16-782: Planning and Decision-making in Robotics
Homework 1: Robot Chasing Target
Due: Sep 25 (Mon), 11:59pm
Professor: Mazim Likhachev Fall 2023 TA: Abigail Breitfeld, Tejus Gupta

1 Task

Write a planner for a point robot to catch a moving target in a 2D grid world.

The gridworld is 8-connected (that is, the robot can only move by at most one unit along X and/or
Y axis). During execution, the planner will be given a costmap and the collision threshold. The
costmap contains the associated cost for moving through each cell in the grid. This cost will be a
non-negative integer. Any cell with a cost greater than or equal to the collision threshold is to be
considered an obstacle that the robot cannot traverse. The biggest grid in this homework is around
2000x2000 cells.

The planner will be given the start position of the robot, along with the trajectory of the moving
target as a sequence of positions (e.g., [(5,6), (5,7), (4,5)]). The target will also be moving on the
8-connected grid, and has a speed of one step per second.

1.1 Code:

Your code is within the folder code. The planner function must output a single robot move. The
planner should reside in planner. cpp file. Currently, the file contains a greedy planner that always
moves the robot in the direction that decreases the distance in between the robot and the target.
The planner function (inside planner.cpp) is as follows:

void planner(
int* map,
int collision_thresh,
int x_size,
int y_size,
int robotposeX,
int robotposeY,
int target_steps,
int* target_traj,
int targetposeX,
int targetposeY,
int curr_time,
int* action_ptr

)



Homework 1 2

1.2 Inputs:

Each cell in the map of size (x_size, y_size) is associated with the cost of moving through it. This
cost is a positive integer. The cost of moving through cell (x, y) in the map should be accessed as:

(int)map [GETMAPINDEX (x,y,x_size,y_size)].

If it is less than collision_thresh, then the cell (x, y) is free. Otherwise, it is an obstacle
that the robot cannot traverse. Note that cell coordinates start with 1. In other words, x can
range from 1 to x_size. The target’s trajectory targe_traj of size target_steps is a sequence
of target positions (for example: (2,3), (2,4), (3,4)). At the current time step current_time, the
current robot pose is given by (robotposeX, robotposeY) and the current target pose is given
by (targetposeX, targetposeY). The target will also be moving on the 8-connected grid, at the
speed of one step per second along its trajectory. Therefore, at the next second, the target will be
at (current_time + 1)®B step in its trajectory target_traj.

You are provided with a few test maps. Target, robot, and map cost information is specified in
text files named map*.txt. Specifically, the format of the text file is:

1. The letter N followed by two comma separated integers on the next line (say N1 and N2
written as N1,N2). This is the map’s size.

2. The letter C followed by an integer on the next line. This is the map’s collision threshold.

3. The letter R followed by two comma separated integers on the next line. This is the starting
position of the robot in the map.

4. The letter T followed by a sequence of two comma separated integers on each line. This is
the trajectory of the moving object.

5. The letter M followed by N1 lines of N2 comma separated floating point values per line. This
is the map.

runtest.cpp parses the text files, and calls your planner function (with these inputs) once per
simulation step.

1.3 Outputs:

At every simulation step, the planner function should output the robot’s next pose in the 2D vector
action ptr. The robot is allowed to move on an 8-connected grid. All the moves must be valid
with respect to obstacles and map boundaries (see the current planner inside planner.cpp for how
it tests the validity of the next robot pose).

runtest . cpp evaluates and prints four values - a boolean specifying whether the object was caught,
and three integers specifying the time taken to run the test, the number of moves made by the
robot, and the cost of the path traversed by the robot.



Homework 1 3

1.4 Frequency of Moves:

The planner is supposed to produce the next move within 1 second. Within 1 second, the target
also makes one move. If the planner takes longer than 1 second to plan, the target will have moved
by a longer distance in the meantime. In other words, if the planner takes K seconds (rounded up
to the nearest integer) to plan the next move of the robot, then the target will move by K steps in
the meantime.

Note: After the last cell on its trajectory, the object disappears. So, if the given object’s trajectory
is of length 40, then at time step = 41 the object disappears and the robot can no longer catch it.
This means for a moving object trajectory that is T steps long, your planner has at most T seconds
to find (and execute) a full solution.

1.5 Execution:

The code directory contains a few map files to test your planner.
To compile the cpp code:

>> g++ runtest.cpp planner.cpp

To run the planner:

>> ./a.out map3.txt;

To visualize the robot and target’s trajectory:

>> python visualizer.py map3.txt;

Currently, the planner greedily moves towards the last position on the moving object’s trajectory.
If you run it as is, the planner only succeeds on map4. mapl and map2 are larger, and it is more
difficult to catch the target.

1.6 Submission:

You will submit this assignment through Gradescope. You must upload one ZIP file named
<andrewID>.zip. This should contain:

1. A folder code that contains all code files, including but not limited to, the ones in the
homework packet. If there are subfolders, your code should handle relative paths.

2. Your writeup in <andrewID>.pdf. This should contain a summary of your approach for
solving this homework, the results for all maps (whether the object was caught, the time
taken to run the test, number of moves made by the robot, and the cost of the path traversed
by the robot), and instructions for how to compile your code.

e For your planner summary, we want details about the algorithm you implemented, data
structures used, heuristics used, any efficiency tricks, memory management details etc.
Basically, any information you think would help us understand what you have done and
gauge the quality of your homework submission.



Homework 1 4

e Include plots of the maps overlaid with the object and solved robot trajectories. Please
do not include the map text files in your submission.

1.7 Grading:

The grade will depend on two things:

1. How well-founded the approach is. In other words, can it guarantee completeness (to catch a
target), can it provide sub-optimality or optimality guarantees on the paths it produces, can
it scale to large environments?

2. How much cost the robot incurs while catching the target.
Note: To grade your homework and to evaluate the performance of your planner, we may use

different/larger maps than the ones provided in the directory. The only promise we can make is
that size of the map will not be larger than 5000 by 5000 cells.



Homework 1 5

100
200

90

400

80

600

800

1000

1200

1400

1600
30

1800

20

2000

10

2200

200 400 600 800 1000 1200 1400 1600 1800

Image of information in mapl.txt. The green R marks the starting position of the robot, the
magenta T marks the starting position of the target, the magenta line is the target’s trajectory.
Blue cells have cost 1, red cells have cost 100, collision threshold is 100.



Homework 1 6

7000
200

400
6000

600

—| 5000
800

1000

|

4000

1200

1400 —{ 3000

1600

2000

1800

2000 1000

2200

200 400 600 800 1000 1200 1400 1600 1800

Image of information in map2.txt. The green R marks the starting position of the robot (directly
below the starting position of the target), the magenta T marks the starting position of the target,
the magenta line is the target’s trajectory. Cells have cost between 1 and 7497, inclusive. Collision
threshold is 6500.



Homework 1 7

Image of information in map3.txt. The green R marks the starting position of the robot, the
magenta T marks the starting position of the target, the magenta line is the target’s trajectory.
Blue cells have cost 1, red cells have cost 100, collision threshold is 100.



Homework 1 8

6000

5000

4000

3000

2000

1000

Image of information in map4.txt. The green R marks the starting position of the robot, the
magenta T marks the starting position of the target, the magenta line is the target’s trajectory.
Cells have cost between 1 and 6240, inclusive. Collision threshold is 5000.



