16-350 Planning Techniques for Robotics

Planning Representations/Search Algorithms: RRT, RRT-Connect, RRT*

Maxim Likhachev
Robotics Institute
Carnegie Mellon University

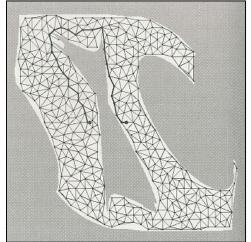
Probabilistic Roadmaps (PRMs)

Great for problems where a planner has to plan many times for different start/goal pairs (step 1 needs to be done only once)

Not so great for single shot planning

Step 1. Preprocessing Phase: Build a roadmap (graph) \mathcal{G} which, hopefully, should be accessible from any point in C_{free}

Step 2. Query Phase: Given a start configuration q_I and goal configuration q_G , connect them to the roadmap \mathcal{G} using a local planner, and then search the augmented roadmap for a shortest path from q_I to q_G



No preprocessing step: starting with the initial configuration q_I build the graph (actually, tree) until the goal configuration g_G is part of it

Very effective for single shot planning

```
BUILD_RRT(q_{init})

1 \mathcal{T}.init(q_{init});

2 for k = 1 to K do

3 q_{rand} \leftarrow RANDOM\_CONFIG();

4 EXTEND(\mathcal{T}, q_{rand});

5 Return \mathcal{T}
```

```
EXTEND(\mathcal{T}, q)

1 q_{near} \leftarrow \text{NEAREST\_NEIGHBOR}(q, \mathcal{T});

2 if \text{NEW\_CONFIG}(q, q_{near}, q_{new}) then

3 \mathcal{T}.\text{add\_vertex}(q_{new});

4 \mathcal{T}.\text{add\_edge}(q_{near}, q_{new});

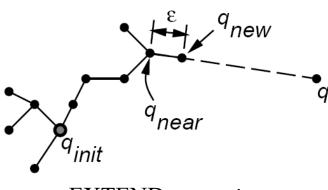
5 if q_{new} = q then

6 Return Reached;

7 else

8 Return Advanced;

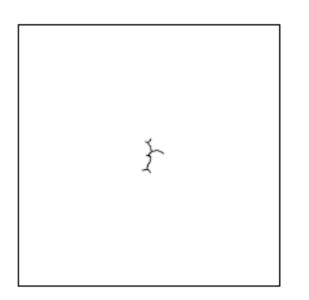
9 Return Trapped;
```

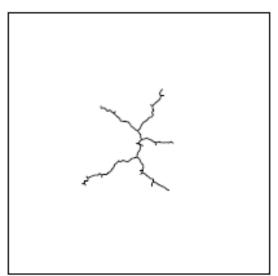


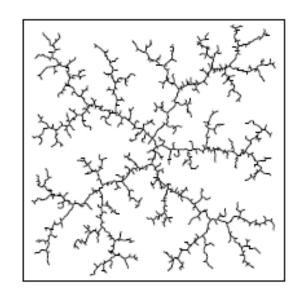
EXTEND operation

```
Path to the goal is a path in the tree
                                        from q_{init} to the vertex closest to goal
BUILD\_RRT(q_{init})
      \mathcal{T}.init(q_{init});
                                                                              selects closest vertex in the tree
      for k = 1 to K do
            q_{rand} \leftarrow \text{RANDOM\_CONFIG}();
            \text{EXTEND}(\mathcal{T}, q_{rand});
 5
      Return \mathcal{T}
                                                                                            moves by at most \varepsilon
                                                                                           from q<sub>near</sub> towards q
\text{EXTEND}(\mathcal{T}, q)
      q_{near} \leftarrow \text{NEAREST\_NEIGHBOR}(q, \mathcal{T});
      if NEW\_CONFIG(q, q_{near}, q_{new}) then
            \mathcal{T}.add_vertex(q_{new});
            \mathcal{T}.add_edge(q_{near}, q_{new});
            if q_{new} = q then
                  Return Reached;
            else
 8
                  Return Advanced;
                                                                                        EXTEND operation
 9
       Return Trapped;
```

