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Planning during Execution

* Planning 1s a repeated process!

— partially-known environments

— dynamic environments
— 1mperfect execution of plans

— 1imprecise localization

* Need to be able to re-plan fast!

» Several methodologies to achieve this:
— anytime heuristic search: return the best plan possible within T msecs
— 1ncremental heuristic search: speed up search by reusing previous efforts

— real-time heuristic search: plan few steps towards the goal and re-plan later
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Real-time (Agent-centered) Heuristic Search

Enforce a strict limit on the amount of computations (no requirement on
planning all the way to the goal)
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Real-time (Agent-centered) Heuristic Search

1. Compute a partial path by expanding at most N states around the
robot

2. Move once, incorporate sensor information, and goto step 1

Example in a fully-known terrain:

a1 ™
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Real-time (Agent-centered) Heuristic Search

1. Compute a partial path by expanding at most N states around the
robot

2. Move once, incorporate sensor information, and goto step 1

Example in an unknown terrain (planning with Freespace Assumption):

o SSERS
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Real-time (Agent-centered) Heuristic Search

Compute a partial path by expanding at most N states around the
robot

Move once, incorporate sensor information, and goto step 1

Research 1ssues:

- how to compute partial path
- how to guarantee complete behavior (guarantee to reach the goal)

- provide bounds on the number of steps before reaching the goal
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Suppose planner only has time to examine successors

h(x,y) = max(abs(x-x,,,), abs(V-Yeou)) + 0.4*min(abs(x-x,,,)), abS(V-Yepa)
6.2 5.214.2/3.83.43
5.8/ 4.8 3.8 2.8 2.4 2
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Suppose planner only has time to examine successors

* Repeatedly move the robot to the most promising adjacent
state, using heuristics

1. always move as follows: Sy, = argmin ; ¢ g.cc(ssiary)CSsiare $) 1 1(S)

h(x,y) = max(abs(x-x,,,), abs(V-Yeou)) + 0.4*min(abs(x-x,,,)), abS(V-Yepa)
6.2/ 5.214.2/3.8 3.4 3
5.8/ 4.8/ 3.8/ 2.8/ 2.4 2

Coital 1.4 1
514 |3 1 |0
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Suppose planner only has time to examine successors

* Repeatedly move the robot to the most promising adjacent
state, using heuristics

1. always move as follows: Sy, = argmin ; ¢ g.cc(ssiary)CSsiare $) 1 1(S)

h(x,y) = max(abs(x-x,,,), abs(V-Yeou)) + 0.4*min(abs(x-x,,,)), abS(V-Yepa)
6.2/ 5.214.2/3.8 3.4 3
5.8/ 4.8/ 3.8/ 2.8/ 2.4 2

Coital 1.4 1
514 |3 1 |0
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Suppose planner only has time to examine successors

* Repeatedly move the robot to the most promising adjacent
state, using heuristics

1. always move as follows: Sy, = argmin ; ¢ g.cc(ssiary)CSsiare $) 1 1(S)

h(x,y) = max(abs(x-x,,,), abs(V-Yeou)) + 0.4*min(abs(x-x,,,)), abS(V-Yepa)

6.215.2 4.2 3.8 3.4 3 6.215.2 4.2 3.8 343 6.215.2 4.2 3.8 343
5.8 4.8 3.8 2.8 2.4 2 5.8 4.8/ 3.8 2.8 2.4/ 2 5.8 4.8/ 3.8 2.8 2.4/ 2
Sl 1.4 1 5.4 ¢ 1.4 1 5.4 1
514 |3 1 |0 514 1 |0 5 0
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Suppose planner only has time to examine successors

* Repeatedly move the robot to the most promising adjacent
state, using heuristics

1. always move as follows: Sy, = argmin ; ¢ g.cc(ssiary)CSsiare $) 1 1(S)

h(x,y) = max(abs(x-x,,,), abs(V-Yeou)) + 0.4*min(abs(x-x,,,)), abS(V-Yepa)
6.25.24213.8 343 6.2/ 5.214.213.8 3.4
5.8 4.8 3.8 2.8 2.4 5.8 4.8 3.8 2.8 2.4

