16-350 Planning Techniques for Robotics

Search Algorithms: Heuristics, Weighted A Search*

Maxim Likhachev Robotics Institute

A* Search

- Computes optimal g-values for relevant states
- at any point of time:

one popular heuristic function – Euclidean distance

*minimal cost from s to s*_{goal}

- Heuristic function must be:
	- − admissible: for every state s, $h(s) \leq c*(s, s_{goal})$
	- consistent (satisfy triangle inequality)*:*

 $h(s_{goal}, s_{goal}) = 0$ and for every $s \neq s_{goal}$, $h(s) \leq c(s, succ(s)) + h(succ(s))$

– admissibility provably follows from consistency and often (not always) consistency follows from admissibility

- For X-connected grids:
	- Euclidean distance

- Manhattan distance: $h(x,y) = abs(x-x_{goal}) + abs(y-y_{goal})$
- Diagonal distance: $h(x,y) = max(abs(x-x_{goal})$, $abs(y-y_{goal})$
- More informed distances???

Which heuristics are admissible for 4-connected grid? 8-connected grid?

• For planning problems higher than 2D

Example:

consider planning for a non-circular robot that can move in any direction (omnidirectional)

Non-circular robot

• For planning problems higher than 2D

Example:

consider planning for a non-circular robot that can move in any direction (omnidirectional)

Grid-based representation for planning: x,y,Ѳ for some reference point on the robot x,y are on 8-connected grid Ѳ – discretized into 8 angles

• For planning problems higher than 2D

Example:

consider planning for a non-circular robot that can move in any direction (omnidirectional)

Grid-based representation for planning: x,y,Ѳ for some reference point on the robot x,y are on 8-connected grid ^Ѳ – discretized into 8 angles How many states?

What heuristic we can use?

• For planning problems higher than $2D$

Example:

consider planning for a non-circular robot that can move in any direction (omnidirectional)

Grid-based representation for planning: x,y,Ѳ for some reference point on the robot x,y are on 8-connected grid Ѳ – discretized into 8 angles

Any ideas for heuristics that estimate cost-to-goal better ?

• For planning problems higher

Example: consider planning for a non-circular robot direction (omnidirectional)

How about cost-to-goal distances for the reference point in 2D (accounting for obstacles)?

Non-circular robot

R

Grid-based representation for planning: x,y,Ѳ for some reference point on the robot x,y are on 8-connected grid Ѳ – discretized into 8 angles

Heuristi

How can we compute them?

• For planning problems higher than $\frac{1}{2}$

Example: consider planning for a non-circular robot direction (omnidirectional)

How about cost-to-goal distances for the reference point in 2D (accounting for obstacles)?

Are these admissible?

Non-circular robot

R

Grid-based representation for planning: x,y,Ѳ for some reference point on the robot x,y are on 8-connected grid Ѳ – discretized into 8 angles

- Searching from the goal towards the start state
- **g-values are cost-to-goals Main function**

 $g(s_{\text{start}}) = 0$; all other *g*-values are infinite; *OPEN* = { s_{start} }; ComputePath(); publish solution; *What needs to be changed?*

ComputePath function

while(s_{goal} is not expanded and $OPEN \neq 0$) remove *s* with the smallest $[f(s) = g(s) + h(s)]$ from *OPEN*; expand *s*;

- Searching from the goal towards the start state
- **g-values are cost-to-goals Main function**

 $g(\mathbf{s}_{\text{goal}}) = 0$; all other *g*-values are infinite; $OPEN = \{\mathbf{s}_{\text{goal}}\}$; ComputePath(); publish solution; *What needs to be changed?*

ComputePath function

while(s_{start} is not expanded and $OPEN \neq 0$) remove *s* with the smallest $[f(s) = g(s) + h(s)]$ from *OPEN*; expand *s*;

Searching from the goal towards the start state

ComputePath function • **g-values are cost-to-goals**

What needs to be changed in here?

while(s_{goal} is not expanded and $OPEN \neq 0$) remove *s* with the smallest $[f(s) = g(s) + h(s)]$ from *OPEN*; insert *s* into *CLOSED*;

for every successor *s'* of *s* such that *s'* not in *CLOSED*

if
$$
g(s') > g(s) + c(s, s')
$$

\n $g(s') = g(s) + c(s, s')$;
\ninsert s' into *OPEN*;

- Searching from the goal towards the start state
- **ComputePath function** • **g-values are cost-to-goals**

What needs to be changed in here?

while(s_{start} is not expanded and $OPEN \neq 0$) remove *s* with the smallest $[f(s) = g(s) + h(s)]$ from *OPEN*; insert *s* into *CLOSED*;

for every **predecessor** *s'* of *s* such that *s'* not in *CLOSED*

if
$$
g(s') > c(s', s) + g(s)
$$

\n $g(s') = c(s', s) + g(s)$
\ninsert s' into *OPEN*;

- Searching from the goal towards the start state
- **ComputePath function** • **g-values are cost-to-goals**

How do we make it compute ALL g-values?

while(s_{start} is not expanded and $OPEN \neq 0$) remove *s* with the smallest $[f(s) = g(s) + h(s)]$ from *OPEN*; insert *s* into *CLOSED*;

for every predecessor *s'* of *s* such that *s'* not in *CLOSED*

if
$$
g(s') > c(s', s) + g(s)
$$

\n $g(s') = c(s', s) + g(s)$
\ninsert *s'* into *OPEN*;

