16-350 Planning Techniques for Robotics

Search Algorithms:

Heuristics,

Backward A*, Weighted A* Search

Maxim Likhachev

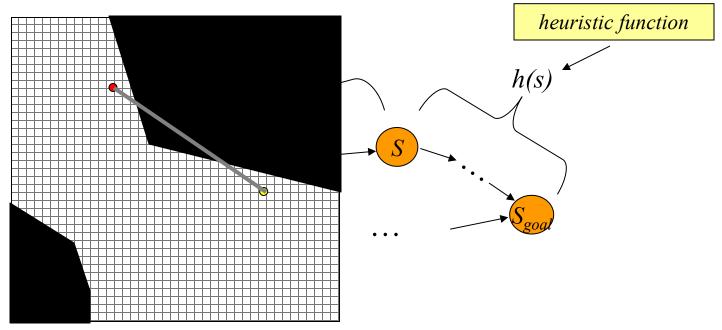
Robotics Institute

Carnegie Mellon University

A* Search

Computes optimal g-values for relevant states

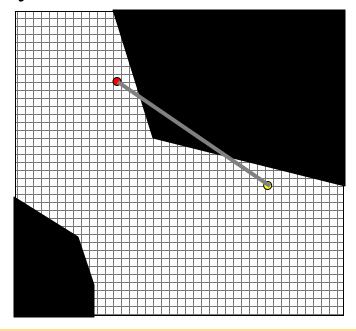
at any point of time:



one popular heuristic function – Euclidean distance

 $minimal\ cost\ from\ s\ to\ s_{goal}$

- Heuristic function must be:
 - admissible: for every state s, $h(s) \le c *(s, s_{goal})$
 - consistent (satisfy triangle inequality): $h(s_{goal}, s_{goal}) = 0$ and for every $s \neq s_{goal}$, $h(s) \leq c(s, succ(s)) + h(succ(s))$
 - admissibility <u>provably</u> follows from consistency and often (<u>not always</u>) consistency follows from admissibility



• For X-connected grids:

- Euclidean distance
- Manhattan distance: $h(x,y) = abs(x-x_{goal}) + abs(y-y_{goal})$
- Diagonal distance: $h(x,y) = max(abs(x-x_{goal}), abs(y-y_{goal}))$
- More informed distances???

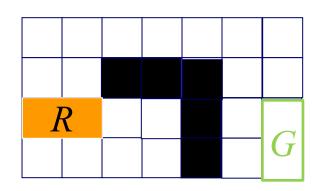
Which heuristics are admissible for 4-connected grid? 8-connected grid?

• For planning problems higher than 2D

Example:

consider planning for a non-circular robot that can move in any direction (omnidirectional)

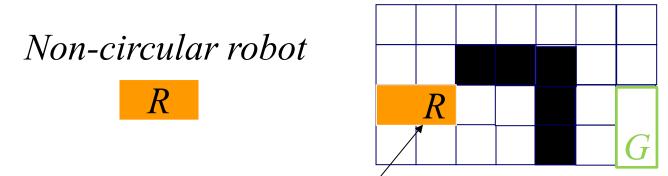
Non-circular robot



• For planning problems higher than 2D

Example:

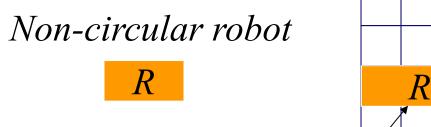
consider planning for a non-circular robot that can move in any direction (omnidirectional)

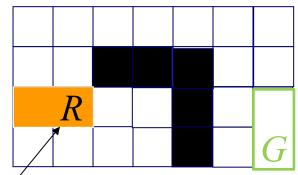


• For planning problems higher than 2D

Example:

consider planning for a non-circular robot that can move in any direction (omnidirectional)





Grid-based representation for planning: x,y,Θ for some reference point on the robot

x,y are on 8-connected grid

 Θ – discretized into 8 angles

How many states?

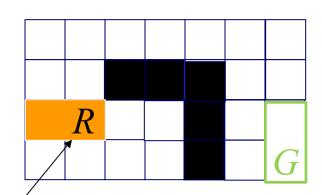
What heuristic we can use?

• For planning problems higher than 2D

Example:

consider planning for a non-circular robot that can move in any direction (omnidirectional)

Non-circular robot

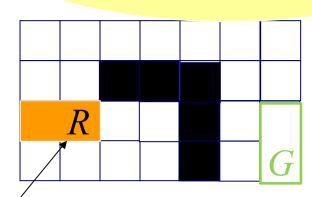


• For planning problems higher cost-to-goal better?

