
16-782: Planning and Decision-Making in Robotics

Homework 3: Symbolic Planning

Due: Friday November 17, 11:59pm

Professor: Maxim Likhachev Fall 2023 TAs: Abigail Breitfeld, Tejus Gupta

Description

In this homework, you will implement a generic symbolic planner. We have provided the code for
reading an environment description from a file by using regular expressions and generating the cor-
responding environment object. Your job is to write a planner that gets an environment object as
an input and outputs a sequence of actions to go from the start to the goal. An example of the
environment description for the Blocks world that was taught in the class is below:

A
B C A

B
C

Symbols: A, B, C, Table

Initial Conditions: On(A,B), On(B,Table), On(C,Table), Block(A), Block(B), Block(C), Clear(A),
Clear(C)

Goal Conditions: On(B,C), On(C,A), On(A,Table)

Actions:

MoveToTable(b,x)

Preconditions: On(b,x), Clear(b), Block(b), Block(x)

Effects: On(b,Table), Clear(x), !On(b,x)

Move(b,x,y)

Preconditions: On(b,x), Clear(b), Clear(y), Block(b), Block(y)

Effects: On(b,y), Clear(x), !On(b,x), !Clear(y)

In the provided code, we parse the description files for you and provide you with the environment object
(Env class) which includes the 1) initial conditions, 2) goal conditions, 3) actions, and 4) symbols. An
object of the Env class is passed to your planner.

The Env class uses the data structures below. Feel free to add more functions to them as needed.
However, DO NOT change the main function.

• Condition: this class includes 3 member variables: 1) name of the condition, 2) the arguments,
and 3) if the condition is negated or not.

1



• GroundedCondition: this class includes 3 member variables: 1) name of the condition, 2) the
values for the arguments, and 3) if the condition is negated or not.

• Action: this class includes member 4 variables: 1) name of the action, 2) action arguments, 3)
preconditions, and 4) effects.

• GroundedAction: this class includes 2 member variables: 1) name of the action and 2) values for
the arguments.

In this homework, we provide the environment description files for three environments: 1) Blocks
World, 2) Blocks and Triangles, and 3) Fire Extinguisher.

We will explain these environments later on. These environment description files are parsed and an
environment object (Env) is passed to your planner. Your job is to write a general planner that outputs
a sequence of steps to get from the initial condition to the goal condition. The output of your planner
is a list of GroundedActions (std::list<GroundedAction>).

Environments

Blocks and Triangles Environment

This environment is similar to the Blocks World problem explained in the class. In addition to the
blocks, this environment has triangles that can be moved in the exact same way as blocks with the
exception that nothing can be put on top of them. A simple example of this environment with only
three objects is shown below.

B
A

C

We provide a description file for an environment with 5 blocks (B0, B1, B2, B3, B4), 2 triangles (T0,
T1) and a Table. The start and goal conditions are below:

• Start conditions: B0 is on B1, B1 is on B4, B2 is on Table, B3 is on B2, B4 is on Table, T0 is
on B0, and T1 is on B3.

• Goal conditions: B0 is on B1, B1 is on B3, and T1 is on B0.

For easier debugging, we provide a trivial environment (BlocksEasy.txt) with 3 blocks (A,B,C).

• Start conditions: A is on B, B is on Table, C is on Table.

• Goal conditions: A is on Table.

Fire Extinguisher Environment1

The goal of this problem is to have a pair of robots put out a fire. This domain has two robots 1) a
quadcopter and 2) a mobile robot.

The mobile robot can travel between locations. The quadcopter only moves between locations by
landing on the mobile robot and having the mobile robot travel to the other location. The quadcopter
can fly around a single location (cannot navigate between locations) if its battery level is High, but it
won’t be able to take off if its battery level is Low.

1Inspired by the final challenge at 1st Summer School on Cognitive Robotics at MIT.

2



Whenever the quadcopter is on the mobile robot, it can charge its battery by calling the charge action.
The quadcopter has a tank that can be filled with water when the quadcopter is on the mobile robot
at location W (where there is water).

The fire is at location F. The W and F locations are far from each other. The quadcopter should fly
around location F in order to pour water on the fire. The quadcopter needs to pour water on the fire
three times in order to extinguish the fire.

Every time the quadcopter pours water on the fire, its battery level becomes low and its water tank
becomes empty (it should go back to W to fill its tank). The robots will each start at one of five
different locations (A, B, C, D, E), which are far from W and F. The quadcopter cannot land on the
ground.

• Start conditions: the quadcopter is flying and at location B. The mobile robot is at location A.
The quadcopter’s water tank is empty.

• Goal: The fire is extinguished.

Compiling and Executing the Code

To compile the code:

>> g++ planner.cpp -o planner.out (optional but may be necessary: -std=c++11)

To run the code add the name of the input file to your command:

>> ./planner.out <path to environment description file>

Once your planner returns the plan, it will be printed out. It is your responsibility to check whether
the plan is valid with respect to the start conditions, actions, and goal conditions.

Summary

You should 1) write a domain-independent planner that generates a plan for any environment that
follows the strips representation, and 2) include the discussion and results (i.e., planning time and
number of expanded states) of your generic planner applied on the three environments: a) Blocks b)
Blocks and Triangles and c) Fire Extinguisher.

Note: You should write a domain-independent planner. The environment object is passed into your
GENERIC (domain-independent) planner which runs a search by applying available valid actions to
every state. Your code will be tested with other environments.

To Submit

Submissions need to be made through Gradescope and should include:

• A folder named code that contains 1) all the C++ source files for the planner and 2) the descrip-
tion files for the three environments.

• A PDF writeup named <Andrew ID>.pdf with instructions to compile code, results, and every-
thing we need to know about your implementations and submission. Do not leave any details
out because we will not assume any missing information. Include the time that the planner takes
and the number of states that the search expands for each of the three environments with and
without a heuristic.

3



Grading

Your grade will depend on:

• How well-founded your approach is. In other words, can your planner guarantee completeness?

• How domain-independent the planner is. That is, is it implemented as a generic search that can
be used to solve a completely different problem from a different domain?

• The quality of the plan. Is your plan optimal (minimizes the number of steps)?

• Planning speed. Can your planner solve problems quickly (at least less than 60 seconds)

• The quality of your writeup. Provide a discussion on how much improvement you get when you
use a heuristic in your search by comparing it with a planner that does not use any heuristics.

Extra Credit

You may earn extra credit by completing the following:

• Design an entirely new environment (not one of the three domains mentioned above), add the
corresponding configuration file, describe it, and present the performance of the planner on it.
We will run your planner on it to verify. (10 points)

• Implement the empty-delete-list heuristic as described in the lectures, evaluate its performance
as a function of the size of the problem (e.g., number of blocks and triangles), and describe the
results of your evaluation. Explain how to enable this heuristic, so that we can run it during the
grading. (10 points)

4


