
16-782

Planning & Decision-making in Robotics

Planning under Uncertainty:

Minimax Formulation

Maxim Likhachev

Robotics Institute

Carnegie Mellon University

Maxim Likhachev Carnegie Mellon University 2

Uncertainty in Robotics

• So far our planners assumed no uncertainty
- execution is perfect

S1 S2 S3

S4 S5

S6

S1 S2 S3

S4 S5

S6

convert into a graph
search the graph

for a least-cost path

from sstart to sgoal

Maxim Likhachev Carnegie Mellon University 3

Uncertainty in Robotics

• So far our planners assumed no uncertainty
- execution is perfect

S1 S2 S3

S4 S5

S6

S1 S2 S3

S4 S5

S6

convert into a graph
search the graph

for a least-cost path

from sstart to sgoal

• Any deviations from the plan are dealt by re-planning

• Could be quite suboptimal and sometimes dangerous
- planning a path along cliff does not take into account slippage

- others examples???

Maxim Likhachev Carnegie Mellon University 4

Uncertainty in Robotics

• Modeling uncertainty in execution during planning

S1 S2 S3

S4 S5

S6

S2 S3

S5
convert into an MDP

S4

- at least one action in the graph has more than one outcome

- each outcome is associated with probability and cost

Markov Decision Processes (MDP)

Maxim Likhachev

- at least one action in the graph has more than one outcome

- each outcome is associated with probability and cost

example: s3, s4, s5 Є succ(s2, aSE),

P(s5|ase,s2) = 0.9, c(s2,ase,s5) = 1.4

P(s3|ase,s2) = 0.05, c(s2,ase,s3) = 1.0

P(s4|ase,s2) = 0.05, c(s2,ase,s4) = 1.0

Carnegie Mellon University 5

Uncertainty in Robotics

• Modeling uncertainty in execution during planning

S1 S2 S3

S4 S5

S6

S2 S3

S5
convert into an MDP

S4

Markov Decision Processes (MDP)

action aSE

Maxim Likhachev 6

Moving-Target Search Example

• Uncertainty in the target moves

• What is a state-space and action space?

Carnegie Mellon University

R

T

Maxim Likhachev 7

Planning in MDPs

• What plan to compute?
- Plan that minimizes the worst-case scenario (minimax plan)

- Plan that minimizes the expected cost

Carnegie Mellon University

S2 S1

Sgoal

2

c(s1,a1,sgoal) = 2

S4 S3

3

1

Sstart

1

1

a1 P(sgoal|s1,a1)=0.9

P(s2|s1,a1)=0.1
c(s1,a1,s2) = 2

• Without uncertainty, plan is a single path:

a sequence of states (a sequence of actions)

• In MDPs, plan is a policy π:
mapping from a state onto an action

Maxim Likhachev 8

Planning in MDPs

• What plan to compute?
- Plan that minimizes the worst-case scenario (minimax plan)

- Plan that minimizes the expected cost

Carnegie Mellon University

S2 S1

Sgoal

2

c(s1,a1,sgoal) = 2

S4 S3

3

1

Sstart

1

1

a1 P(sgoal|s1,a1)=0.9

P(s2|s1,a1)=0.1
c(s1,a1,s2) = 2

• Without uncertainty, plan is a single path:

a sequence of states (a sequence of actions)

• In MDPs, plan is a policy π:
mapping from a state onto an action Why?

Maxim Likhachev 9

Minimax Formulation

Carnegie Mellon University

S2 S1

Sgoal

2

c(s1,a1,sgoal) = 2

S4 S3

3

1

Sstart

1

1

a1 P(sgoal|s1,a1)=0.9

P(s2|s1,a1)=0.1
c(s1,a1,s2) = 2

• Optimal policy π*:

minimizes the worst cost-to-goal

π* = argminπ maxoutcomes of π{cost-to-goal}

• worst cost-to-goal for π1=(go through s4) is:

1+1+3+1 = 6

• worst cost-to-goal for π2=(try to go through s1) is:
1+2+2+2+2+2+2 + … = ∞

What is the best plan?

