
16-350

Planning Techniques for Robotics

Search Algorithms:

Heuristics, Weighted A* Search

Maxim Likhachev

Robotics Institute

Carnegie Mellon University

2

• Computes optimal g-values for relevant states

h(s)
g(s)

Sstart

S

S2

S1

Sgoal…

at any point of time:

A* Search

heuristic function

one popular heuristic function – Euclidean distance

Carnegie Mellon University

3

• Heuristic function must be:

– admissible: for every state s, h(s) ≤ c*(s,sgoal)

– consistent (satisfy triangle inequality):

h(sgoal,sgoal) = 0 and for every s≠sgoal, h(s) ≤ c(s,succ(s)) + h(succ(s))

– admissibility provably follows from consistency and often (not

always) consistency follows from admissibility

Heuristics
minimal cost from s to sgoal

Carnegie Mellon University

Heuristics

• For X-connected grids:

– Euclidean distance

– Manhattan distance: h(x,y) = abs(x-xgoal) + abs(y-ygoal)

– Diagonal distance: h(x,y) = max(abs(x-xgoal), abs(y-ygoal))

– More informed distances???

Carnegie Mellon University

Which heuristics are admissible for

4-connected grid?

8-connected grid?

Heuristics

• For planning problems higher than 2D

Carnegie Mellon University

2.43.4

2.4

2.4

R

Non-circular robot

Example:

consider planning for a non-circular robot that can move in any

direction (omnidirectional)

R

2.4

G

Heuristics

• For planning problems higher than 2D

Carnegie Mellon University

2.43.4

2.4

2.4

R

Non-circular robot

Example:

consider planning for a non-circular robot that can move in any

direction (omnidirectional)

R

2.4

G

Grid-based representation for planning:

x,y,Ѳ for some reference point on the robot

x,y are on 8-connected grid

Ѳ – discretized into 8 angles

Heuristics

• For planning problems higher than 2D

Carnegie Mellon University

2.43.4

2.4

2.4

R

Non-circular robot

Example:

consider planning for a non-circular robot that can move in any

direction (omnidirectional)

R

2.4

G

Grid-based representation for planning:

x,y,Ѳ for some reference point on the robot

x,y are on 8-connected grid

Ѳ – discretized into 8 angles
How many states?

Heuristics

• For planning problems higher than 2D

Carnegie Mellon University

2.43.4

2.4

2.4

R

Non-circular robot

Example:

consider planning for a non-circular robot that can move in any

direction (omnidirectional)

R

2.4

G

Grid-based representation for planning:

x,y,Ѳ for some reference point on the robot

x,y are on 8-connected grid

Ѳ – discretized into 8 angles

What heuristic we can use?

Heuristics

• For planning problems higher than 2D

Carnegie Mellon University

2.43.4

2.4

2.4

R

Non-circular robot

Example:

consider planning for a non-circular robot that can move in any

direction (omnidirectional)

R

2.4

G

Grid-based representation for planning:

x,y,Ѳ for some reference point on the robot

x,y are on 8-connected grid

Ѳ – discretized into 8 angles

Any ideas for heuristics

that estimate cost-to-goal better ?

How about cost-to-goal

distances for the reference point

in 2D (accounting for obstacles)?

Heuristics

• For planning problems higher than 2D

Carnegie Mellon University

2.43.4

2.4

2.4

R

Non-circular robot

Example:

consider planning for a non-circular robot that can move in any

direction (omnidirectional)

R

2.4

G

Grid-based representation for planning:

x,y,Ѳ for some reference point on the robot

x,y are on 8-connected grid

Ѳ – discretized into 8 angles

How about cost-to-goal

distances for the reference point

in 2D (accounting for obstacles)?

Are these admissible?

How can we compute them?

11

• Searching from the goal towards the start state

• g-values are cost-to-goals

ComputePath function

while(sgoal is not expanded and OPEN ≠ 0)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;

expand s;

Main function

g(sstart) = 0; all other g-values are infinite; OPEN = {sstart};

ComputePath();

publish solution;

S2 S1

Sgoal

2

g=

h=2

g=

h=1

g=

h=02

S4 S3

3

g=

h=2

g=

h=1

1

Sstart

1

1

g=0

h=3

Backward A* Search

Carnegie Mellon University

What needs to be changed?

