16-350 Spring'25 Planning Techniques for Robotics

Introduction; What is Planning for Robotics?

Maxim Likhachev Robotics Institute Carnegie Mellon University

About Me

- My Research Interests:
 - Planning, Decision-making, Learning
 - Applications: planning for complex robotic systems including aerial and ground robots, manipulation platforms, small teams of heterogeneous robots
- More info:

http://www.cs.cmu.edu/~maxim

Search-based Planning Lab: <u>http://www.sbpl.net</u>

• Also, currently split between CMU and <u>Waymo</u>, where I'm heavily involved in planning for self-driving vehicles

Class Logistics

• Instructor:

Maxim Likhachev – maxim@cs.cmu.edu

• TA:

Saudamini Ghatge - <u>sghatge@andrew.cmu.edu</u>

• Website:

http://www.cs.cmu.edu/~maxim/classes/robotplanning

• Piazza for Announcements and Questions: You should have received an email

Class Logistics

- Books (optional):
- Planning Algorithms *by Steven M. LaValle*
- Heuristic Search, Theory and Applications by Stefan Edelkamp and Stefan Schroedl
- Principles of Robot Motion, Theory, Algorithms, and Implementations by Howie Choset, Kevin M. Lynch, Seth Hutchinson, George A. Kantor, Wolfram Burgard, Lydia E. Kavraki and Sebastian Thrun
- Artificial Intelligence: A Modern Approach by Stuart Russell and Peter Norvig

Class Prerequisites

- Knowledge of programming (e.g., C, C++)
- Knowledge of data structures
- Some prior exposure to robotics (e.g., Intro to Robotics class) is preferred

Class Objectives

- Understand and learn how to implement most popular planning algorithms in robotics including heuristic search-based planning algorithms, sampling-based planning algorithms, task planning, planning under uncertainty and multi-robot planning
- Learn basic principles behind the design of planning representations
- Understand core theoretical principles that many planning algorithms rely on and learn how to analyze theoretical properties of the algorithms
- Understand the challenges and basic approaches to interleaving planning and execution in robotic systems
- Learn common uses of planning in robotics

Tentative Class Schedule

TENTATIVE SCHEDULE FOR Robot Planning CLASS

Spring 2025

Date D 13-Jan M	ny Topic	HW out	
	n Introduction: What is Planning?		HW due
	ed planning representations: explicit vs. implicit graphs, skeletonization-, grid- and lattice-based graphs		
	n NO CLASS		
	ed planning representations: explicit vs. implicit graphs, skeletonization-, grid- and lattice-based graphs (cont'd)		
	on search algorithms: Uninformed A*	HW1	
	ed search algorithms: A*, Multi-goal A*		
	n heuristics, weighted A*, Backward A*		
	ed interleaving planning and execution: Anytime heuristic search		
	n interleaving planing and execution: Freespace assumption, Incremental heuristic search		
	ed interleaving planning and execution: Limited Horizon search, LRTA*		HW1
	on case study: planning for autonomous driving		
	ed planning representations: PRM for continuous spaces	HW2	
	n planning representations/search algorithms: RRT, RRT-Connect, RRT*		
	ed planning representations/search algorithms: RRT, RRT-Connect, RRT* (cont'd)		
	n SPRING BREAK; NO CLASS		
5-Mar W	ed SPRING BREAK; NO CLASS		
10-Mar M	n case study: planning for mobile manipulation and articulated robots		
12-Mar W	ed search algorithms: Markov Property, dependent vs. independent variables		HW2
17-Mar M	n case study: planning for exploration and surveillance tasks		
19-Mar W	ed final project proposal presentations		
24-Mar M	n planning representations: state-space vs. symbolic representation for task planning	HW3	
26-Mar W	ed search algorithms: symbolic task planning algorithms		
31-Mar M	n planning under uncertainty: Minimax formulation		
2-Apr W	ed planning under uncertainty: Expected Cost Minimization formulation		HW3
7-Apr M	planning under uncertainty: Solving Markov Decision Processes		
9-Apr W	ed exam		
	n multi-robot planning		
16-Apr W	ed multi-robot planning		
	n TBD		
23-Apr W	ed final project presentations		