)

5.4 4.4 141 | (5444 1.4
/

5 | 4¢3 1lo | |s \49-8 I

6.205.2042 38343
5.8 4.8/ 3.8 2.8 2.4

2
5.4 4. 1.4 1
5 | 4e3 0

1

S N | W

Local minima problem (myopic or incomplete behavior)
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Suppose planner only has time to examine successors

* Repeatedly move the robot to the most promising adjacent

state, using and updating heuristics

—— makes h-values more informed

up date h (Sstar) = min s € succ(sstart)c(sstart’ S) th (S)

L.
2.

always move as follows.: s ,,, = argmin g ¢ y.ccsiargCSsiare ) T 1(S)

6.2

5242 3.8

3.4

5.8

4.8 3.8/ 2.8

2.4

6.215.2 4.2 3.8

3.4

5.8 4.8 3.8 2.8

"
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Suppose planner only has time to examine successors

* Repeatedly move the robot to the most promising adjacent
state, using and updating heuristics

L.
2.

up date h (SstarJ = min s € succ(sstart)c(sstart’ S) th (S)
always move as follows.: s ,,, = argmin g ¢ y.ccsiargCSsiare ) T 1(S)

6.2

5.2

4.2

3.8

3.4

2.4

1.4

1

O | = | DN | W
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Suppose planner only has time to examine successors

* Repeatedly move the robot to the most promising adjacent
state, using and updating heuristics

1. update h(SstarJ = min s €succ(sstart)c(sstart’ S) T h(S)
2. always move as follows: s,,, = argmin g ¢ y.ccsargC(Ssiare ) T 1(S)

6.205.214.2 3.8 3.4
2.4
1.4
1

6.215.24.2 3.8 3.4

O | = | DN | W

S (= N | W

h-values guaranteed to remain admissible and consistent
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Suppose planner only has time to examine successors

* Repeatedly move the robot to the most promising adjacent
state, using and updating heuristics

1. update h(SstarJ = min s €succ(sstart)c(sstart’ S) T h(S)
2. always move as follows: s,,, = argmin g ¢ y.ccsargC(Ssiare ) T 1(S)

6.215.24.2/3.8 3.4
2.4
1.4
110
robot 1s guaranteed to reach goal in finite number of steps if:

. all costs are bounded from below with A >0

R\ RS

*  graph 1s of finite size and there exists a finite-cost path to the goal

e all actions are reversible
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Suppose planner only has time to examine successors

* Repeatedly move the robot to the most promising adjacent
state, using and updating heuristics

1. update h(Sstart) = min s €succ(sstart)c(sstart’ S) T h(S)
2. always move as follows: s,,, = argmin g ¢ y.ccsargC(Ssiare ) T 1(S)

6.2 5.2 4.2 3.8 3.4
2.4
1.4
10
robot 1s guaranteed to reach goal 1n finite number of stecegt

. all costs are bounded from below with A >0

R\ RS

*  graph 1s of finite size and there exists a finite-cost path to the goal

. all actions are reversible
Carnegie Mellon University 16



Suppose planner only has time to examine successors

Repeatedly move the robot to the most promising adjacent
state, using and updating heuristics

1. update h(SstarJ = min s CSucc(Sstart)c(Sstart’ S) T h(S)
2. always move as follows: s,,, = argmin g ¢ y.ccsargC(Ssiare ) T 1(S)

This algorithm is called
LRTA* (Learning Real-time A*) with N=1
S (where N is number of allowed expansions) 02

5.4 4 . C 1452 141
5 (5 1o

54 5 1 |0 51545 .1 0 5 5.4H

robot 1s guaranteed to reach goal in finite number of steps if:

