16-350
Planning Techniques for Robotics

Search Algorithms:

Heuristics,

Backward A*, Weighted A* Search
Maxim Likhachev

Robotics Institute

Carnegie Mellon University

A* Search

« Computes optimal g-values for relevant states

at any point of time:

heuristic function

| h(s) -

6w

one popular heuristic function — Euclidean distance

Carnegie Mellon University

Heuristics

minimal cost from s 10 s,

« Heuristic function must be:
— admussible: for every state s, /1(s) < c*(s,5,,,)
— consistent (satisfy triangle inequality):
RS gourSgoa) = 0 and for every s#s,,,, h(s) < c(s,succ(s)) + h(succ(s))

— admussibility provably follows from consistency and often (not
always) consistency follows from admissibility

Carnegie Mellon University 3

Heuristics

* For X-connected grids: . 3

— Euclidean distance

— Manhattan distance: 2(x,y) = abs(x—xgoay + abs(y-ygoay
— Diagonal distance: A(x,y) = max(abs(x—xgoay, abs(y-ygoa))
— More informed distances???

Carnegie Mellon University

Heuristics

* For planning problems higher than 2D

Example:
consider planning for a non-circular robot that can move in any
direction (omnidirectional)

Non-circular robot
R R

Carnegie Mellon University

Heuristics

* For planning problems higher than 2D

Example:
consider planning for a non-circular robot that can move in any
direction (omnidirectional)

Non-circular robot
R R

[

Grid-based representation for planning:
x,y,0 for some reference point on the robot
x,y are on 8-connected grid

O — discretized into 8 angles

Carnegie Mellon University

Heuristics

* For planning problems higher than 2D

Example:
consider planning for a non-circular robot that can move in any
direction (omnidirectional)

Non-circular robot
R R

A

Grid-based representation for planning:
x,y,0 for some reference point on the robot

x,y are on 8-connected grid
O — discretized into 8 angles

Carnegie Mellon University

Heuristics

than 21D

* For planning problems higher

Example:
consider planning for a non-circular robot that can move in any
direction (omnidirectional)

Non-circular robot
R R

A

Grid-based representation for planning:
x,y,0 for some reference point on the robot
x,y are on 8-connected grid

O — discretized into 8 angles

Carnegie Mellon University

Heuristics

* For planning problems higrress

Example: How about cost-to-goal
consider planning for a non-c distances for the reference point
direction (omnidirectional) in 2D (accounting for obstacles)?

Non-circular robot
R R

A

Grid-based representation for planning:
x,y,0 for some reference point on the robot
x,y are on 8-connected grid

O — discretized into 8 angles

Carnegie Mellon University

* For planning problems hi-

Example: How about cost-to-goal
consider planning for a non-c distances for the reference point
direction (omnidirectional) in 2D (accounting for obstacles)?

Non-circular robot
R R

A

Grid-based representation for planning:
x,y,0 for some reference point on the robot
x,y are on 8-connected grid

O — discretized into 8 angles

Carnegie Mellon University

Backward A* Search

» Searching from the goal towards the start state

* g-values are cost-to-goals
Main function

g(S..,) = 0, all other g-values are infinite;, OPEN = {s_, .},
ComputePath();
publish solution;

ComputePath function
while(s,,, 1s not expanded and OPEN # 0)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;
expand s;

Carnegie Mellon University h 2 h] 11

Backward A* Search

» Searching from the goal towards the start state

* g-values are cost-to-goals

Main function
2(S40q) = 0; all other g-values are infinite; OPEN = {s,,,,},
ComputePath();

publish solution;

