
16-350

Planning Techniques for Robotics

Interleaving Planning and Execution:

Incremental Heuristic Search

Maxim Likhachev

Robotics Institute

Carnegie Mellon University

Carnegie Mellon University 2

Planning during Execution

• Planning is a repeated process!
– partially-known environments

– dynamic environments

– imperfect execution of plans

– imprecise localization

• Need to be able to re-plan fast!

• Several methodologies to achieve this:

– anytime heuristic search: return the best plan possible within T msecs

– incremental heuristic search: speed up search by reusing previous efforts

– real-time heuristic search: plan few steps towards the goal and re-plan later

Carnegie Mellon University 3

Planning during Execution

• Planning is a repeated process!
– partially-known environments

– dynamic environments

– imperfect execution of plans

– imprecise localization

• Need to be able to re-plan fast!

• Several methodologies to achieve this:

– anytime heuristic search: return the best plan possible within T msecs

– incremental heuristic search: speed up search by reusing previous efforts

– real-time heuristic search: plan few steps towards the goal and re-plan later

edgecost changes

edgecost changes, goal changes

robot pose changes/deviates off the path

robot pose changes/deviates off the path

Carnegie Mellon University 4

Only Goal Changes

Any ideas how to handle it?

Carnegie Mellon University 5

Only Goal Changes

Any ideas how to handle it?

Re-compute heuristics with respect to the new goal, and

continue searching until the new goal state is expanded

Carnegie Mellon University 6

Only Goal Changes

h=5

h=4

h=6

h=4

h=3

h=5

h=3

h=2

h=4

h=2

h=22.4

h=3

h=1

h=0

h=1

h=2

h=4h=51

1

1

1

4-connected grid

h(cell <x,y>) = |x-xgoal| +|y-ygoal| (Manhattan Distance)

goal during 1st planning
robot

A B C D E

1

2

3

4

• Example on the board!

h=3 h=2

h=6

h=5

h=5

h=5

h=4

h=4

h=4

h=3

h=3

h=3

h=22.4

h=2

h=2

h=1

h=0

h=1

h=3h=4

goal during 2nd planning
robot

A B C D E

1

2

3

4

h=2 h=1

Carnegie Mellon University 7

Only Robot Pose Changes

Any ideas how to handle it?

Carnegie Mellon University 8

Only Robot Pose Changes

Any ideas how to handle it?

Do the search backwards:

Then, the problem becomes “Only Goal Changes” that we know how to solve already

Carnegie Mellon University 9

What if both Robot Pose and its Goal change?

Too bad!

Typically, you are better of re-planning from scratch then.

Carnegie Mellon University 10

Changes to Edgecosts

• Two main reasons
– Noisy perception (e.g., flickering obstacles, sensed position of obstacles is

shifting, robot localization is noisy, etc.)

– Partially-known environment

Carnegie Mellon University 11

Changes to Edgecosts

• Two main reasons
– Noisy perception (e.g., flickering obstacles, sensed position of obstacles is

shifting, robot localization is noisy, etc.)

– Partially-known environment

Typically, it is important to do clever filtering

to minimize flicker as much as possible without sacrificing safety

Carnegie Mellon University 12

Changes to Edgecosts

• Two main reasons
– Noisy perception (e.g., flickering obstacles, sensed position of obstacles is

shifting, robot localization is noisy, etc.)

– Partially-known environment

Typically, it is important to do clever filtering

to minimize flicker as much as possible without sacrificing safety

What should we assume about unknown space?

Carnegie Mellon University 13

Changes to Edgecosts

• Two main reasons
– Noisy perception (e.g., flickering obstacles, sensed position of obstacles is

shifting, robot localization is noisy, etc.)

– Partially-known environment

Typically, it is important to do clever filtering

to minimize flicker as much as possible without sacrificing safety

What should we assume about unknown space?

Freespace Assumption: Assume that any “unknown” space is traversable

until sensed otherwise!

Carnegie Mellon University 14

Changes to Edgecosts
• The robot doesn’t initially know the status of the door

door

We ran an uninformed A* search backwards

(that is, all g-values are costs to sgoal)

1

1

1

1

8-connected grid

1

11

1

Carnegie Mellon University 15

Changes to Edgecosts
• The robot doesn’t initially know the status of the door

door

We ran an uninformed A* search backwards

(that is, all g-values are costs to sgoal)

Why backwards?

1

1

1

1

8-connected grid

1

11

1

Carnegie Mellon University 16

Changes to Edgecosts
• The robot doesn’t initially know the status of the door

during execution, the robot found out that the door is closedStates with

changed

g-values

1

1

1

1

8-connected grid

1

11

1

Carnegie Mellon University 17

Changes to Edgecosts
• The robot doesn’t initially know the status of the door

during execution, the robot found out that the door is closedStates with

changed

g-values

How does “blocking” a cell

translate to edgecost changes?