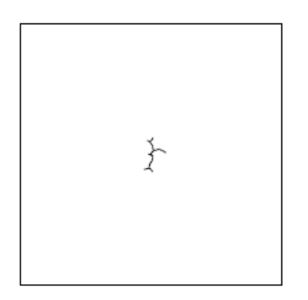
borrowed from "RRT-Connect: An Efficient Approach to Single-Query Path Planning" paper by J. Kuffner & S. LaValle

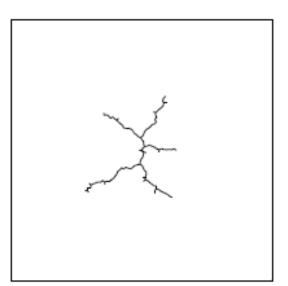


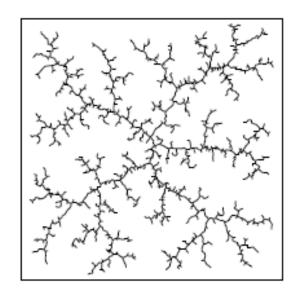




RRT provides uniform coverage of space

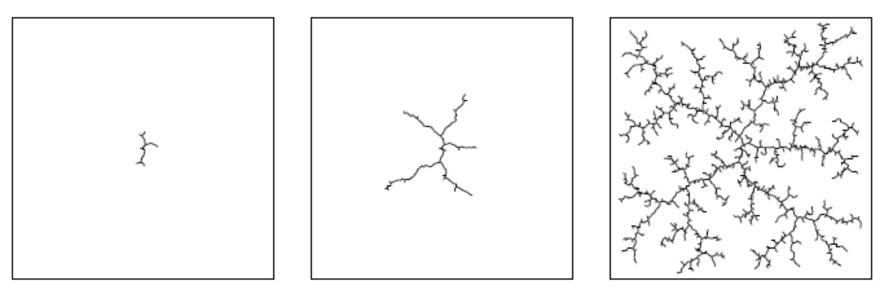




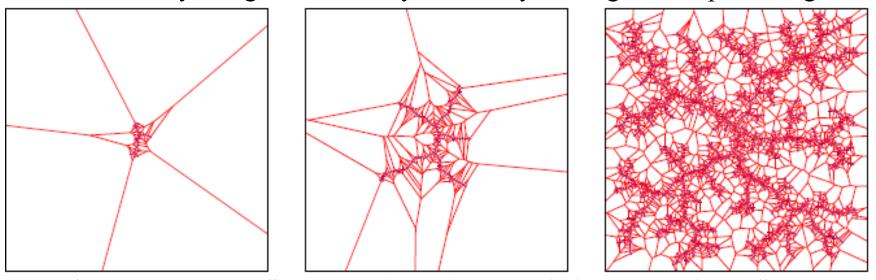


RRT provides uniform coverage of space

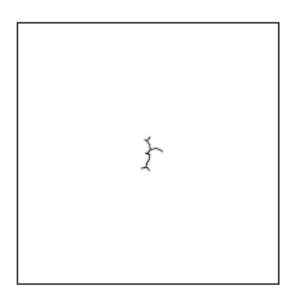
Pros/cons?

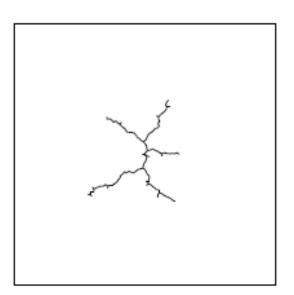


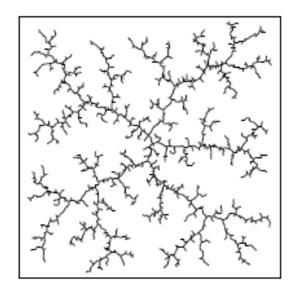
• Alternatively, the growth is always biased by the largest unexplored region



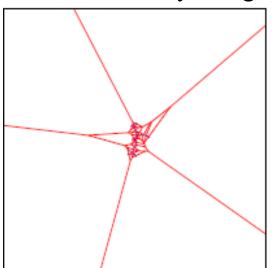
borrowed from "RRT-Connect: An Efficient Approach to Single-Query Path Planning" paper by J. Kuffner & S. LaValle