ComputePath function
while(s,,,,, 1s not expanded and OPEN # 0)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;

expand s;
o0 @% i_"
@ I

%@

Carnegie Mellon University h—Z h—3 12

Backward A* Search

Searching from the goal towards the start stats

g-values are cost-to-goals

ComputePath function
while(s,,, 1s not expanded and OPEN # 0)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;
isert s into CLOSED;
for every successor s’ of s such that s 'not in CLOSED
i g(s’) > g(s) +c(s.s)
g(s) = g(s) tc(s,s);
insert s ' into OPEN;

h

=00 —, g_0

;1
—»@

Carnegie Mellon University h—Z h—3 13

Backward A* Search

Searching from the goal towards the start stats

g-values are cost-to-goals

ComputePath function
while(s,,,,, 1s not expanded and OPEN # 0)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;
isert s into CLOSED;
for every predecessor s’ of s such that s 'not in CLOSED
if g(s’) > c(s’,s) + g(s)
g(s’) = c(s’s) + g(s);
insert s ' into OPEN;

h

=00 —, g_0

;1
—»@

Carnegie Mellon University h—Z h—3 14

Backward A* Search that computes ALL g-values

Searching from the goal towards the start state

g-values are cost-to-goals
ComputePath function
while(s,,,,, 1s not expanded and OPEN # 0)
remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;
isert s into CLOSED;
for every predecessor s’ of s such that s 'not in CLOSED
i g(s’) > c(s’,s) + g(s)
g(s) =c(s’.s) + g(s);
insert s ' into OPEN;

=X g= ®

h=1 h=2
PO O
% ll Sgoa

g§= ® g~ X
Carnegie Mellon University h=2 h=3 15

Backward A* Search that computes ALL g-values

Searching from the goal towards the start state

g-values are cost-to-goals Run until all states
ComputePath funM get expanded!
while(OPEN # 0)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;
isert s into CLOSED;

for every predecessor s’ of s such that s 'not in CLOSED
ifg(s) > c(s’.s) + g(s)
g(s’) =c(s’.s) + g(s);
insert s ' into OPEN;

=X g= ®

h=1 h=2
PO O
% ll Sgoa

g~ ® = X
Carnegie Mellon University h=2 h=3 16

Backward A* Search that computes ALL g-values

Searching from the goal towards the start state

g-values are cost-to-goals
ComputePath function
while(OPEN # 0)
remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;
isert s into CLOSED;
for every predecessor s’ of s such that s 'not in CLOSED
i g(s’) > c(s’,s) + g(s)
g(s) =c(s’.s) + g(s);
insert s ' into OPEN;

=X g= ®

h=1 h=2
PO O
% Il Sgoa

g§= ® g~ X
Carnegie Mellon University h=2 h=3 17

Backward A* Search that computes ALL g-values

Searching from the goal towards the start state

g-values are cost-to-goals

ComputePath function
while(OPEN # 0)

remove s with the smallest /f(s) = g(s)] from OPEN;
isert s into CLOSED;

for every predecessor s’ of s such that s 'not in CLOSED

it g(s’) > c(s’s) + g(s)

g(s’) = c(s’s) + g(s);
Q
—»@

insert s ' into OPEN;
Carnegie Mellon University 18

Backward A* Search that computes ALL g-values

Searching from the goal towards * At termination,
g-values are cost-to-goals g-values of all states
ComputePath function will be equal to
while(OPEN # 0) optimal cost-to-goal values

remove s with the smallest [f(s) = g(s)] from OPEN;,
isert s into CLOSED;

for every predecessor s’ of s such that s 'not in CLOSED
ifg(s) > c(s’.s) + g(s)
g(s’) =c(s’.s) + g(s);
insert s ' into OPEN;

Carnegie Mellon University 19

Backward A* Search that computes ALL g-values

Searching from the goal towards * At termination,
g-values are cost-to-goals g-values of all states
ComputePath function will be equal to
while(OPEN # 0) optimal cost-to-goal values

remove s with the smallest [f(s) = g(s)] frorm 777

isert s into CLOSED;

for every predecessor s’ of s - Can be run on low-D problems (e.g., 2D)
ifg(s’) > c(s’,s) + g(s) to compute heuristics

g(s’) =c(s’s) + g(s); for higher-D problems (e.g., 3+D)
insert s ' into OPEN;

Carnegie Mellon University 20

Examples: Heuristics via Low-D Search

« Planning in (x,y,z,6,v) with heuristics = 3D (X,y,z) distances accounting for obstacles