1

1

1

1

8-connected grid

1

11

1

Carnegie Mellon University 18

Changes to Edgecosts
• The robot doesn’t initially know the status of the door

during execution, the robot found out that the door is closedStates with

changed

g-values

Can we reuse these g-values from one search to

another? – incremental A*

1

1

1

1

8-connected grid

1

11

1

Carnegie Mellon University 19

• D*/D* Lite: Incremental Heuristic Search Algorithms

initial search by backwards A*

second search by backwards A*

initial search by D* Lite

second search by D* Lite

Incremental Heuristic Search

Carnegie Mellon University 20

2

• So far, ComputePathwithReuse() could only deal with

states whose v(s) ≥ g(s) (overconsistent or consistent)

• Edge cost increases may introduce underconsistent states

(v(s) < g(s))

S2 S1

Sgoal

g=1

v= 1

h=2

g= 3

v= 3

h=1 g= 5

v= 5

h=02

S4 S3

3

g= 2

v= 2

h=2

g= 5

v= 

h=1

1

Sstart

1

1

g=0

v=0

h=3

A* with Reuse of State Values

Carnegie Mellon University 21

2

• So far, ComputePathwithReuse() could only deal with

states whose v(s) ≥ g(s) (overconsistent or consistent)

• Edge cost increases may introduce underconsistent states

(v(s) < g(s))

S2 S1

Sgoal

g=1

v= 1

h=2

g= 3

v= 3

h=1 g= 5

v= 5

h=02

S4 S3

3

g= 2

v= 2

h=2

g= 5

v= 

h=1

1

Sstart

1

1

g=0

v=0

h=3

A* with Reuse of State Values

4

suppose the robot

updates an edge cost

Carnegie Mellon University 22

4S2 S1

Sgoal

g=1

v= 1

h=2

g= 3

v= 3

h=1 g= 5

v= 5

h=02

S4 S3

3

g= 2

v= 2

h=2

g= 5

v= 

h=1

1

Sstart

1

1

g=0

v=0

h=3

A* with Reuse of State Values

• Edge cost increases may introduce underconsistent states (v(s) < g(s))
ComputePathwithReuse invariant:

g(s’) = mins’’ pred(s’) v(s’’) + c(s’’,s’)

need to update g(s1)

Carnegie Mellon University 23

4S2 S1

Sgoal

g=1

v= 1

h=2

g= 3

v= 3

h=1 g= 5

v= 5

h=02

S4 S3

3

g= 2

v= 2

h=2

g= 5

v= 

h=1

1

Sstart

1

1

g=0

v=0

h=3

A* with Reuse of State Values

5

• Edge cost increases may introduce underconsistent states (v(s) < g(s))
ComputePathwithReuse invariant:

g(s’) = mins’’ pred(s’) v(s’’) + c(s’’,s’)

need to update g(s1)

v(s1) < g(s1)

Carnegie Mellon University 24

4S2 S1

Sgoal

g=1

v= 1

h=2

g= 5

v= 3

h=1 g= 5

v= 5

h=02

S4 S3

3

g= 2

v= 2

h=2

g= 5

v= 

h=1

1

Sstart

1

1

g=0

v=0

h=3

A* with Reuse of State Values



• Edge cost increases may introduce underconsistent states (v(s) < g(s))

• Fix these by setting v(s) =  ComputePathwithReuse invariant:

g(s’) = mins’’ pred(s’) v(s’’) + c(s’’,s’)

Carnegie Mellon University 25

4S2 S1

Sgoal

g=1

v= 1

h=2

g= 5

v= 

h=1 g= 5

v= 5

h=02

S4 S3

3

g= 2

v= 2

h=2

g= 5

v= 

h=1

1

Sstart

1

1

g=0

v=0

h=3

A* with Reuse of State Values

• Edge cost increases may introduce underconsistent states (v(s) < g(s))

• Fix these by setting v(s) = 

• Makes s overconsistent or consistent v(s) ≥ g(s)

ComputePathwithReuse invariant:

g(s’) = mins’’ pred(s’) v(s’’) + c(s’’,s’)

Carnegie Mellon University 26

4

• Edge cost increases may introduce underconsistent states (v(s) < g(s))

• Fix these by setting v(s) = 

• Makes s overconsistent or consistent v(s) ≥ g(s)

• Propagate the changes

S2 S1

Sgoal

g=1

v= 1

h=2

g= 5

v= 

h=1 g= 

v= 5

h=02

S4 S3

3

g= 2

v= 2

h=2

g= 5

v= 

h=1

1

Sstart

1

1

g=0

v=0

h=3

A* with Reuse of State Values

ComputePathwithReuse invariant:

g(s’) = mins’’ pred(s’) v(s’’) + c(s’’,s’)

update g(sgoal)

