to generate Javadocs contains a
mechanism for customizability in the form of “doclets”,
Java classes that enable programmers to generate cus-
tomized Javadocs. We use a custom doclet to generate
a database that is then used by a PHP script to gener-
ate documentation that looks similar to Javadoc. Using
a web scripting language allows us to more easily cre-
ate documentation that is dynamic and interactive, in-
stead of being limited to static html. One disadvantage
of this approach was that it required reimplementating
most of the functionality already offered in Javadoc. To
reduce this burden, we took advantage of Javadoc’s
source file parsing by using a doclet to generate a SQL
database that our PHP front-end uses. This approach
allows us to generate new documentation for any API
for which standard Javadocs can be generated.

CHI 2009 ~ Spotlight on Works in Progress ~ Session 2 April 4-9, 2009 ~ Boston, MA, USA

4431

Placeholder classes and methods are added to the da-
tabase by the PHP front-end and stored alongside the
actual APIs with an additional placeholder flag. Because
they are stored alongside the actual API, Jadeite in-
cludes placeholders in the rest of the documentation,
for example by including a placeholder class in the list
of all known subclasses of its superclass, or all known
implementing classes of any interface it implements.

FONT SIZING
Font Sizing Design
In our studies we observed that programmers had diffi-
culty finding the classes they wanted, and in the proc-
ess they would spend time examining and trying to un-
derstand classes that few people ever use (as evi-
denced by the rarity of example code and references to
these classes on the internet). However from the
documentation it can be difficult or impossible to tell
which classes are the common classes that most people
use and which classes are only used rarely.

Our goal was to come up with a design that would high-
light the most commonly used classes within the con-
text of the complete documentation, while still showing
all of the classes. In our observations of programmers
using documentation in which classes were sorted by
popularity, instead of alphabetically by name, this
greatly annoyed users, who could no longer find a class
even if they already knew its name. Because of these
observations, we wanted to keep the existing alpha-
betical list.

Font Sizing Implementation
We compute font sizes based on the number of Google
hits for each class and package. We compute this off-
line, as a batch process, by using the Google API to

search for the fully qualified class name e.g.,
“java.lang.Object” and recording the number of hits
returned. The frequencies of classes in the Java 6 APIs
roughly follow a power law distribution from the most
frequent java.lang.Object (with 3,530,000 hits) to the
least frequent java.awt.peer.SystemTrayPeer (17 hits).

We currently compute font sizes for packages, classes
and interfaces. When computing font sizes for a list of
classes within a single package, we use the relative
popularity of a class (or interface) within that particular
package (as opposed to throughout the entire API).
This makes it difficult to tell from a package list if a
class is globally popular (though the font size of its
package name gives a hint to this), but has the advan-
tage that there is always a range of font sizes within
the class listings of a package, as opposed to a list of
classes in uniformly large or small font sizes, as would
otherwise happen with popular or unpopular packages.

One of the main advantages of using Google is that the
corpus searched is so large (billions of pages, more
than 400 million with the word “Java”). It has the dis-
advantage, however, that it can be ambiguous whether
a word refers to a specific Java class or not. We chose
to measure popularity by the fully qualified class name
(e.g. “java.io.File”), because this avoided a problem
where class names that were also common English
words (for example “File” would otherwise get inaccu-
rately high hits, even when including the package name
as another search term in the query). Using fully quali-
fied class names also has problems, though; some
classes are more commonly referred to fully qualified
than others. In particular, Exception classes are fre-
quently referred to fully qualified to avoid an extra im-
port statement. To deal with this, we ignore exceptions

CHI 2009 ~ Spotlight on Works in Progress ~ Session 2 April 4-9, 2009 ~ Boston, MA, USA

4432

when computing font sizes and impose a limit to the
maximum size of an Exception (about two-thirds of the
maximum font size). A few particular classes are also
very frequently referred to fully qualified, such as
java.lang.Object and java.lang.String. These dominate
the lists even when using logarithmic weighting. To
solve this problem, we ignore the top 0.05% most
common classes when computing other classes’ font
sizes. These very common classes are still displayed at
the maximum font size. (Selectively ignoring values
means that these classes might otherwise be assigned
sizes greater than the normal maximum font size, how-
ever we limit these to the normal maximum font size.)

CONSTRUCTION EXAMPLES
Construction Examples Design
The pseudocode that participants wrote in previous
studies and their think-aloud comments [7] showed
that nearly all of the users expected all objects to be
constructed using a constructor (and usually by a de-
fault – parameter-less – constructor). When presented
with classes that needed to be constructed without a
constructor, the first – and sometimes insurmountable
– barrier was in realizing that something other than
such a constructor was needed.