[MacAllisteret et al., ICRA’13]
* Planning for 7DOF arm with heuristics = 3D (X,y,z) distances for end-effector

[Cohen et al., IROS’13]

Carnegie Mellon University

Weighted A*

* Uninformed A*: expands states in the order of g values
* A¥: expands states in the order of f= g+h values

* Weighted A*: expands states in the order of f = g+eh
values, ¢ > [= bias towards states that are closer to goal

an (under) estimate of the cost
of a shortest path from s to s

goal

gl o

the cost of a shortest path
to s found so far

from s

start

—=a A

Carnegie Mellon University 22

e order of g values

Weighted A*

* A¥: expands states in the order of f= g+h values

Carnegie Mellon University

24

Weighted A*

* A¥: expands states in the order of f= g+h values

for large problems this results in A™* quickly
running out of memory (memory: O(n))

Carnegie Mellon University

25

Weighted A*

 Weighted A*: expands states in the order of f = g+eh
values, ¢ > [= bias towards states that are closer to goal

‘QS [a]/'l': —> ceoe > - \
A)

key to finding solution fast:
shallow minima for h(s)-h*(s) function

Carnegie Mellon University 26

Weighted A*

 Weighted A*: expands states in the order of f = g+eh
values, ¢ > [= bias towards states that are closer to goal

Lq 2 -
SLart

key to finding solution fast:

shallow minima for h(s)-h*(s) function

Carnegie Mellon University 27

Weighted A*

* Weighted A* Search:
— trades off optimality for speed

— g-suboptimal:
cost(solution) < ecost(optimal solution)

— 1n many domains, 1t has been shown to be orders of magnitude
faster than A*

— research becomes to develop a heuristic function that has
shallow local minima

Carnegie Mellon University 28

Few Properties of Heuristic Functions

e Useful properties to know:

- h,(s), h,(s) — consistent, then:
h(s) = max(h,(s),h,(s)) — consistent

- 1f A* uses g-consistent heuristics:
h(Sgoq) = 0 and h(s) <& c(s,succ(s)) + h(succ(s) for all s#s
then A* 1s e-suboptimal:

goal?

cost(solution) < ¢ cost(optimal solution)

- weighted A* 1s A* with e-consistent heuristics -

- h,(s), h,(s) — consistent, then:
h(s) = h,(s)+h,(s) — e-consistent

Carnegie Mellon University 30

What You Should Know...

Common heuristic functions for X-connected grids

— Euclidean distance, Manhattan distance, Diagonal distance, etc.

Be able to design and implement heuristics for high-D
planning (e.g., heuristics computed by low-d search)

Weighted A* and its properties

Backward A*

How to combine heuristics, properties, £-consistent
heuristics

Carnegie Mellon University

31

	Slide 1: 16-350 Planning Techniques for Robotics Search Algorithms: Heuristics, Backward A*, Weighted A* Search
	Slide 2: A* Search
	Slide 3: Heuristics
	Slide 4: Heuristics
	Slide 5: Heuristics
	Slide 6: Heuristics
	Slide 7: Heuristics
	Slide 8: Heuristics
	Slide 9: Heuristics
	Slide 10: Heuristics
	Slide 11: Backward A* Search
	Slide 12: Backward A* Search
	Slide 13: Backward A* Search
	Slide 14: Backward A* Search
	Slide 15: Backward A* Search that computes ALL g-values
	Slide 16: Backward A* Search that computes ALL g-values
	Slide 17: Backward A* Search that computes ALL g-values
	Slide 18: Backward A* Search that computes ALL g-values
	Slide 19: Backward A* Search that computes ALL g-values
	Slide 20: Backward A* Search that computes ALL g-values
	Slide 21: Examples: Heuristics via Low-D Search
	Slide 22: Weighted A*
	Slide 23: Weighted A*
	Slide 24: Weighted A*
	Slide 25: Weighted A*
	Slide 26: Weighted A*
	Slide 27: Weighted A*
	Slide 28: Weighted A*
	Slide 30: Few Properties of Heuristic Functions
	Slide 31: What You Should Know…