Example: consider planning for a non-cdirection (omnidirectional)

How about cost-to-goal distances for the reference point in 2D (accounting for obstacles)?

Non-circular robot



How can we compute them?

For planning problems high

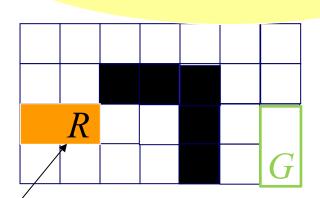
Are these admissible?

Example: consider planning for a non-cdirection (omnidirectional)

How about cost-to-goal distances for the reference point in 2D (accounting for obstacles)?

Non-circular robot

R



- Searching from the goal towards the start state
- g-values are cost-to-goals

Main function

 $g(s_{start}) = 0$; all other g-values are infinite; $OPEN = \{s_{start}\}$;

ComputePath();

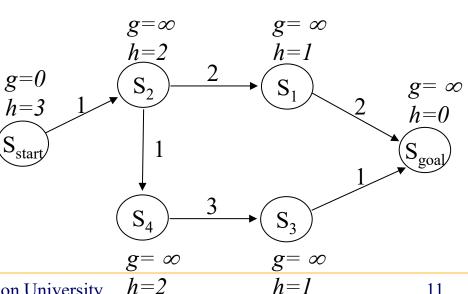
publish solution;

ComputePath function

while(s_{goal} is not expanded and $OPEN \neq 0$)

remove s with the smallest [f(s) = g(s) + h(s)] from OPEN;

expand s;



What needs to be changed?

- Searching from the goal towards the start state
- g-values are cost-to-goals

Main function

 $g(s_{goal}) = 0$; all other g-values are infinite; $OPEN = \{s_{goal}\}$; ComputePath();

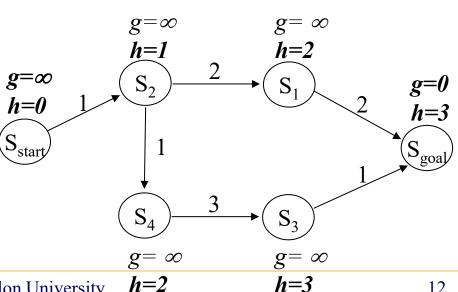
publish solution;

ComputePath function

while(s_{start} is not expanded and $OPEN \neq 0$)

remove s with the smallest [f(s) = g(s) + h(s)] from *OPEN*;

expand s;



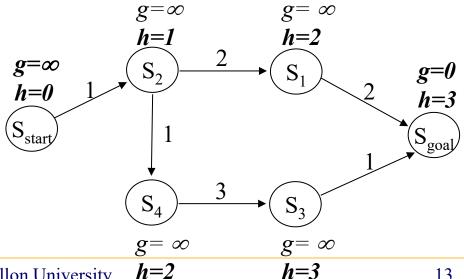
What needs to be changed?

- Searching from the goal towards the start state
- g-values are cost-to-goals **ComputePath function**

insert s' into OPEN;

What needs to be changed in here?

while(s_{goal} is not expanded and $OPEN \neq 0$) remove s with the smallest [f(s) = g(s) + h(s)] from *OPEN*; insert s into CLOSED; for every successor s' of s such that s'not in CLOSED if g(s') > g(s) + c(s,s')g(s') = g(s) + c(s,s');



- Searching from the goal towards the start state
- g-values are cost-to-goals **ComputePath function**

What needs to be changed in here?

while(s_{start} is not expanded and $OPEN \neq 0$)

remove s with the smallest [f(s) = g(s) + h(s)] from *OPEN*;

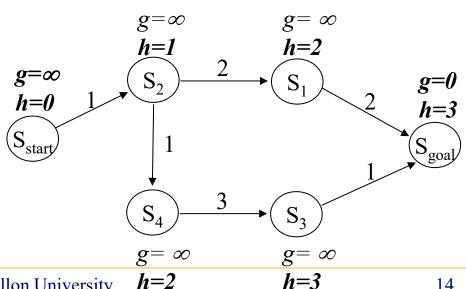
insert s into CLOSED;

for every **predecessor** s' of s such that s'not in CLOSED

if
$$g(s') > c(s',s) + g(s)$$

$$g(s') = c(s',s) + g(s);$$

insert s' into OPEN;



- Searching from the goal towards the start state
- g-values are cost-to-goals

ComputePath function

while(s_{start} is not expanded and $OPEN \neq 0$)

remove s with the smallest [f(s) = g(s) + h(s)] from *OPEN*;