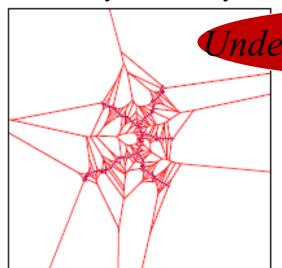


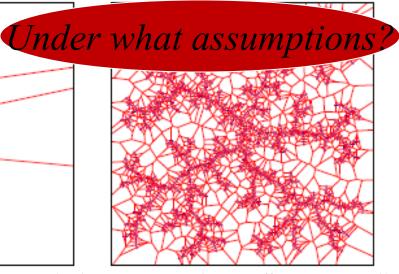




• Alternatively, the growth is always biased by the largest unexplored region







borrowed from "RRT-Connect: An Efficient Approach to Single-Query Path Planning" paper by J. Kuffner & S. LaValle

Bi-directional growth of the tree

+

relax the ε constraint on the growth of the tree

```
RRT_CONNECT_PLANNER(q_{init}, q_{goal})
       \mathcal{T}_a.\operatorname{init}(q_{init}); \mathcal{T}_b.\operatorname{init}(q_{goal});
       for k = 1 to K do
  ^{2}
             q_{rand} \leftarrow \text{RANDOM\_CONFIG}();
             if not (EXTEND(\mathcal{T}_a, q_{rand}) = Trapped) then
                   if (CONNECT(\mathcal{T}_b, q_{new}) = Reached) then
                         Return PATH(\mathcal{T}_a, \mathcal{T}_b);
             SWAP(\mathcal{T}_a, \mathcal{T}_b);
       Return Failure
CONNECT(\mathcal{T}, q)
       repeat
             S \leftarrow \text{EXTEND}(\mathcal{T}, q);
       until not (S = Advanced)
       Return S;
```

```
RRT_CONNECT_PLANNER(q_{init}, q_{goal})
       \mathcal{T}_a.\operatorname{init}(q_{init}); \mathcal{T}_b.\operatorname{init}(q_{goal});
                                                                                       tries to grow T_b to q_{new}
                                                                                      that was just added to T_a
       for k = 1 to K do
  ^{2}
             q_{rand} \leftarrow \text{RANDOM\_CONFIG}
             if not (EXTEND(\mathcal{T}_{a}, q_{rand}) = Trapped) then
                   if (CONNECT(\mathcal{T}_b, q_{new}) = Reached) then
                         Return PATH(\mathcal{T}_a, \mathcal{T}_b);
             SWAP(\mathcal{T}_a, \mathcal{T}_b);
                                                                           Why swap the trees?
       Return Failure
CONNECT(\mathcal{T}, q)
       repeat
```

borrowed from "RRT-Connect: An Efficient Approach to Single-Query Path Planning" paper by J. Kuffner & S. LaValle

 $S \leftarrow \text{EXTEND}(\mathcal{T}, q);$

until not (S = Advanced)

Return S;

CONNECT function grows the tree

by more than just one ε

- For any $q \in C_{free}$, $\lim_{k\to\infty} P[d(q) < \varepsilon] = 1$, where d(q) is a distance from configuration q to the closest vertex in the tree, and assuming C_{free} is connected, bounded and open
- RRT-Connect is probabilistically complete: *as # of samples approaches infinity, the algorithm is guaranteed to find a solution if one exists*

- For any $q \in C_{free}$, $\lim_{k\to\infty} P[d(q) < \varepsilon] = 1$, where d(q) is a distance from configuration q to the closest vertex in the tree, and assuming C_{free} is connected, bounded and open
- RRT-Connect is probabilistically complete: *as # of samples approaches infinity, the algorithm is guaranteed to find a solution if one exists*

Is RRT-Connect asymptotically (as $k \rightarrow \infty$) optimal?

No, more on this later

- For any $q \in C_{free}$, $\lim_{k\to\infty} P[d(q) < \varepsilon] = 1$, where d(q) is a distance from configuration q to the closest vertex in the tree, and assuming C_{free} is connected, bounded and open
- RRT-Connect is probabilistically complete: *as # of samples approaches infinity, the algorithm is guaranteed to find a solution if one exists*

Applicability of RRT vs. RRT-Connect to kinodynamic planning?

