16-350 Planning Techniques for Robotics

Search Algorithms: Heuristics, Weighted A* Search

Maxim Likhachev

Robotics Institute

A* Search

- Computes optimal g-values for relevant states
- at any point of time:

one popular heuristic function – Euclidean distance

minimal cost from s to s_{goal}

- Heuristic function must be:
 - admissible: for every state s, $h(s) \le c^*(s, s_{goal})$
 - consistent (satisfy triangle inequality):

 $h(s_{goal}, s_{goal}) = 0$ and for every $s \neq s_{goal}$, $h(s) \leq c(s, succ(s)) + h(succ(s))$

admissibility <u>provably</u> follows from consistency and often (<u>not</u> <u>always</u>) consistency follows from admissibility

- For X-connected grids:
 - Euclidean distance

- Manhattan distance: $h(x,y) = abs(x-x_{goal}) + abs(y-y_{goal})$
- Diagonal distance: $h(x,y) = max(abs(x-x_{goal}), abs(y-y_{goal}))$
- More informed distances???

Which heuristics are admissible for 4-connected grid? 8-connected grid?

• For planning problems higher than 2D

Example:

consider planning for a non-circular robot that can move in any direction (omnidirectional)

Non-circular robot

• For planning problems higher than 2D

Example:

consider planning for a non-circular robot that can move in any direction (omnidirectional)

Grid-based representation for planning: x,y, Θ for some reference point on the robot x,y are on 8-connected grid Θ – discretized into 8 angles

• For planning problems higher than 2D

Example:

consider planning for a non-circular robot that can move in any direction (omnidirectional)

R

Grid-based representation for planning: x,y,Θ for some reference point on the robot x,y are on 8-connected grid Θ – discretized into 8 angles How many states?

What heuristic we can use?

• For planning problems higher than 2D

Example:

consider planning for a non-circular robot that can move in any direction (omnidirectional)

Grid-based representation for planning: x,y, Θ for some reference point on the robot x,y are on 8-connected grid Θ – discretized into 8 angles

Any ideas for heuristics

• For planning problems higher?

Example: consider planning for a non-c direction (omnidirectional)

How about cost-to-goal distances for the reference point in 2D (accounting for obstacles)?

Non-circular robot

R

Grid-based representation for planning: x,y,Θ for some reference point on the robot x, y are on 8-connected grid Θ – discretized into 8 angles

How can we compute them?

• For planning problems his

Example: consider planning for a non-c direction (omnidirectional)

Non-circular robot

R

How about cost-to-goal distances for the reference point in 2D (accounting for obstacles)?

Are these admissible?

Grid-based representation for planning: x,y, Θ for some reference point on the robot x,y are on 8-connected grid Θ – discretized into 8 angles

- Searching from the goal towards the start state
- g-values are cost-to-goals Main function

 $g(s_{start}) = 0$; all other g-values are infinite; $OPEN = \{s_{start}\}$; ComputePath(); publish solution; *What needs to be changed*?

ComputePath function

while $(s_{goal} \text{ is not expanded and } OPEN \neq 0)$ remove *s* with the smallest [f(s) = g(s) + h(s)] from *OPEN*; expand *s*; $g = \infty$

- Searching from the goal towards the start state
- g-values are cost-to-goals Main function

 $g(s_{goal}) = 0$; all other g-values are infinite; $OPEN = \{s_{goal}\}$; ComputePath(); publish solution; *What needs to be changed*?

ComputePath function

while $(s_{start} \text{ is not expanded and } OPEN \neq 0)$ remove *s* with the smallest [f(s) = g(s) + h(s)] from *OPEN*; expand *s*;

• Searching from the goal towards the start state

g-values are cost-to-goals ComputePath function

What needs to be changed in here?

while(s_{goal} is not expanded and $OPEN \neq 0$) remove *s* with the smallest [f(s) = g(s) + h(s)] from *OPEN*; insert *s* into *CLOSED*;

for every successor s' of s such that s'not in CLOSED

if
$$g(s') > g(s) + c(s,s')$$

 $g(s') = g(s) + c(s,s');$
insert *s*' into *OPEN*;

- Searching from the goal towards the start state
- g-values are cost-to-goals
 ComputePath function

What needs to be changed in here?

while(s_{start} is not expanded and $OPEN \neq 0$) remove *s* with the smallest [f(s) = g(s) + h(s)] from *OPEN*; insert *s* into *CLOSED*;

for every **predecessor** s' of s such that s'not in CLOSED

if
$$g(s') > c(s',s) + g(s)$$

 $g(s') = c(s',s) + g(s)$;
insert s' into OPEN;

- Searching from the goal towards the start state
- g-values are cost-to-goals
 ComputePath function

while $(s_{start} \text{ is not expanded and } OPEN \neq 0)$ remove *s* with the smallest [f(s) = g(s) + h(s)] from *OPEN*; insert *s* into *CLOSED*;

for every predecessor s' of s such that s'not in CLOSED

if
$$g(s') > c(s',s) + g(s)$$

 $g(s') = c(s',s) + g(s);$
insert *s*' into *OPEN*;

 $g = \infty$ $g = \infty$ h=2h=1 $g = \infty$ S_{2} S. g=0h=0h=3(S_{sta}) $(S_{\underline{goa}})$ 3 S_4 S_2 $g = \infty$ $g = \infty$ h=2h=3**Carnegie Mellon University** 15

How do we make it compute ALL g-values?