Providing this initial realization was one of the main
goals of our design of the construction-examples fea-
ture. For this reason we chose to place the construc-
tion-example snippet near the very top of the class
documentation page, just below the inheritance hierar-
chy. In addition to trying to solve the usability problem
of the Factory pattern [4], we were also motivated by
difficulties programmers had with abstract classes and
interfaces, where programmers would often not realize
a class was abstract (or that it was actually an inter-

face) until after they had written code that tried to con-
struct it.

Another goal was to provide short, understandable
snippets that users could copy and paste into their pro-
grams. In initial prototype displayed only a single line
of example code. However, in order to annotate the
types of the variables and keep it on a single line we
had to use non-standard Java syntax. We quickly real-
ized, however, that a more readable snippet was re-
quired for users, and so we display the snippet on mul-
tiple lines, using an additional line for each of the in-
stance variables that are used as a factory or parame-
ter. This lets us use standard Java syntax for defining
class instances.

One aspect of the design we considered was how large
of a construction example snippet to display. While a
class instance is usually instantiated in only a single
line, this line sometimes uses parameters or factories
that themselves have complicated construction pat-
terns. Some classes also have post-construction initiali-
zation methods that need to be called before using the
object. We chose to display only a single line with the
addition of partial lines for each of the instance vari-
ables used in the construction example, but chose not
to recursively try to include code to instantiate each of
these variables, since sometimes this chain would be
very large. (An exception is values that are used inside
the main construction example without being assigned
to a temporary value, for example a constant like “lo-
calhost” or 8080.) We display an ellipsis after the vari-
able declaration, to represent that some instantiation of
these variables is needed but not shown. Users can see
how to instantiate each of these variables, if they need
to, by clicking the class name link and seeing the most

CHI 2009 ~ Spotlight on Works in Progress ~ Session 2 April 4-9, 2009 ~ Boston, MA, USA

4433

common construction patterns for that particular class.
One disadvantage of this approach is that it loses the
specific context of how the classes are used together.
For example, suppose a factory is used to create a
product class. Showing how to create the factory on its
own page means that users will see the most common
overall way to construct the factory, which might not be
the same as the way the factory is usually constructed
when using that particular product. So far, this does
not seem to be much of a practical limitation for the
Java APIs we have looked at, however.

Construction Examples Implementation
The examples are constructed by examining the sample
code contained on the top 500 Google results for a
search using the fully qualified name of the class.
Within these pages we look for code construction ex-
amples that match a regular expression for variable
declarations and assignments. For each of the variables
used in each construction examples, we try to figure
out the type of the variable by looking for variable or
parameter declarations. For each variable type and ex-
plicit class reference, we then try to determine which
package it was from.

After recording all of these construction examples, we
aggregate all of the examples that have the same type
signature, ignoring whitespace and variable names. For
each variable we determine the most common variable
name and use this and all of the variable types we were
able to determine to create a construction example sig-
nature.

CONCLUSIONS
Jadeite demonstrated how this data can be used to
make it easier to find starting classes, figure out how to

construct objects, and find the right helper objects. We
hope that lowering these barriers will help make pro-
gramming easier and more accessible to more people.

REFERENCES
1. Bloch, J. 2001. Effective Java Programming Lan-

guage Guide. Sun Microsystems, Inc.
2. Clarke, S. 2004. Measuring API Usability. Dr. Dobbs

Journal, Windows / .NET Supplement. May 2004. 6-
9.

3. Cwalina, K. and Abrams, B. 2005. Framework De-
sign Guidelines: Conventions, Idioms, and Patterns
for Reusable .Net Libraries. Addison-Wesley Profes-
sional.

4. Ellis, B., Stylos, J., and Myers, B. 2007. The Factory
Pattern in API Design: A Usability Evaluation. Inter-
national Conference on Software Engineering. ICSE
’07. 302-312.

5. Forward, A. and Lethbridge, T. C. 2002. The rele-
vance of software documentation, tools and tech-
nologies: a survey. Document Engineering. DocEng
’02. 26-33.

6. Kramer, D. 1999. API documentation from source
code comments: a case study of Javadoc. Interna-
tional Conf. on Computer Documentation. SIGDOC
’99. 147-153.

7. Stylos, J. and Clarke, S. 2007. Usability Implications
of Requiring Parameters in Objects' Constructors.
International Conference on Software Engineering.
ICSE ’07. 529-539.

8. Stylos, J. and Myers, B. A. 2008. The Implications of
Method Placement on API Learnability. Symp. on the
Foundations of Software Engineering. FSE ’08.

9. Stylos, J. and Myers, B. A. 2006. Mica: A Web-
Search Tool for Finding API Components and Exam-
ples. Visual Languages and Human-Centric Comput-
ing. VL/HCC ’06. 195-202.

CHI 2009 ~ Spotlight on Works in Progress ~ Session 2 April 4-9, 2009 ~ Boston, MA, USA

4434