Sampling-based approaches

Typical setup:

• Run PRM/RRT/RRT-Connect/...

• Post-process the generated solution to make it more optimal

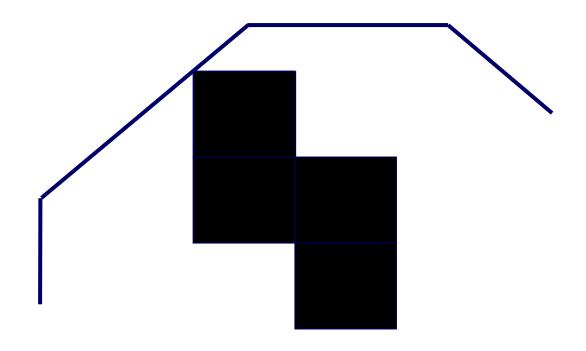
An important but often time-consuming step

Could also be highly non-trivial

Post-processing

Any ideas how to post-process it?

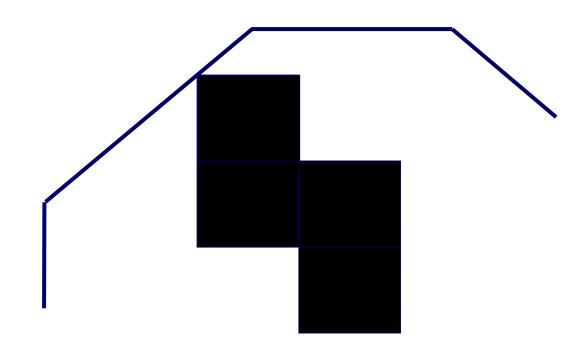
Consider this path generated by RRT or PRM or A* on a grid-based graph:



• Short-cutting a path consisting of a series of points

 $NewPath=[]; P=start\ point, P1=point\ P+1\ along\ the\ path\ while\ P:=goal\ point$

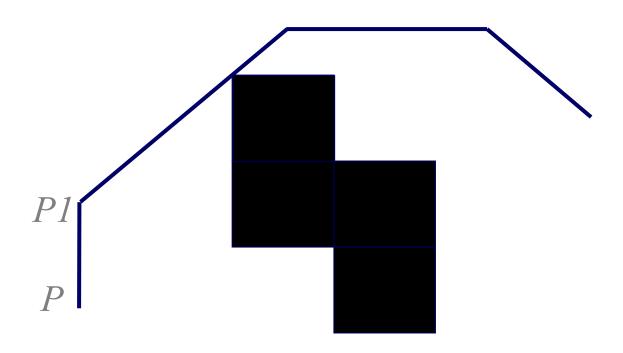
while line segment [P,P1+1] is obstacle-free AND P1+1 < goal point P1 = point P1+1 along the path;



• Short-cutting a path consisting of a series of points

 $NewPath=[]; P=start\ point, P1=point\ P+1\ along\ the\ path\ while\ P:=goal\ point$

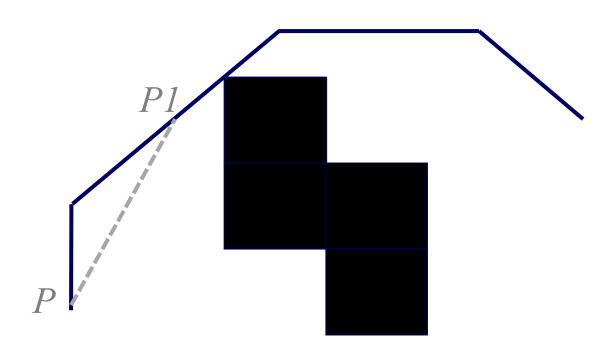
while line segment [P,P1+1] is obstacle-free AND P1+1 < goal point P1 = point P1+1 along the path;



• Short-cutting a path consisting of a series of points

 $NewPath=[]; P=start\ point, P1=point\ P+1\ along\ the\ path\ while\ P:=goal\ point$