12

• Searching from the goal towards the start state

• g-values are cost-to-goals

ComputePath function

while(sstart is not expanded and OPEN ≠ 0)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;

expand s;

Main function

g(sgoal) = 0; all other g-values are infinite; OPEN = {sgoal};

ComputePath();

publish solution;

S2 S1

Sgoal

2

g=

h=1

g=

h=2

g=0

h=32

S4 S3

3

g=

h=2

g=

h=3

1

Sstart

1

1

g=

h=0

Backward A* Search

Carnegie Mellon University

What needs to be changed?

13

ComputePath function

while(sgoal is not expanded and OPEN ≠ 0)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;

insert s into CLOSED;

for every successor s’ of s such that s’ not in CLOSED

if g(s’) > g(s) + c(s,s’)

g(s’) = g(s) + c(s,s’);

insert s’ into OPEN;

Backward A* Search

Carnegie Mellon University

• Searching from the goal towards the start state

• g-values are cost-to-goals

S2 S1

Sgoal

2

g=

h=1

g=

h=2

g=0

h=32

S4 S3

3

g=

h=2

g=

h=3

1

Sstart

1

1

g=

h=0

What needs to be changed in here?

14

ComputePath function

while(sstart is not expanded and OPEN ≠ 0)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;

insert s into CLOSED;

for every predecessor s’ of s such that s’ not in CLOSED

if g(s’) > c(s’,s) + g(s)

g(s’) = c(s’,s) + g(s);

insert s’ into OPEN;

Backward A* Search

Carnegie Mellon University

• Searching from the goal towards the start state

• g-values are cost-to-goals

S2 S1

Sgoal

2

g=

h=1

g=

h=2

g=0

h=32

S4 S3

3

g=

h=2

g=

h=3

1

Sstart

1

1

g=

h=0

What needs to be changed in here?

15

ComputePath function

while(sstart is not expanded and OPEN ≠ 0)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;

insert s into CLOSED;

for every predecessor s’ of s such that s’ not in CLOSED

if g(s’) > c(s’,s) + g(s)

g(s’) = c(s’,s) + g(s);

insert s’ into OPEN;

Backward A* Search that computes ALL g-values

Carnegie Mellon University

• Searching from the goal towards the start state

• g-values are cost-to-goals

S2 S1

Sgoal

2

g=

h=1

g=

h=2

g=0

h=32

S4 S3

3

g=

h=2

g=

h=3

1

Sstart

1

1

g=

h=0

How do we make it

compute ALL g-values?

16

ComputePath function

while(OPEN ≠ 0)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;

insert s into CLOSED;

for every predecessor s’ of s such that s’ not in CLOSED

if g(s’) > c(s’,s) + g(s)

g(s’) = c(s’,s) + g(s);

insert s’ into OPEN;

Backward A* Search that computes ALL g-values

Carnegie Mellon University

• Searching from the goal towards the start state

• g-values are cost-to-goals

S2 S1

Sgoal

2

g=

h=1

g=

h=2

g=0

h=32

S4 S3

3

g=

h=2

g=

h=3

1

Sstart

1

1

g=

h=0

Run until all states

get expanded!

17

ComputePath function

while(OPEN ≠ 0)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;

insert s into CLOSED;

for every predecessor s’ of s such that s’ not in CLOSED

if g(s’) > c(s’,s) + g(s)

g(s’) = c(s’,s) + g(s);

insert s’ into OPEN;

Backward A* Search that computes ALL g-values

Carnegie Mellon University

• Searching from the goal towards the start state

• g-values are cost-to-goals

S2 S1

Sgoal

2

g=

h=1

g=

h=2

g=0

h=32

S4 S3

3

g=

h=2

g=

h=3

1

Sstart

1

1

g=

h=0

Does it make sense to have heuristics

if we are computing ALL g-values?