Class Structure

• Grading

Three homeworks	33%
Exam	20%
In-class pop quizzes	10%
Final project	32%
Participation	5%

- Exam is tentatively scheduled for April 9 (no final exam)
- Late Policy
 - 3 free late days
 - No late days may be used for the final project!
 - Each additional late day incurs 10% penalty with 50% being the upper limit (grade of 90 becomes 81 for one additional late day)

Three Homeworks + Final Project

- All homeworks are individual (no groups)
- Final project are in groups of 2-3 students
- Homeworks are programming assignments
- Final project is a research-like project. For example:
 - to develop a planner for a robot planning problem of your choice
 - to extend an existing or develop a new planning algorithm
 - to prove novel properties of a planning algorithm
 - Get a feel for doing research: Individual meetings with groups, Two class presentations (initial idea and final)

Three Homeworks + Final Project

• <u>Homework assignments for Masters students will have</u> <u>additional scope</u>

• Undergraduate students will have an option to tackle this additional scope and receive bonus points

What is Planning?

• According to Wikipedia: "Planning is the process of thinking about an organizing the activities required to achieve a desired goal."

What is Planning **for Robotics**?

• According to Wikipedia: "Planning is the process of thinking about an organizing the activities required to achieve a desired goal."

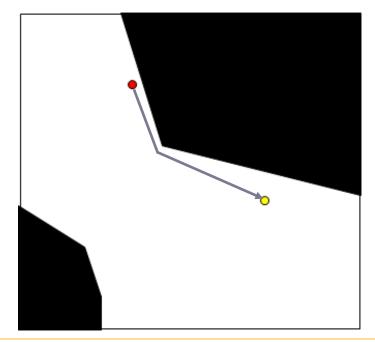
• Given

- -model (states and actions) of the robot(s) $M^R = \langle S^R, A^R \rangle$
- $-a model of the world M^{W}$
- current state of the robot $s^{R}_{current}$
- current state of the world $s^{W}_{current}$
- cost function C of robot actions
- -desired set of states for robot and world G

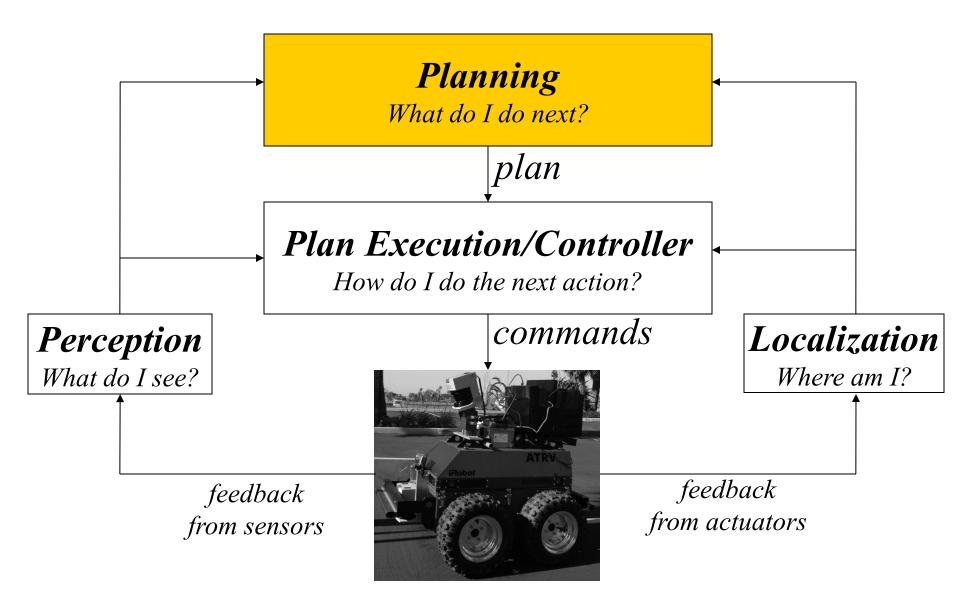
• Compute a plan π that

- -prescribes a set of actions $a_1, ..., a_K$ in A^R the robot should execute
- reaches one of the desired states in G
- (preferably) minimizes the cumulative cost of executing actions $a_1, ..., a_K$