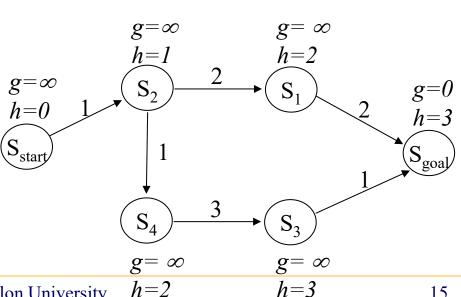
insert s into CLOSED;

for every predecessor s' of s such that s' not in CLOSED

if
$$g(s') > c(s',s) + g(s)$$

$$g(s') = c(s',s) + g(s);$$

insert s' into OPEN;



How do we make it

compute ALL g-values?

- Searching from the goal towards the start state
- g-values are cost-to-goals

ComputePath function

while $(OPEN \neq 0)$

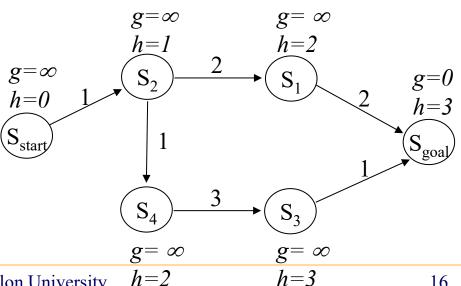
Run until all states get expanded!

remove s with the smallest [f(s) = g(s) + h(s)] from OPEN; insert s into CLOSED;

for every predecessor s' of s such that s' not in CLOSED

if
$$g(s') > c(s',s) + g(s)$$

 $g(s') = c(s',s) + g(s)$;
insert s' into OPEN;



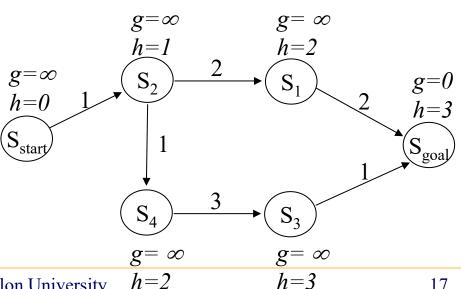
- Searching from the goal towards the start state
- g-values are cost-to-goals **ComputePath function** while($OPEN \neq 0$)

Does it make sense to have heuristics if we are computing ALL g-values?

```
remove s with the smallest [f(s) = g(s) + h(s)] from OPEN;
insert s into CLOSED;
for every predecessor s' of s such that s' not in CLOSED
```

if
$$g(s') > c(s',s) + g(s)$$

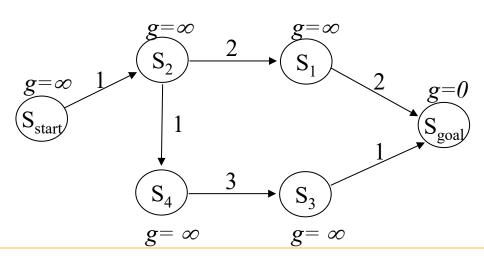
 $g(s') = c(s',s) + g(s)$;
insert s' into OPEN;



- Searching from the goal towards the start state
- g-values are cost-to-goals

ComputePath function

```
while (OPEN \neq 0)
remove s with the smallest [f(s) = g(s)] from OPEN;
insert s into CLOSED;
for every predecessor s of s such that s not in CLOSED
if g(s') > c(s',s) + g(s)
g(s') = c(s',s) + g(s);
insert s into OPEN;
```



- Searching from the goal towards +1
- g-values are cost-to-goals **ComputePath function**

while(
$$OPEN \neq 0$$
)

optimal cost-to-goal values remove s with the smallest [f(s) = g(s)] from OPEN;

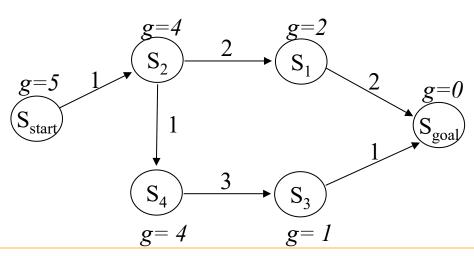
insert s into CLOSED;

for every predecessor s' of s such that s' not in CLOSED

if
$$g(s') > c(s',s) + g(s)$$

 $g(s') = c(s',s) + g(s)$;

insert s' into OPEN;