Maxim Likhachev 10

Minimax Formulation

Carnegie Mellon University

S2 S1

Sgoal

2

c(s1,a1,sgoal) = 2

S4 S3

3

1

Sstart

1

1

a1 P(sgoal|s1,a1)=0.9

P(s2|s1,a1)=0.1
c(s1,a1,s2) = 2

• Optimal policy π*:

minimizes the worst cost-to-goal

π* = argminπ maxoutcomes of π{cost-to-goal}

• Optimal minimax policy π* = (go through s4) =

[{sstart,ane},{s2, asouth},{s4,aeast},{s3,ane},{sgoal,null}]

Maxim Likhachev 11

Computing Minimax Plans

Carnegie Mellon University

S2 S1

Sgoal

2

c(s1,a1,sgoal) = 2

S4 S3

3

1

Sstart

1

1

a1 P(sgoal|s1,a1)=0.9

P(s2|s1,a1)=0.1
c(s1,a1,s2) = 2

• Minimax backward A*:
g(sgoal) = 0; all other g-values are infinite; OPEN = {sgoal};

while(sstart not expanded)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;

insert s into CLOSED;

for every s’ s.t s Є succ(s’, a) for some a and s’ not in CLOSED

if g(s’) > maxu Є succ(s’, a) c(s’,u) + g(u)

g(s’) = maxu Є succ(s’, a) c(s’,u) + g(u);

insert s’ into OPEN;

Maxim Likhachev 12

Computing Minimax Plans

Carnegie Mellon University

S2 S1

Sgoal

2

c(s1,a1,sgoal) = 2

S4 S3

3

1

Sstart

1

1

a1 P(sgoal|s1,a1)=0.9

P(s2|s1,a1)=0.1
c(s1,a1,s2) = 2

• Minimax backward A*:
g(sgoal) = 0; all other g-values are infinite; OPEN = {sgoal};

while(sstart not expanded)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;

insert s into CLOSED;

for every s’ s.t s Є succ(s’, a) for some a and s’ not in CLOSED

if g(s’) > maxu Є succ(s’, a) c(s’,u) + g(u)

g(s’) = maxu Є succ(s’, a) c(s’,u) + g(u);

insert s’ into OPEN; reduces to usual backward A* if

no uncertainty in outcomes

Maxim Likhachev 13

Computing Minimax Plans

Carnegie Mellon University

S2 S1

Sgoal

2

c(s1,a1,sgoal) = 2

S4 S3

3

1

Sstart

1

1

a1 P(sgoal|s1,a1)=0.9

P(s2|s1,a1)=0.1
c(s1,a1,s2) = 2

• Minimax backward A*:
g(sgoal) = 0; all other g-values are infinite; OPEN = {sgoal};

while(sstart not expanded)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;

insert s into CLOSED;

for every s’ s.t s Є succ(s’, a) for some a and s’ not in CLOSED

if g(s’) > maxu Є succ(s’, a) c(s’,u) + g(u)

g(s’) = maxu Є succ(s’, a) c(s’,u) + g(u);

insert s’ into OPEN;

g = 0

h=3

g = ∞

h=3

g = ∞

h=2

g = ∞

h=2

g = ∞

h=1
g = ∞

h=0

CLOSED = {}

OPEN = {sgoal}

next state to expand: sgoal

Maxim Likhachev 14

Computing Minimax Plans

Carnegie Mellon University

S2 S1

Sgoal

2

c(s1,a1,sgoal) = 2

S4 S3

3

1

Sstart

1

1

a1 P(sgoal|s1,a1)=0.9

P(s2|s1,a1)=0.1
c(s1,a1,s2) = 2

• Minimax backward A*:
g(sgoal) = 0; all other g-values are infinite; OPEN = {sgoal};

while(sstart not expanded)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;

insert s into CLOSED;

for every s’ s.t s Є succ(s’, a) for some a and s’ not in CLOSED

if g(s’) > maxu Є succ(s’, a) c(s’,u) + g(u)

g(s’) = maxu Є succ(s’, a) c(s’,u) + g(u);

insert s’ into OPEN;

g = 0

h=3

g = ∞

h=3

g = ∞

h=2

g = ∞

h=2

g = ∞

h=1
g = ∞

h=0

CLOSED = {}

OPEN = {sgoal}

next state to expand: sgoal

After sgoal expanded,

what are g(s3) and g(s1)?

