
16-782 

Planning & Decision-making in Robotics

Search Algorithms:

Planning on Symbolic Representations

Maxim Likhachev

Robotics Institute

Carnegie Mellon University



Carnegie Mellon University 2

• STRIPS representation of the problem

Start state:
On(A,B)^On(B,Table)^On(C,Table)^Block(A)^Block(B)^Block(C)^Clear(A)^Clear(C)

Goal state:
On(B,C)^On(C,A)^On(A,Table)

Actions:
MoveToTable(b,x)

Precond: On(b,x)^Clear(b)^Block(b)^Block(x)

Effect: On(b,Table)^Clear(x)^~On(b,x)

Move(b,x,y)

Precond: On(b,x)^Clear(b)^Clear(y)^Block(b)^Block(y)^(b~=y)

Effect: On(b,y)^Clear(x)^~On(b,x)^~Clear(y)

We are given a problem; need to compute a plan

A
B C

C
A

B



Carnegie Mellon University 3

• STRIPS representation of the problem

Planning via Graph Search

A
B C

C
A

B

On(A,B)^On(B,Table)

^On(C,Table)^Block(A)^Block(B)

^Block(C)^Clear(A)^Clear(C)

move(A,B,C)

…

On(A,C)^On(B,Table)

^On(C,Table)^Block(A)^Block(B)

^Block(C)^Clear(A)^Clear(B)

On(A,Table)^On(B,Table)

^On(C,Table)^Block(A)^Block(B)

^Block(C)^Clear(A)^Clear(C)

moveToTable(A,B)



Carnegie Mellon University 4

• STRIPS representation of the problem

Planning via Graph Search

A
B C

C
A

B

On(A,B)^On(B,Table)

^On(C,Table)^Block(A)^Block(B)

^Block(C)^Clear(A)^Clear(C)

move(A,B,C)

…

On(A,C)^On(B,Table)

^On(C,Table)^Block(A)^Block(B)

^Block(C)^Clear(A)^Clear(B)

On(A,Table)^On(B,Table)

^On(C,Table)^Block(A)^Block(B)

^Block(C)^Clear(A)^Clear(C)

moveToTable(A,B)
1 1

1

Assign edgecosts and 

search with A* for a least-cost 

(or with weighted A* for a suboptimal) 

path to the goal state



Carnegie Mellon University 5

• STRIPS representation of the problem

Planning via Graph Search

A
B C

C
A

B

On(A,B)^On(B,Table)

^On(C,Table)^Block(A)^Block(B)

^Block(C)^Clear(A)^Clear(C)

move(A,B,C)

…

On(A,C)^On(B,Table)

^On(C,Table)^Block(A)^Block(B)

^Block(C)^Clear(A)^Clear(B)

On(A,Table)^On(B,Table)

^On(C,Table)^Block(A)^Block(B)

^Block(C)^Clear(A)^Clear(C)

moveToTable(A,B)
1 1

1

Assign edgecosts and 

search with A* for a least-cost 

(or with weighted A* for a suboptimal) 

path to the goal state

How do we compute domain-independent heuristics?



Carnegie Mellon University 6

• Computing heuristics

Planning via Graph Search

literal1^literal5^literal7

literal2^literal3^literal5

S

Goal

h(s) - ?



Carnegie Mellon University 7

• Computing heuristics

Planning via Graph Search

literal1^literal5^literal7

literal2^literal3^literal5

S

Goal

h(s) - ?

Option 1: h(s) = # of literals that are NOT yet satisfied

i.e., h(s) = # of literals li such that li(s)=false and li(goal) = true 



Carnegie Mellon University 8

• Computing heuristics

Planning via Graph Search

literal1^literal5^literal7

literal2^literal3^literal5

S

Goal

h(s) - ?

Option 1: h(s) = # of literals that are NOT yet satisfied

i.e., h(s) = # of literals li such that li(s)=false and li(goal) = true 

Is this heuristic function admissible?

Can we still use it? What do we sacrifice?



Carnegie Mellon University 9

• Computing heuristics

Planning via Graph Search

literal1^literal5^literal7

literal2^literal3^literal5

S

Goal

h(s) - ?

Option 2: compute heuristics using a relaxed (simpler) problem

Common relaxation: assume actions don’t have any negative effects

(called empty-delete-list heuristics)



Carnegie Mellon University 10

• Computing heuristics

Planning via Graph Search

literal1^literal5^literal7

literal2^literal3^literal5

S

Goal

h(s) - ?

Option 2: compute heuristics using a relaxed (simpler) problem

Common relaxation: assume actions don’t have any negative effects

(called empty-delete-list heuristics)

Any downsides?

Despite computational complexity, 

still very popular as it speeds the overall search tremendously



Carnegie Mellon University 11

• Challenges in graph search formulation

Planning via Graph Search

AB C
C
A B

On(A,Table)^On(B,Table)

^On(C,Table)^On(D,Table)

^Block(A)^Block(B)^Block(C)

^Block(D)^Clear(A)^Clear(B)

^Clear(C)^Clear(D)

move(A,B,C)

…
moveToTable(A,B)

D
D

How many potential successors?