At termination,

g-values of all states

will be equal to

- Searching from the goal towards +1
- g-values are cost-to-goals ComputePath function

while($OPEN \neq 0$)

remove s with the smallest [f(s) = g(s)] from

insert s into CLOSED;

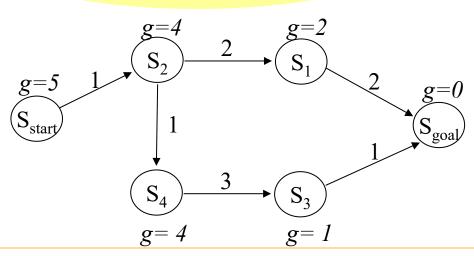
if g(s') > c(s',s) + g(s)

g(s') = c(s',s) + g(s);

insert s' into OPEN;

At termination, g-values of all states will be equal to optimal cost-to-goal values

for every predecessor s' of s' Can be run on low-D problems (e.g., 2D) to compute heuristics for higher-D problems (e.g., 3+D)

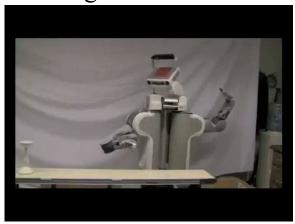


Examples: Heuristics via Low-D Search

• Planning in (x,y,z,Θ,v) with heuristics = 3D (x,y,z) distances accounting for obstacles

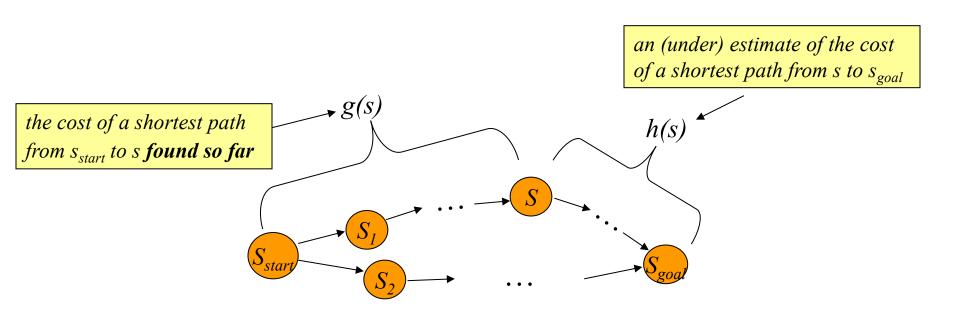
[MacAllisteret et al., ICRA'13]

• Planning for 7DOF arm with heuristics = 3D(x,y,z) distances for end-effector



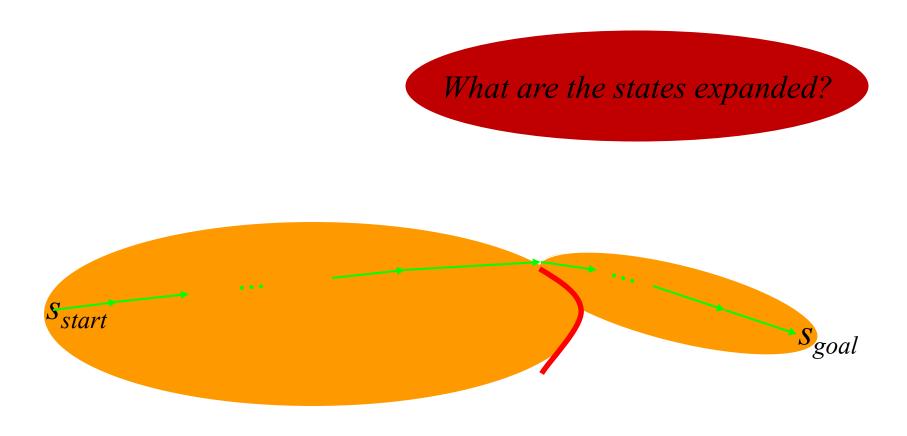
[Cohen et al., IROS'13]

- Uninformed A^* : expands states in the order of g values
- A*: expands states in the order of f = g + h values
- Weighted A*: expands states in the order of $f = g + \varepsilon h$ values, $\varepsilon > 1$ = bias towards states that are closer to goal



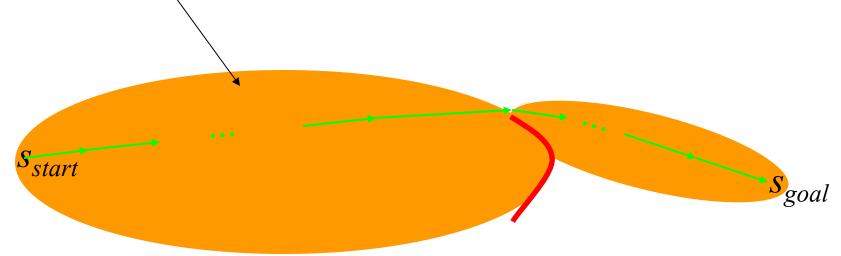
• Uninformed A^* : expands states in the order of g values