Maxim Likhachev 15

Computing Minimax Plans

Carnegie Mellon University

S2 S1

Sgoal

2

c(s1,a1,sgoal) = 2

S4 S3

3

1

Sstart

1

1

a1 P(sgoal|s1,a1)=0.9

P(s2|s1,a1)=0.1
c(s1,a1,s2) = 2

• Minimax backward A*:
g(sgoal) = 0; all other g-values are infinite; OPEN = {sgoal};

while(sstart not expanded)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;

insert s into CLOSED;

for every s’ s.t s Є succ(s’, a) for some a and s’ not in CLOSED

if g(s’) > maxu Є succ(s’, a) c(s’,u) + g(u)

g(s’) = maxu Є succ(s’, a) c(s’,u) + g(u);

insert s’ into OPEN;

g = 0

h=3

g = 1

h=3

g = ∞

h=2

g = ∞

h=2

g = ∞

h=1
g = ∞

h=0

CLOSED = {sgoal}

OPEN = {s3}

next state to expand: s3

Maxim Likhachev 16

Computing Minimax Plans

Carnegie Mellon University

S2 S1

Sgoal

2

c(s1,a1,sgoal) = 2

S4 S3

3

1

Sstart

1

1

a1 P(sgoal|s1,a1)=0.9

P(s2|s1,a1)=0.1
c(s1,a1,s2) = 2

• Minimax backward A*:
g(sgoal) = 0; all other g-values are infinite; OPEN = {sgoal};

while(sstart not expanded)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;

insert s into CLOSED;

for every s’ s.t s Є succ(s’, a) for some a and s’ not in CLOSED

if g(s’) > maxu Є succ(s’, a) c(s’,u) + g(u)

g(s’) = maxu Є succ(s’, a) c(s’,u) + g(u);

insert s’ into OPEN;

g = 0

h=3

g = 1

h=3

g = 4

h=2

g = ∞

h=2

g = ∞

h=1
g = ∞

h=0

CLOSED = {sgoal,s3}

OPEN = {s4}

next state to expand: s4

Maxim Likhachev 17

Computing Minimax Plans

Carnegie Mellon University

S2 S1

Sgoal

2

c(s1,a1,sgoal) = 2

S4 S3

3

1

Sstart

1

1

a1 P(sgoal|s1,a1)=0.9

P(s2|s1,a1)=0.1
c(s1,a1,s2) = 2

• Minimax backward A*:
g(sgoal) = 0; all other g-values are infinite; OPEN = {sgoal};

while(sstart not expanded)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;

insert s into CLOSED;

for every s’ s.t s Є succ(s’, a) for some a and s’ not in CLOSED

if g(s’) > maxu Є succ(s’, a) c(s’,u) + g(u)

g(s’) = maxu Є succ(s’, a) c(s’,u) + g(u);

insert s’ into OPEN;

g = 0

h=3

g = 1

h=3

g = 4

h=2

g = ∞

h=2

g = 5

h=1
g = ∞

h=0

CLOSED = {sgoal,s3,s4}

OPEN = {s2}

next state to expand: s2

Maxim Likhachev 18

Computing Minimax Plans

Carnegie Mellon University

S2 S1

Sgoal

2

c(s1,a1,sgoal) = 2

S4 S3

3

1

Sstart

1

1

a1 P(sgoal|s1,a1)=0.9

P(s2|s1,a1)=0.1
c(s1,a1,s2) = 2

• Minimax backward A*:
g(sgoal) = 0; all other g-values are infinite; OPEN = {sgoal};

while(sstart not expanded)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;

insert s into CLOSED;

for every s’ s.t s Є succ(s’, a) for some a and s’ not in CLOSED

if g(s’) > maxu Є succ(s’, a) c(s’,u) + g(u)

g(s’) = maxu Є succ(s’, a) c(s’,u) + g(u);

insert s’ into OPEN;

g = 0

h=3

g = 1

h=3

g = 4

h=2

g = 7

h=2

g = 5

h=1
g = 6

h=0

CLOSED = {sgoal,s3,s4,s2}

OPEN = {sstart,s1}

next state to expand: sstart

Maxim Likhachev 19

Computing Minimax Plans

Carnegie Mellon University

S2 S1

Sgoal

2

c(s1,a1,sgoal) = 2

S4 S3

3

1

Sstart

1

1

a1 P(sgoal|s1,a1)=0.9

P(s2|s1,a1)=0.1
c(s1,a1,s2) = 2

• Minimax backward A*:
g(sgoal) = 0; all other g-values are infinite; OPEN = {sgoal};

while(sstart not expanded)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;

insert s into CLOSED;

for every s’ s.t s Є succ(s’, a) for some a and s’ not in CLOSED

if g(s’) > maxu Є succ(s’, a) c(s’,u) + g(u)