18

ComputePath function

while(OPEN ≠ 0)

remove s with the smallest [f(s) = g(s)] from OPEN;

insert s into CLOSED;

for every predecessor s’ of s such that s’ not in CLOSED

if g(s’) > c(s’,s) + g(s)

g(s’) = c(s’,s) + g(s);

insert s’ into OPEN;

Backward A* Search that computes ALL g-values

Carnegie Mellon University

• Searching from the goal towards the start state

• g-values are cost-to-goals

S2 S1

Sgoal

2
g= g=

g=02

S4 S3

3

g= g=

1

Sstart

1

1

g=

19

ComputePath function

while(OPEN ≠ 0)

remove s with the smallest [f(s) = g(s)] from OPEN;

insert s into CLOSED;

for every predecessor s’ of s such that s’ not in CLOSED

if g(s’) > c(s’,s) + g(s)

g(s’) = c(s’,s) + g(s);

insert s’ into OPEN;

Backward A* Search that computes ALL g-values

Carnegie Mellon University

• Searching from the goal towards the start state

• g-values are cost-to-goals

S2 S1

Sgoal

2
g=4 g=2

g=02

S4 S3

3

g= 4 g= 1

1

Sstart

1

1

g=5

At termination,

g-values of all states

will be equal to

optimal cost-to-goal values

20

ComputePath function

while(OPEN ≠ 0)

remove s with the smallest [f(s) = g(s)] from OPEN;

insert s into CLOSED;

for every predecessor s’ of s such that s’ not in CLOSED

if g(s’) > c(s’,s) + g(s)

g(s’) = c(s’,s) + g(s);

insert s’ into OPEN;

Backward A* Search that computes ALL g-values

Carnegie Mellon University

• Searching from the goal towards the start state

• g-values are cost-to-goals

S2 S1

Sgoal

2
g=4 g=2

g=02

S4 S3

3

g= 4 g= 1

1

Sstart

1

1

g=5

At termination,

g-values of all states

will be equal to

optimal cost-to-goal values

Can be run on low-D problems (e.g., 2D)

to compute heuristics

for higher-D problems (e.g., 3+D)

21

• Uninformed A*: expands states in the order of g values

• A*: expands states in the order of f = g+h values

• Weighted A*: expands states in the order of f = g+εh

values, ε > 1 = bias towards states that are closer to goal

Weighted A*

h(s)
g(s)

Sstart

S

S2

S1

Sgoal…

the cost of a shortest path

from sstart to s found so far

an (under) estimate of the cost

of a shortest path from s to sgoal

Carnegie Mellon University

Carnegie Mellon University 22

Weighted A*

sgoal

sstart

• Uninformed A*: expands states in the order of g values

What are the states expanded?

Carnegie Mellon University 23

Weighted A*

sgoal

sstart

• A*: expands states in the order of f = g+h values

What are the states expanded?

Carnegie Mellon University 24

Weighted A*

sgoal

sstart

• A*: expands states in the order of f = g+h values

for large problems this results in A* quickly

running out of memory (memory: O(n))

25

Weighted A*

• Weighted A*: expands states in the order of f = g+εh

values, ε > 1 = bias towards states that are closer to goal

sstart sgoal

key to finding solution fast:

shallow minima for h(s)-h*(s) function

what states are expanded?

Carnegie Mellon University

26

Weighted A*

• Weighted A*: expands states in the order of f = g+εh

values, ε > 1 = bias towards states that are closer to goal

sstart sgoal

key to finding solution fast:

shallow minima for h(s)-h*(s) function

what states are expanded?

Carnegie Mellon University

No one knows. Topic for research.

27

Weighted A*

• Weighted A* Search:

– trades off optimality for speed

– ε-suboptimal:

cost(solution) ≤ ε·cost(optimal solution)

– in many domains, it has been shown to be orders of magnitude

faster than A*

– research becomes to develop a heuristic function that has

shallow local minima

Carnegie Mellon University

29

Few Properties of Heuristic Functions

• Useful properties to know:

- h1(s), h2(s) – consistent, then:

h(s) = max(h1(s),h2(s)) – consistent

- if A* uses ε-consistent heuristics:

h(sgoal) = 0 and h(s) ≤ ε c(s,succ(s)) + h(succ(s) for all s≠sgoal,

then A* is ε-suboptimal:

cost(solution) ≤ ε cost(optimal solution)

- weighted A* is A* with ε-consistent heuristics

- h1(s), h2(s) – consistent, then:

h(s) = h1(s)+h2(s) – ε-consistent
Carnegie Mellon University

Proof?

What is ε? Proof?

30

What You Should Know…

• Common heuristic functions for X-connected grids
– Euclidean distance, Manhattan distance, Diagonal distance, etc.

• Be able to design and implement heuristics for high-D

planning (e.g., heuristics computed by low-d search)

• Weighted A* and its properties

• Backward A*

• How to combine heuristics, properties, Ɛ-consistent

heuristics

Carnegie Mellon University