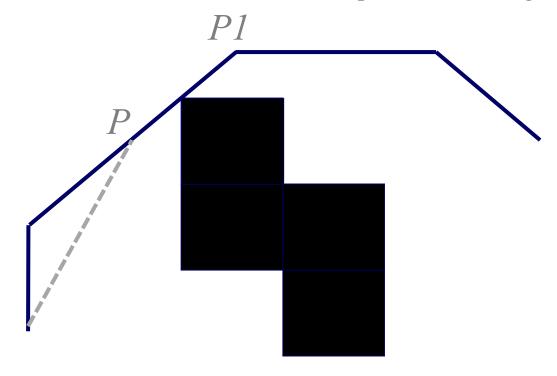
while line segment [P,P1+1] is obstacle-free AND P1+1 < goal point P1 = point P1+1 along the path;



• Short-cutting a path consisting of a series of points

 $NewPath=[]; P=start\ point, P1=point\ P+1\ along\ the\ path\ while\ P:=goal\ point$

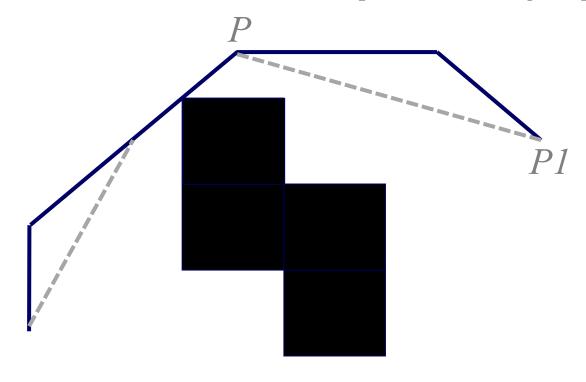
while line segment [P,P1+1] is obstacle-free AND P1+1 < goal point P1 = point P1+1 along the path;



• Short-cutting a path consisting of a series of points

 $NewPath=[]; P=start\ point, P1=point\ P+1\ along\ the\ path\ while\ P:=goal\ point$

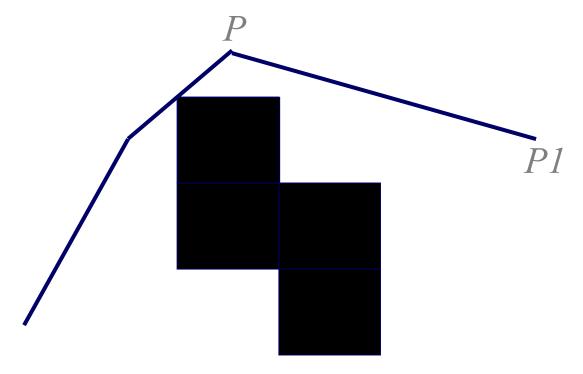
while line segment [P,P1+1] is obstacle-free AND P1+1 < goal point P1 = point P1+1 along the path;



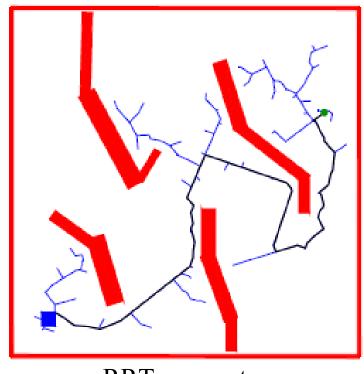
• Short-cutting a path consisting of a series of points

 $NewPath=[]; P=start\ point, P1=point\ P+1\ along\ the\ path\ while\ P:=goal\ point$

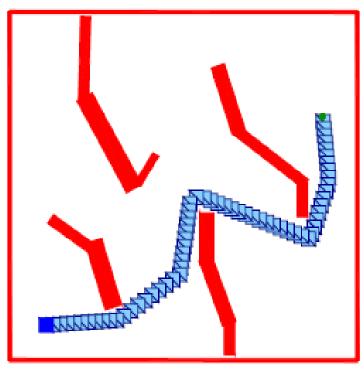
while line segment [P,P1+1] is obstacle-free AND P1+1 < goal point P1 = point P1+1 along the path;