g(s’) = maxu Є succ(s’, a) c(s’,u) + g(u);

insert s’ into OPEN;

g = 0

h=3

g = 1

h=3

g = 4

h=2

g = 7

h=2

g = 5

h=1
g = 6

h=0

CLOSED = {sgoal,s3,s4,s2,sstart}

OPEN = {s1}

DONE

Maxim Likhachev 20

Computing Minimax Plans

Carnegie Mellon University

S2 S1

Sgoal

2

c(s1,a1,sgoal) = 2

S4 S3

3

1

Sstart

1

1

a1 P(sgoal|s1,a1)=0.9

P(s2|s1,a1)=0.1
c(s1,a1,s2) = 2

• Minimax backward A*:
g(sgoal) = 0; all other g-values are infinite; OPEN = {sgoal};

while(sstart not expanded)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;

insert s into CLOSED;

for every s’ s.t s Є succ(s’, a) for some a and s’ not in CLOSED

if g(s’) > maxu Є succ(s’, a) c(s’,u) + g(u)

g(s’) = maxu Є succ(s’, a) c(s’,u) + g(u);

insert s’ into OPEN;

g = 0

h=3

g = 1

h=3

g = 4

h=2

g = 7

h=2

g = 5

h=1
g = 6

h=0

CLOSED = {sgoal,s3,s4,s2,sstart}

OPEN = {s1}

DONE

in this example, the computed policy is a path,

but in general it is a Directed Acyclic Graph

Maxim Likhachev 21

Computing Minimax Plans

Carnegie Mellon University

S2 S1

Sgoal

2

c(s1,a1,sgoal) = 2

S4 S3

3

1

Sstart

1

1

a1 P(sgoal|s1,a1)=0.9

P(s2|s1,a1)=0.1
c(s1,a1,s2) = 2

• Minimax backward A*:
g(sgoal) = 0; all other g-values are infinite; OPEN = {sgoal};

while(sstart not expanded)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;

insert s into CLOSED;

for every s’ s.t s Є succ(s’, a) for some a and s’ not in CLOSED

if g(s’) > maxu Є succ(s’, a) c(s’,u) + g(u)

g(s’) = maxu Є succ(s’, a) c(s’,u) + g(u);

insert s’ into OPEN;

g = 0

h=3

g = 1

h=3

g = 4

h=2

g = 7

h=2

g = 5

h=1
g = 6

h=0

CLOSED = {sgoal,s3,s4,s2,sstart}

OPEN = {s1}

DONE

in this example, the computed policy is a path,

but in general it is a Directed Acyclic Graph

What are its branches?

Why no cycles?

Maxim Likhachev 22

Computing Minimax Plans

Carnegie Mellon University

S2 S1

Sgoal

2

c(s1,a1,sgoal) = 2

S4 S3

3

1

Sstart

1

1

a1 P(sgoal|s1,a1)=0.9

P(s2|s1,a1)=0.1
c(s1,a1,s2) = 2

• Minimax backward A*:
g(sgoal) = 0; all other g-values are infinite; OPEN = {sgoal};

while(sstart not expanded)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;

insert s into CLOSED;

for every s’ s.t s Є succ(s’, a) for some a and s’ not in CLOSED

if g(s’) > maxu Є succ(s’, a) c(s’,u) + g(u)

g(s’) = maxu Є succ(s’, a) c(s’,u) + g(u);

insert s’ into OPEN;

g = 0

h=3

g = 1

h=3

g = 4

h=2

g = 7

h=2

g = 5

h=1
g = 6

h=0

CLOSED = {sgoal,s3,s4,s2,sstart}

OPEN = {s1}

DONE

Minimax A* guarantees to find an optimal path,

and never expands a state more than once,

provided heuristics are consistent (just like A*)

Maxim Likhachev 23

Computing Minimax Plans

Carnegie Mellon University

• Pros/cons of minimax plans
- robust to uncertainty

- overly pessimistic

- harder to compute than normal paths

- especially if backwards minimax A* does not apply

- even if backwards minimax A* does apply, still more

expensive than computing a single path with A* (heuristics

are not guiding well)
Why?

Maxim Likhachev 24

What You Should Know…

Carnegie Mellon University

• What is Markov Decision Processes (MDP)

• Minimax formulation of planning under uncertainty

• The operation of Minimax backward A*

• Pros and cons of planning with Minimax formulation