- Searching from the goal towards the start state
- **ComputePath function** while($\textbf{OPEN} \neq 0$) • **g-values are cost-to-goals** *Run until all states get expanded!*

remove *s* with the smallest $[f(s) = g(s) + h(s)]$ from *OPEN*; insert *s* into *CLOSED*;

for every predecessor *s'* of *s* such that *s'* not in *CLOSED*

if
$$
g(s') > c(s', s) + g(s)
$$

\n $g(s') = c(s', s) + g(s)$
\ninsert s' into *OPEN*;

- Searching from the goal towards the start state
	- **ComputePath function** while($OPEN \neq 0$) remove *s* with the smallest $[f(s) = g(s) + h(s)]$ from *OPEN*; • **g-values are cost-to-goals** *Does it make sense to have heuristics if we are computing ALL g-values?*

insert *s* into *CLOSED*;

for every predecessor *s'* of *s* such that *s'* not in *CLOSED*

if
$$
g(s') > c(s', s) + g(s)
$$

\n $g(s') = c(s', s) + g(s)$
\ninsert s' into *OPEN*;

17 Carnegie Mellon University S_2 \rightarrow S_1 $(S_{\underline{go}a}$ 2 *g= h=1* $g = \infty$ *h=2 g=0* $h=3$ S_4 \rightarrow S_3 3 $g = \infty$ *h=2* $g = \infty$ *h=3* 1 $\mathrm{S}% _{t}\left(t\right)$ \downarrow 1 *g= h=0*

- Searching from the goal towards the start state
	- **ComputePath function** while($OPEN \neq 0$) remove *s* with the smallest $[f(s) = g(s)]$ from *OPEN*; insert *s* into *CLOSED*; for every predecessor *s'* of *s* such that *s'* not in *CLOSED* • **g-values are cost-to-goals**

if $g(s') > c(s',s) + g(s)$ $g(s') = c(s', s) + g(s);$ insert *s'* into *OPEN*;

- Searching from the goal towards t^1
	- **ComputePath function** while($OPEN \neq 0$) remove *s* with the smallest $[f(s) = g(s)]$ from *OPEN*; insert *s* into *CLOSED*; for every predecessor *s'* of *s* such that *s'* not in *CLOSED* • **g-values are cost-to-goals** *g-values of all states will be equal to optimal cost-to-goal values*

if
$$
g(s') > c(s', s) + g(s)
$$

\n $g(s') = c(s', s) + g(s);$
\ninsert *s'* into *OPEN*;

 S_2 \rightarrow S_1 S_{go} $\mathcal{D}_{\mathcal{L}}$ *g=4 g=2 g=0* 2 S_4 \rightarrow S_3 3 *g= 4 g= 1* 1 S_{start} \downarrow 1 *g=5*

At termination,

- Searching from the goal towards t^T
	- **ComputePath function** while($OPEN \neq 0$) remove *s* with the smallest $[f(s) = g(s)]$ from insert *s* into *CLOSED*; for every predecessor *s*' of *s* secure *Can be run on low-D problems (e.g., 2D)* if $g(s') > c(s',s) + g(s)$ $g(s') = c(s', s) + g(s);$ insert *s'* into *OPEN*; • **g-values are cost-to-goals**

At termination, g-values of all states will be equal to optimal cost-to-goal values

to compute heuristics for higher-D problems (e.g., 3+D)

- **Uninformed A*:** expands states in the order of *g* values
- **A*:** expands states in the order of *f = g+h* values
- **Weighted A*:** expands states in the order of $f = g + \varepsilon h$ values, $\varepsilon > 1$ = bias towards states that are closer to goal

• **Uninformed A*:** expands states in the order of *g* values

What are the states expanded?

sgoal

• **A*:** expands states in the order of *f = g+h* values

• **A*:** expands states in the order of *f = g+h* values

• **Weighted A*:** expands states in the order of $f = g + \varepsilon h$ values, $\varepsilon > 1$ = bias towards states that are closer to goal

• **Weighted A*:** expands states in the order of $f = g + \varepsilon h$ values, $\varepsilon > 1$ = bias towards states that are closer to goal

No one knows. Topic for research.

key to finding solution fast: shallow minima for h(s)-h(s) function*

- **Weighted A* Search:**
	- trades off optimality for speed
	- ε-suboptimal:

cost(solution) ≤ ε·cost(optimal solution)

- in many domains, it has been shown to be orders of magnitude faster than A*
- research becomes to develop a heuristic function that has shallow local minima

Few Properties of Heuristic Functions

Useful properties to know:

-
$$
h_1(s)
$$
, $h_2(s)$ – consistent, then:
\n $h(s) = max(h_1(s), h_2(s))$ – consistent

- if A* uses *ε*-consistent heuristics:

 $h(s_{\text{goal}}) = 0$ and $h(s) \leq \varepsilon c(s, \text{succ}(s)) + h(\text{succ}(s))$ for all $s \neq s_{\text{goal}}$, then A* is *ε*-suboptimal:

cost(solution) ≤ ε cost(optimal solution)

- weighted A^* is A^* with ε -consistent heuristics

What is ε? Proof?

 $-h₁(s)$, $h₂(s)$ – consistent, then: $h(s) = h_1(s) + h_2(s) - \varepsilon$ -consistent

What You Should Know…

- Common heuristic functions for X-connected grids – Euclidean distance, Manhattan distance, Diagonal distance, etc.
- Be able to design and implement heuristics for high-D planning (e.g., heuristics computed by low-d search)
- Weighted A^{*} and its properties
- Backward A^{*}
- How to combine heuristics, properties, *<i>* ϵ -consistent heuristics