Carnegie Mellon University 12

• Challenges in graph search formulation

Planning via Graph Search

AB C
C
A B

On(A,Table)^On(B,Table)

^On(C,Table)^On(D,Table)

^Block(A)^Block(B)^Block(C)

^Block(D)^Clear(A)^Clear(B)

^Clear(C)^Clear(D)

move(A,B,C)

…
moveToTable(A,B)

D
D

The plan we find is a

total order of actions:
start

move(C,Table,A)

move(D,Table,B)

finish



Carnegie Mellon University 13

• Challenges in graph search formulation

Planning via Graph Search

AB C
C
A B

On(A,Table)^On(B,Table)

^On(C,Table)^On(D,Table)

^Block(A)^Block(B)^Block(C)

^Block(D)^Clear(A)^Clear(B)

^Clear(C)^Clear(D)

move(A,B,C)

…
moveToTable(A,B)

D
D

The plan we find is a

total order of actions:
start

move(C,Table,A)

move(D,Table,B)

finish
Does it have to be a total order?



On(A,Table)^On(B,Table)

^On(C,Table)^On(D,Table)

^Block(A)^Block(B)^Block(C)

^Block(D)^Clear(A)^Clear(B)

^Clear(C)^Clear(D)

move(A,B,C)

Carnegie Mellon University 14

• Total vs. partial ordering of actions

Partial-Order Planning (POP)

…moveToTable(A,B)

AB C
C
A BD

D

The plan we find is a

total order of actions:
start

move(C,Table,A)

move(D,Table,B)

finish

POP aims to compute

a partial order of actions:

start

move(C,Table,A) move(D,Table,B)

finish



Carnegie Mellon University 15

• Searches the space of “plans”

– State defined by:

• The currently selected set of actions

• Set of ordering constraints in the form of A<B (action A has to be executed 

at some point before action B). No cycles allowed (i.e., A<B and B<A is a 

cycle and makes such state invalid)

• Set of causal links in the form of A=>B (action A achieves precondition p

required by action B)

Partial-Order Planning (POP)

p



Carnegie Mellon University 16

• Searches the space of “plans”

– State defined by:

• The currently selected set of actions

• Set of ordering constraints in the form of A<B (action A has to be executed 

at some point before action B). No cycles allowed (i.e., A<B and B<A is a 

cycle and makes such state invalid)

• Set of causal links in the form of A=>B (action A achieves precondition p

required by action B)

Partial-Order Planning (POP)

p

Actions: Start, Finish

Order constraints: Start < Finish

Start state



Carnegie Mellon University 17

• Searches the space of “plans”

– State defined by:

• The currently selected set of actions

• Set of ordering constraints in the form of A<B (action A has to be executed 

at some point before action B). No cycles allowed (i.e., A<B and B<A is a 

cycle and makes such state invalid)

• Set of causal links in the form of A=>B (action A achieves precondition p

required by action B)

Partial-Order Planning (POP)

p

Actions: Start, Finish

Order constraints: Start < Finish

Start state

Start action has: no preconditions; effect=the literals in the actual start state

Finish action has: preconditions=the literals in the actual goal state; no effect



Carnegie Mellon University 18

• Searches the space of “plans”

– Successor S’ of state S computed as follows:

• Pick any action B in S which has at least one precondition p not satisfied

• Choose any action A (either a new action or an existing action in state S) that 

achieves p and

– Add A to S’ (if not in it already) 

– Add A<B, Start<A, A<Finish orders to S’

– Add A=>B causal link to S’

– If any other action C in S’ removes p, then C<A or B<C constraint added

– If A removes precondition p’ used in a causal link D=>F, then A<D or F<A added

– If any constraint cycle is introduced, then S’ is an invalid successor

Partial-Order Planning (POP)

Actions: Start, Finish

Order constraints: Start < Finish

Start state

p

p'



Carnegie Mellon University 19

• Searches the space of “plans”

– Successor S’ of state S computed as follows:

• Pick any action B in S which has at least one precondition p not satisfied

• Choose any action A (either a new action or an existing action in state S) that 

achieves p and

– Add A to S’ (if not in it already) 

– Add A<B, Start<A, A<Finish orders to S’

– Add A=>B causal link to S’

– If any other action C in S’ removes p, then C<A or B<C constraint added

– If A removes precondition p’ used in a causal link D=>F, then A<D or F<A added

– If any constraint cycle is introduced, then S’ is an invalid successor

Partial-Order Planning (POP)

Actions: Start, Finish

Order constraints: Start < Finish

Start state

p

p'

This gives us an implicit graph 

that is typically searched by Depth-First Search 

for any feasible solution to the goal state



Carnegie Mellon University 20

• Searches the space of “plans”

– Terminate the search as soon as a state where all actions have all 

their preconditions met is reached (e.g., a goal state of the search)

Partial-Order Planning (POP)

Actions: Start, Finish

Order constraints: Start < Finish

Start state

Actions: Start, Finish, A, C,…

Order constraints: Start < Finish, 

Start<A, A<C, …

Goal state



Carnegie Mellon University 21

• Searches the space of “plans”

– Terminate the search as soon as a state where all actions have all 

their preconditions met is reached (e.g., a goal state of the search)

Partial-Order Planning (POP)

Actions: Start, Finish

Order constraints: Start < Finish

Start state

AB C
C
A BD

D

Example on the board



Carnegie Mellon University 22

What You Should Know…

• How symbolic planning can be represented as a graph 

search and solved with heuristic searches (A*, weighted A*, 

etc.)

• Few ways for how domain-independent heuristics can be 

computed automatically

• Overall understanding of what Partial-order Planning is