Example


• Given

- -model (states and actions) of the robot(s) $M^{R} = \langle S^{R}, A^{R} \rangle$
- -a model of the world M^{W}
- current state of the robot $s^{R}_{current}$
- current state of the world $s^{W}_{current}$
- cost function C of robot actions
- -desired set of states for robot and world G


• Compute a plan π that

- prescribes a set of actions $a_1, \dots a_K$ in A^R the robot should execute
- reaches one of the desired states in G
- (preferably) minimizes the cumulative cost of executing actions $a_1, \dots a_K$

Planning for omnidirectional robot:

Planning within a Typical Autonomy Architecture

• Given

- -model (states and actions) of the robot(s) $M^{R} = \langle S^{R}, A^{R} \rangle$
- -a model of the world M^W
- current state of the robot $s^{R}_{current}$
- current state of the world $s^{W}_{current}$
- cost function C of robot actions
- -desired set of states for robot and world G

• Compute a plan π that

- -prescribes a set of actions $a_1, \dots a_K$ in A^R the robot should execute
- reaches one of the desired states in G
- (preferably) minimizes the cumulative cost of executing actions $a_l, ..., a_K$

Planning for omnidirectional drone:

What is M^R? What is M^W? What is s^R_{current}? What is s^W_{current}? What is C? What is G?

MacAllister et al., 2013

Carnegie Mellon University

• Given

- -model (states and actions) of the robot(s) $M^{R} = \langle S^{R}, A^{R} \rangle$
- $-a model of the world M^{W}$
- current state of the robot $s^{R}_{current}$
- current state of the world $s^{W}_{current}$
- cost function C of robot actions
- -desired set of states for robot and world G

• Compute a plan π that

- -prescribes a set of actions $a_1, \dots a_K$ in A^R the robot should execute
- reaches one of the desired states in G
- (preferably) minimizes the cumulative cost of executing actions $a_1, \dots a_K$

Planning for autonomous navigation:

What is M^R? What is M^W? What is s^R_{current}? What is s^W_{current}? What is C? What is G?

Likhachev & Ferguson, '09; part of Tartanracing team from CMU for the Urban Challenge 2007 race

• Given

- -model (states and actions) of the robot(s) $M^{R} = \langle S^{R}, A^{R} \rangle$
- -a model of the world M^W
- current state of the robot $s^{R}_{current}$
- current state of the world $s^{W}_{current}$
- cost function C of robot actions
- -desired set of states for robot and world G

• Compute a plan π that

- -prescribes a set of actions $a_1, \dots a_K$ in A^R the robot should execute
- reaches one of the desired states in G
- (preferably) minimizes the cumulative cost of executing actions $a_1, \dots a_K$

Planning for autonomous flight among people :

Narayanan et al., 2012

• Given

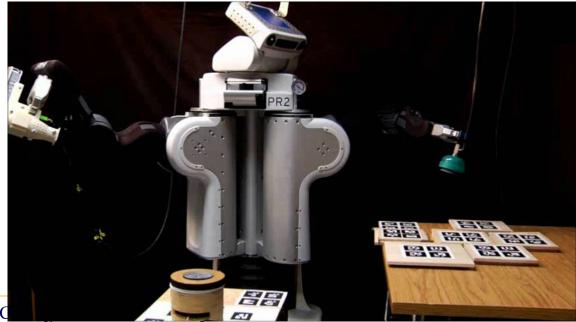
- -model (states and actions) of the robot(s) $M^{R} = \langle S^{R}, A^{R} \rangle$
- -a model of the world M^W
- current state of the robot $s^{R}_{current}$
- current state of the world $s^{W}_{current}$
- cost function C of robot actions
- -desired set of states for robot and world G

• Compute a plan π that

- -prescribes a set of actions $a_1, \dots a_K$ in A^R the robot should execute
- reaches one of the desired states in G
- (preferably) minimizes the cumulative cost of executing actions $a_l, ..., a_K$