. all costs are bounded from below with A >0

*  graph 1s of finite size and there exists a finite-cost path to the goal

e all actions are reversible
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Learning Real-Time A* (LRTA*) with N=1

e expand N = [ state, make a move towards a state s in OPEN
with smallest g(s)+h(s):

1.  expand s

start

2. update h(SstarJ = min s €succ(sstart)c(sstart’ S) + h(S)
3. always move as follows: sy, = argmin ¢ ¢ y...isuar(Ssare S) T H(S)

- argmin s Csucc(sstart)g(s) + h(S)

6.2 5.2 4.2 3.8/ 3.4
5.8 4.8 3.8 2.8 2.4

O™ 1.4
514 |3 1

6.2 5.2 4.2 3.8/ 3.4
5.8 4.8 3.8 2.8 2.4

A 1.4
4 1

- expanded

6.21 5.2 4.2 3.8 3.4
5.8 4.8/ 3.8 2.8 2.4

5.4 4. 1.4
5 1

O | = | DN | W
O | = | DN | W

S (= N | W

Carnegie Mellon University 18



Learning Real-Time A* (LRTA*)

« LRTA* with N > [ expands
1 expand N states / to reach the goal

2. update h-values of expanded states by Dynamic Programming (DP)

3. move on the path to state s = argmin . ¢ pppn&(S°) + h(s’)

- expanded
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Learning Real-Time A* (LRTA*)

« LRTA* with N > [ expands

1. expand N states
2. update h-values of expanded states by Dynamic Programming (DP)

3. move on the path to state s = argmin . ¢ pppn&(S°) + h(s’)

state s:

- the state that minimizes cost to it plus heuristic estimate of the remaining distance

- the state that looks most promising in terms of the whole path from current robot
state to goal

- expanded
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Learning Real-Time A* (LRTA*)

« LRTA* with N > [ expands

1. expand N states

2. update h-values of expanded states by Dynamic Programming (DP)
3. move on the path to state s = argmin ;. ¢ oppn&(S°) + h(s’)

8| 7| 6|5 4
/|16 |5|4]|3
6| 54| 3| 2
o | 4 2 | 1
4 | 3 (2 0

4-connected grid (robot moves in 4 directions)
example borrowed from ICAPS’06 planning summer school lecture (Koenig & Likhachev)

- expanded
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Learning Real-Time A* (LRTA*)

« LRTA* with N > I expands

1. expand N states
2. update h-values of expanded states by Dynamic Programming (DP)

3. move on the path to state s = argmin ;. ¢ oppn&(S°) + h(s’)

8| 7|6 |95 4| expand N=7 states
716|543
6 3| 2
2 | 1
0
- expanded
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Learning Real-Time A* (LRTA*)

« LRTA* with N > I expands

1. expand N states
2. update h-values of expanded states by Dynamic Programming (DP)

3. move on the path to state s = argmin ;. ¢ oppn&(S°) + h(s’)

8| 7| 6| 95| 4] expand N=7 states
716|543
6 »3 | 2
2 1 unexpanded state with smallest
g+h(=5+3)
_— 0
- expanded
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Learning Real-Time A* (LRTA*)

+ LRTA* with N>/ expands << N>

1. expand N states

2. update h-values of exp states by Dynamic Programming (DP)

3. move on the pathto state s = argmin . ¢ oppn&(S’) + h(s’)

8 | 7|6 5// 4 1 expand N=7 states

6 | &3] 2
2 1 unexpanded state with smallest
g+h(=5+3)
—— O
- expanded
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Learning Real-Time A* (LRTA*)

« LRTA* with N > [ expands

1. expand N states

2. update h-values of expanded states by Dynamic Programming (DP)
3. move on the path to state s = argmin ;. ¢ oppn&(S°) + h(s’)

8 7 6 5 4 | update h-values of expanded states via DP:
set h-values of expanded states to infinity
7 6 S 4 3 | compute h(s) = MR gyeers) (€08,8°)Th(S7))
until convergence
6 loo |0 | 3| 2
0 | 0o 2 | 1
00 Q0 Q0 0
- expanded
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Learning Real-Time A* (LRTA*)