- Searching from the goal towards the start state
- g-values are cost-to-goals get expanded! **ComputePath function** while $(OPEN \neq 0)$

Run until all states

remove *s* with the smallest [f(s) = g(s)+h(s)] from *OPEN*;

insert *s* into *CLOSED*;

for every predecessor s' of s such that s'not in CLOSED

if
$$g(s') > c(s',s) + g(s)$$

 $g(s') = c(s',s) + g(s);$
insert *s*' into *OPEN*;

- Searching from the goal towards the start state
- **g-values are cost-to-goals ComputePath function** while($OPEN \neq 0$) remove *s* with the smallest [f(s) = g(s) + h(s)] from *OPEN*; insert *s* into *CLOSED*;
 - for every predecessor *s* ' of *s* such that *s* 'not in *CLOSED*

if
$$g(s') > c(s',s) + g(s)$$

 $g(s') = c(s',s) + g(s);$
insert *s*' into *OPEN*;

- Searching from the goal towards the start state
 - g-values are cost-to-goals ComputePath function while($OPEN \neq 0$) remove s with the smallest [f(s) = g(s)] from OPEN; insert s into CLOSED;
 - for every predecessor s' of s such that s'not in CLOSED

if
$$g(s') > c(s',s) + g(s)$$

 $g(s') = c(s',s) + g(s);$
insert *s*' into *OPEN*;

- Searching from the goal towards ⁺¹
 - g-values are cost-to-goalsg-values of all statesComputePath functionwill be equal towhile($OPEN \neq 0$)optimal cost-to-goal valuesremove s with the smallest [f(s) = g(s)] from OPEN;insert s into CLOSED;for every predecessor s' of s such that s' not in CLOSED
 - if g(s') > c(s',s) + g(s) g(s') = c(s',s) + g(s);insert *s*' into *OPEN*;

At termination,

- Searching from the goal towards ⁺¹
 - g-values are cost-to-goalsg-values of all statesComputePath functionwill be equal towhile($OPEN \neq 0$)optimal cost-to-goal valuesremove s with the smallest [f(s) = g(s)] from OPEUinsert s into CLOSED;for every predecessor s' of s'for every predecessor s' of s'g(s') > c(s',s) + g(s)g(s') = c(s',s) + g(s);g(s') = c(s',s) + g(s);

At termination,

- Uninformed A*: expands states in the order of *g* values
- A*: expands states in the order of f = g + h values
- Weighted A*: expands states in the order of $f = g + \varepsilon h$ values, $\varepsilon > l =$ bias towards states that are closer to goal

• Uninformed A*: expands states in the order of g values

What are the states expanded?

S_{goal}

• A*: expands states in the order of f = g + h values

• A*: expands states in the order of f = g + h values

• Weighted A*: expands states in the order of $f = g + \varepsilon h$ values, $\varepsilon > 1$ = bias towards states that are closer to goal

what states are expanded?

• Weighted A*: expands states in the order of $f = g + \varepsilon h$ values, $\varepsilon > 1$ = bias towards states that are closer to goal

No one knows. Topic for research.

key to finding solution fast: _shallow minima for h(s)-h*(s) function

S_{siart}

- Weighted A* Search:
 - trades off optimality for speed
 - ε-suboptimal:

 $cost(solution) \leq \varepsilon cost(optimal solution)$

- in many domains, it has been shown to be orders of magnitude faster than A*
- research becomes to develop a heuristic function that has shallow local minima

Few Properties of Heuristic Functions

• Useful properties to know:

-
$$h_1(s)$$
, $h_2(s)$ – consistent, then:
 $h(s) = max(h_1(s), h_2(s))$ – consistent

- if A* uses ε -consistent heuristics:

 $h(s_{goal}) = 0$ and $h(s) \le \varepsilon c(s, succ(s)) + h(succ(s) \text{ for all } s \neq s_{goal},$ then A* is ε -suboptimal:

 $cost(solution) \leq \varepsilon \ cost(optimal \ solution)$

- weighted A^* is A^* with ε -consistent heuristics

What is ε ? Proof?

- $h_1(s)$, $h_2(s)$ - consistent, then: $h(s) = h_1(s) + h_2(s) - \varepsilon$ -consistent

What You Should Know...

- Common heuristic functions for X-connected grids
 Euclidean distance, Manhattan distance, Diagonal distance, etc.
- Be able to design and implement heuristics for high-D planning (e.g., heuristics computed by low-d search)
- Weighted A* and its properties
- Backward A*
- How to combine heuristics, properties, *E*-consistent heuristics