• A*: expands states in the order of f = g + h values



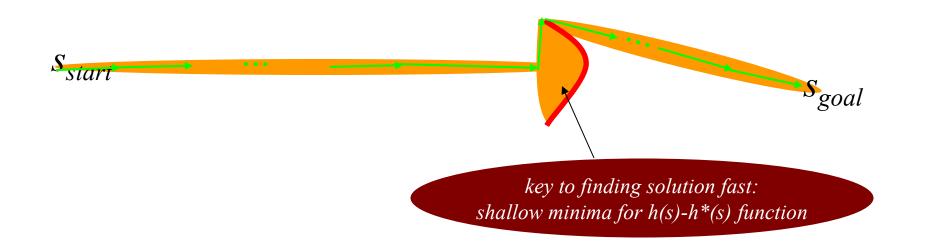
• A*: expands states in the order of f = g + h values

for large problems this results in A^* quickly running out of memory (memory: O(n))

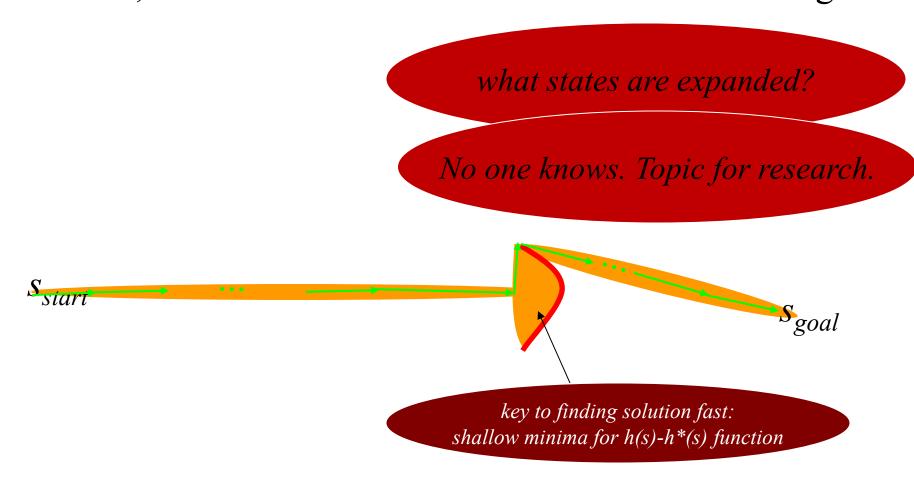


• Weighted A*: expands states in the order of $f = g + \varepsilon h$ values, $\varepsilon > 1$ = bias towards states that are closer to goal

what states are expanded?



• Weighted A*: expands states in the order of $f = g + \varepsilon h$ values, $\varepsilon > 1$ = bias towards states that are closer to goal



Weighted A* Search:

- trades off optimality for speed
- ε -suboptimal: $cost(solution) \le \varepsilon cost(optimal\ solution)$
- in many domains, it has been shown to be orders of magnitude faster than A*
- research becomes to develop a heuristic function that has shallow local minima

Few Properties of Heuristic Functions

- Useful properties to know:
 - $h_1(s)$, $h_2(s)$ consistent, then: $h(s) = max(h_1(s), h_2(s)) - \text{consistent}$
 - if A* uses ε -consistent heuristics:

$$h(s_{goal}) = 0$$
 and $h(s) \le \varepsilon \ c(s, succ(s)) + h(succ(s) \ for \ all \ s \ne s_{goal}$, then A* is ε -suboptimal:

 $cost(solution) \le \varepsilon \ cost(optimal \ solution)$

- weighted A* is A* with ε-consistent heuristics

Proof?

- $h_1(s)$, $h_2(s)$ - consistent, then:

$$h(s) = h_1(s) + h_2(s) - \varepsilon$$
-consistent

What You Should Know...

- Common heuristic functions for X-connected grids
 - Euclidean distance, Manhattan distance, Diagonal distance, etc.
- Be able to design and implement heuristics for high-D planning (e.g., heuristics computed by low-d search)

- Weighted A* and its properties
- Backward A*

• How to combine heuristics, properties, *E*-consistent heuristics