« LRTA* with N > [ expands

1. expand N states

2. update h-values of expanded states by Dynamic Programming (DP)
3. move on the path to state s = argmin ;. ¢ oppn&(S°) + h(s’)

8 7 6 5 4 | update h-values of expanded states via DP:
set h-values of expanded states to infinity
7 6 S 4 3 | compute h(s) = MR gyeers) (€08,8°)Th(S7))
until convergence
6 loo |4 | 3| 2
0 | 0o 2 | 1
00 Q0 Q0 0
- expanded
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Learning Real-Time A* (LRTA*)

« LRTA* with N > [ expands

1. expand N states
2. update h-values of expanded states by Dynamic Programming (DP)

3. move on the path to state s = argmin ;. ¢ oppn&(S°) + h(s’)

8 7 6 5 4 | update h-values of expanded states via DP:
set h-values of expanded states to infinity
7 6 S 4 3 | compute h(s) = MR gyeers) (€08,8°)Th(S7))
until convergence
615 14|32
0 | 0o 2 | 1
00 Q0 Q0 0
- expanded
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Learning Real-Time A* (LRTA*)

« LRTA* with N > [ expands

1. expand N states
2. update h-values of expanded states by Dynamic Programming (DP)

3. move on the path to state s = argmin ;. ¢ oppn&(S°) + h(s’)

8 7 6 5 4 | update h-values of expanded states via DP:
set h-values of expanded states to infinity
7 6 S 4 3 | compute h(s) = MR gyeers) (€08,8°)Th(S7))
until convergence
615 14|32
© | 6 2 | 1
00 Q0 Q0 0
- expanded
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Learning Real-Time A* (LRTA*)

« LRTA* with N > [ expands

1. expand N states
2. update h-values of expanded states by Dynamic Programming (DP)

3. move on the path to state s = argmin . ¢ pppn&(S°) + h(s’)

8 7 6 5 4 | update h-values of expanded states via DP:
set h-values of expanded states to infinity
7 6 9] 4 3 compute h(s) = Ming ¢ g (€5, ) Th(s’))
until convergence
615 14|32
7 16 2 | 1
o0 o0 QO 0
- expanded
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Learning Real-Time A* (LRTA*)

« LRTA* with N > [ expands

1. expand N states
2. update h-values of expanded states by Dynamic Programming (DP)

3. move on the path to state s = argmin ;. ¢ oppn&(S°) + h(s’)

8 7 6 5 4 | update h-values of expanded states via DP:
set h-values of expanded states to infinity
7 6 S 4 3 | compute h(s) = MR gyeers) (€08,8°)Th(S7))
until convergence
615 14|32
7 |6 2 | 1
o |7 | 0
- expanded
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Learning Real-Time A* (LRTA*)

« LRTA* with N > [ expands

1. expand N states
2. update h-values of expanded states by Dynamic Programming (DP)

3. move on the path to state s = argmin ;. ¢ oppn&(S°) + h(s’)

8 7 6 5 4 | update h-values of expanded states via DP:
set h-values of expanded states to infinity
7 6 S 4 3 | compute h(s) = MR gyeers) (€08,8°)Th(S7))
until convergence
615 14|32
7 |16 2 | 1
8 |7 | 0
- expanded
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Learning Real-Time A* (LRTA*)

« LRTA* with N > [ expands

1. expand N states
2. update h-values of expanded states by Dynamic Programming (DP)

3. move on the path to state s = argmin ;. ¢ oppn&(S°) + h(s’)

8 7 6 5 4 | update h-values of expanded states via DP:
set h-values of expanded states to infinity
7 6 S 4 3 | compute h(s) = MR gyeers) (€08,8°)Th(S7))
until convergence
615 14|32
7 |16 2 | 1
8 | 7 |8 0
- expanded
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Learning Real-Time A* (LRTA*)