Planning for a mobile manipulator robot opening a door:

Gray et al., 2013


• Given

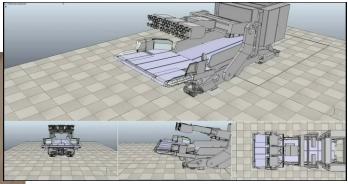
- -model (states and actions) of the robot(s) $M^{R} = \langle S^{R}, A^{R} \rangle$
- -a model of the world M^W
- current state of the robot $s^{R}_{current}$
- current state of the world $s^{W}_{current}$
- cost function C of robot actions
- -desired set of states for robot and world G

• Compute a plan π that

- prescribes a set of actions $a_1, \dots a_K$ in A^R the robot should execute
- reaches one of the desired states in G
- (preferably) minimizes the cumulative cost of executing actions $a_l, ..., a_K$

Planning for a mobile manipulator robot assembling a birdcage: Cohen et al., 2015

• Given


- -model (states and actions) of the robot(s) $M^{R} = \langle S^{R}, A^{R} \rangle$
- -a model of the world M^W
- current state of the robot $s^{R}_{current}$
- current state of the world $s^{W}_{current}$
- cost function C of robot actions
- -desired set of states for robot and world G

• Compute a plan π that

- -prescribes a set of actions $a_1, \dots a_K$ in A^R the robot should execute
- reaches one of the desired states in G
- (preferably) minimizes the cumulative cost of executing actions $a_1, \dots a_K$

Planning for a mobile manipulator unloading a truck:

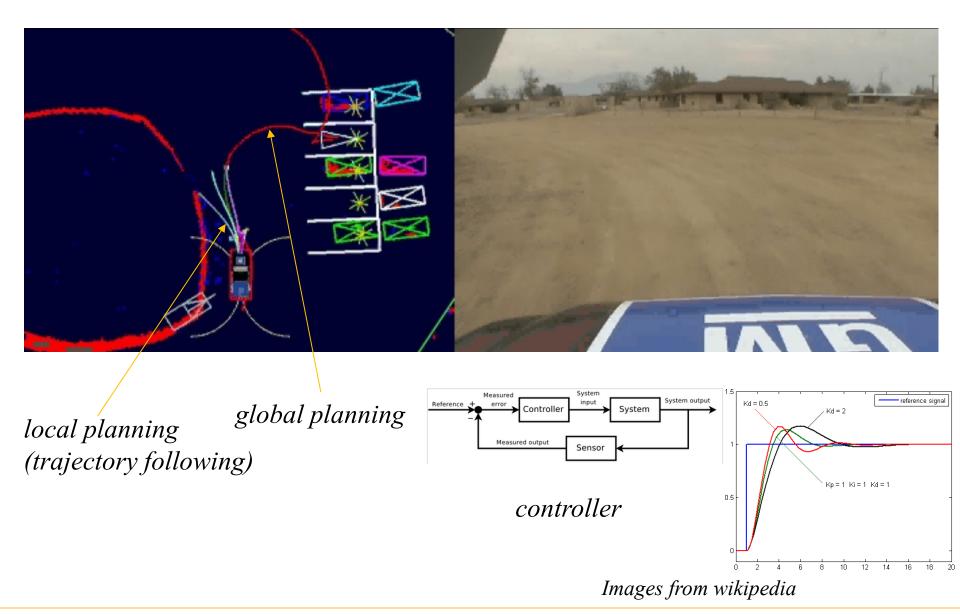
Assuming Infinite Computational Resources...

Assuming Infinite Computational Resources...

Reliance on the knowledge/accuracy of the model!

Planning vs. Learning

Model-based approach


Learning models M^R, M^W and cost function C models M^R , M^W and cost function C

Planning using models M^R, M^W and cost function C

Model-free approach

Learning the mapping from "what robot sees" onto "what to do next" using rewards received by the robot (Reinforcement Learning)

Planning vs. Trajectory Following vs. Control

Questions about the class?