Carnegie Mellon University 27

4

• Edge cost increases may introduce underconsistent states (v(s) < g(s))

• Fix these by setting v(s) = 

• Makes s overconsistent or consistent v(s) ≥ g(s)

• Propagate the changes

S2 S1

Sgoal

g=1

v= 1

h=2

g= 5

v= 

h=1 g= 

v= 

h=02

S4 S3

3

g= 2

v= 2

h=2

g= 5

v= 

h=1

1

Sstart

1

1

g=0

v=0

h=3

A* with Reuse of State Values

ComputePathwithReuse invariant:

g(s’) = mins’’ pred(s’) v(s’’) + c(s’’,s’)

fix sgoal

no more underconsistent states!

Carnegie Mellon University 28

4

• Edge cost increases may introduce underconsistent states (v(s) < g(s))

• Fix these by setting v(s) = 

• Makes s overconsistent or consistent v(s) ≥ g(s)

• Propagate the changes

S2 S1

Sgoal

g=1

v= 1

h=2

g= 5

v= 

h=1 g= 6

v= 

h=02

S4 S3

3

g= 2

v= 2

h=2

g= 5

v= 5

h=1

1

Sstart

1

1

g=0

v=0

h=3

A* with Reuse of State Values

ComputePathwithReuse invariant:

g(s’) = mins’’ pred(s’) v(s’’) + c(s’’,s’)

no more underconsistent states!

expand s3

Carnegie Mellon University 29

4

• Edge cost increases may introduce underconsistent states (v(s) < g(s))

• Fix these by setting v(s) = 

• Makes s overconsistent or consistent v(s) ≥ g(s)

• Propagate the changes

S2 S1

Sgoal

g=1

v= 1

h=2

g= 5

v= 

h=1 g= 6

v= 6

h=02

S4 S3

3

g= 2

v= 2

h=2

g= 5

v= 5

h=1

1

Sstart

1

1

g=0

v=0

h=3

A* with Reuse of State Values

ComputePathwithReuse invariant:

g(s’) = mins’’ pred(s’) v(s’’) + c(s’’,s’)

no more underconsistent states!

expand sgoal

Carnegie Mellon University 30

4

• Edge cost increases may introduce underconsistent states (v(s) < g(s))

• Fix these by setting v(s) = 

• Makes s overconsistent or consistent v(s) ≥ g(s)

• Propagate the changes

S2 S1

Sgoal

g=1

v= 1

h=2

g= 5

v= 

h=1 g= 6

v= 6

h=02

S4 S3

3

g= 2

v= 2

h=2

g= 5

v= 5

h=1

1

Sstart

1

1

g=0

v=0

h=3

A* with Reuse of State Values

after ComputePathwithReuse terminates:

all g-values of states are equal to final A* g-values

we can backtrack an optimal path

(start at sgoal, proceed to pred that minimizes g+c)

Carnegie Mellon University 31

4

• Edge cost increases may introduce underconsistent states (v(s) < g(s))

• Fix these by setting v(s) = 

• Makes s overconsistent or consistent v(s) ≥ g(s)

• Propagate the changes

S2 S1

Sgoal

g=1

v= 1

h=2

g= 5

v= 

h=1 g= 6

v= 6

h=02

S4 S3

3

g= 2

v= 2

h=2

g= 5

v= 5

h=1

1

Sstart

1

1

g=0

v=0

h=3

A* with Reuse of State Values

after ComputePathwithReuse terminates:

all g-values of states are equal to final A* g-values

we can backtrack an optimal path

(start at sgoal, proceed to pred that minimizes g+c)

Carnegie Mellon University 32

D* Lite

• Optimal re-planning algorithm

• Simpler and with nicer theoretical properties version of

D*

until goal is reached

ComputePathwithReuse();

publish optimal path;

follow the path until map is updated with new sensor information;

update the corresponding edge costs;

set sstart to the current state of the agent;

//modified to fix underconsistent states

Carnegie Mellon University 33

Anytime Incremental Heuristic Search

• Anytime D*:

– decrease  and update edge costs at the same time

– re-compute a path by reusing previous state-values

set  to large value;

until goal is reached

ComputePathwithReuse();

publish  -suboptimal path;

follow the path until map is updated with new sensor information;

update the corresponding edge costs;

set sstart to the current state of the agent;

if significant changes were observed

increase  or replan from scratch;

else

decrease ;

//modified to fix underconsistent states

What for?

Carnegie Mellon University 34

What You Should Know…

• How to handle changes to Robot Pose Only or Goal Only

• What is Freespace Assumption

• What is D*/D* Lite and the general principles behind it

(don’t need to know the exact algorithm)