« LRTA* with N > [ expands

1.  expand N states
2. update h-values of expanded states by Dynamic Programming (DP)

3. move on the path to state s = argmin . ¢ pppn&(S°) + h(s’)

make a move along the found path

and repeat steps 1-3

. - expanded
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Real-time Adaptive A* (RTAA™)

« RTAA* with N > [ expands: LRT Aga one linear pass,
/ and even that can be lazy(postponed)

1. expand N states

2. update h-values of expanded states u by h(u) = f(s) — g(u),
where s = argmin ¢ oppn&(S°) + h(s’)

3. move on the path to state s = argmin . ¢ oppn&(S°) + h(s’)

8| 7|6 |95 4| expand N=7 states
716|543

6 >3 | 2
2 1 unexpanded state s with smallest
g+h(=5+3)
—— O
- expanded
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Real-time Adaptive A* (RTAA™)

« RTAA* with N > I expands

1. expand N states

2. update h-values of expanded states u by h(u) = f(s) — g(u),

where s = argmin ¢ oppn&(S°) + h(s’)

3. move on the path to state s = argmin ;. ¢ oppn&(S°) + h(s’)

8| 7| 6| 5| 4 |update all expanded states u:
716|543 ]|hw=1s)-gWw
6 | g3 g4 3| 2
g=3| g=2 2 1 unexpanded state s with smallest
f(s) = 8
g=2| g=1{ g= 0
- expanded
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Real-time Adaptive A* (RTAA™)

« RTAA* with N > I expands

1. expand N states

2. update h-values of expanded states u by h(u) = f(s) — g(u),

where s = argmin ¢ oppn&(S°) + h(s’)

3. move on the path to state s = argmin ;. ¢ oppn&(S°) + h(s’)

8| 7| 6| 95| 4 |update all expanded states u.:
716 |5|4]|3]|hw=[s)-gw
6 83184 3 | 2
8-3| 8-2 2 1 unexpanded state s with smallest
f(s) = 8
8-2| 8-1( 8-0 0
- expanded
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Real-time Adaptive A* (RTAA™)

« RTAA* with N > I expands

1. expand N states

2. update h-values of expanded states u by h(u) = f(s) — g(u),

where s = argmin ¢ oppn&(S°) + h(s’)

3. move on the path to state s = argmin ;. ¢ oppn&(S°) + h(s’)

8| 7| 6| 95| 4 |update all expanded states u:
716 (5|4 3]|hw=[s)—gu
6 [5 |4 3| 2
5 |6 2 | 1 unexpanded state s with smallest
f(s) = 8
6 7 8 0
- expanded
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Real-time Adaptive A* (RTAA™)

« RTAA* with N > I expands

1.
2.

3.

expand N states
update h-values of expanded states u by h(u) = f(s) — g(u),
where s = argmin ¢ oppn&(S°) + h(s’)

move on the path to state s = argmin .- ¢ oppn8(S°) + h(s’)

h*() — true cost-to-goal 8 7 51 4
proof of admissibili

/’“V 7| 6 4 | 3
gw) + h*(w) = h*(sy,,,)
W) > h*(s,,) — g(u) R CARI®| © |~ 3|2
0 205 gl = BiE
h *(M) > h updated(u) 6 7 0

- expanded
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LRTA* vs. RTAA*

LRTA* RTAA*
8| 7| 6|54 8| 7| 6| 5|4
716|543 716|543
615 4| 3|2 65 |4 |32
7 16 2 | 1 5 16 2 | 1
8 |7 (8 0 6 |7 (8 0

Update of A#-values in RTAA* 1s much faster but not as informed
Both guarantee adimssibility and consistency of heuristics
For both, heuristics are monotonically increasing

Both guarantee to reach the goal 1n a finite number of steps (given

the conditions listed previously)

Carnegie Mellon University
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What You Should Know...

What 1s Real-time Heuristic Search and what are the challenges
associated with 1t

Operation of LRTA*
Operation of RTAA*

Pros/cons of LRTA* vs. A*
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