Examples of RRT in action

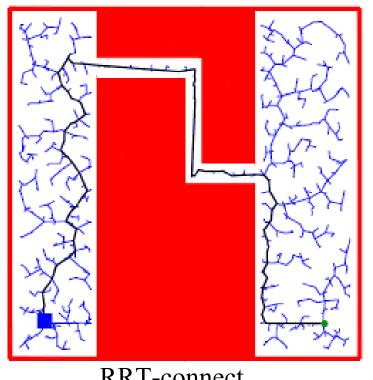


RRT-connect



path after postprocessing

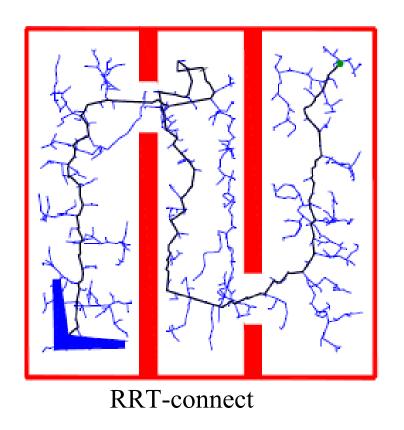
Examples of RRT in action

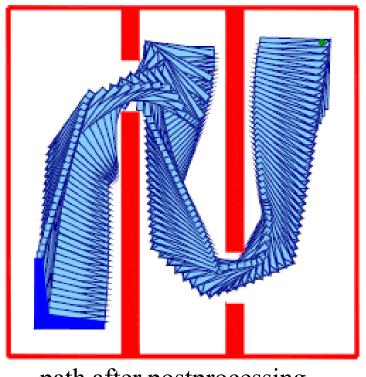


RRT-connect

path after postprocessing

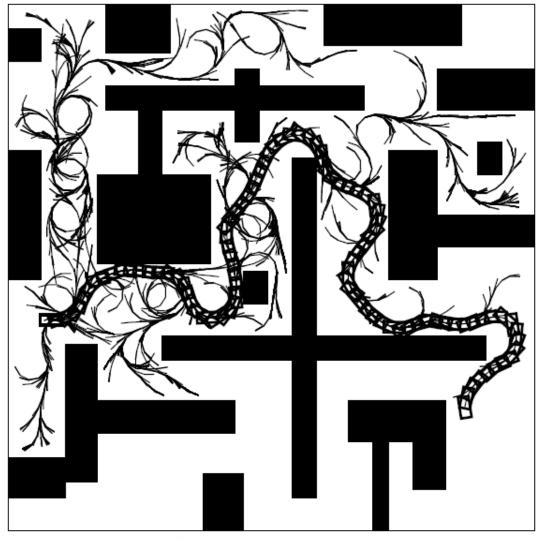
Examples of RRT in action





path after postprocessing

Examples of RRT

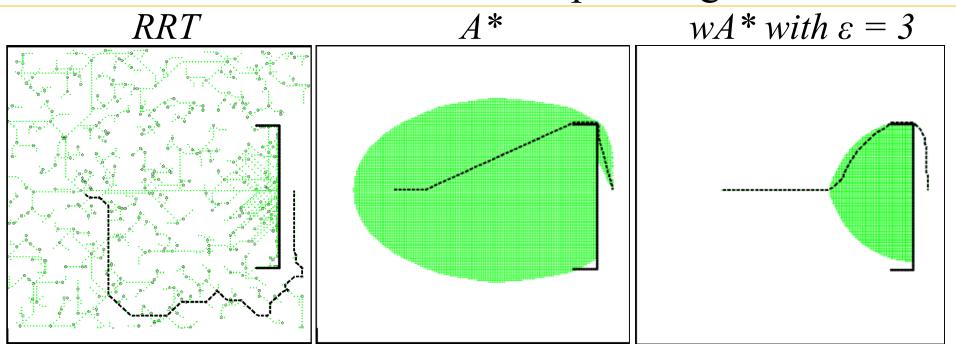


5DOF kinodynamic planning for a car

PRMs vs. RRTs

- PRMs construct a roadmap and then searches it for a solution whenever q_I , g_G are given
 - well-suited for repeated planning in between different pairs of q_I , g_G (multiple queries)
- RRTs construct a tree for a given q_I , q_G until the tree has a solution
 - well-suited for single-shot planning in between a single pair of q_I , g_G (single query)
 - There exist extensions of RRTs that try to reuse a previously constructed tree when replanning in response to map updates

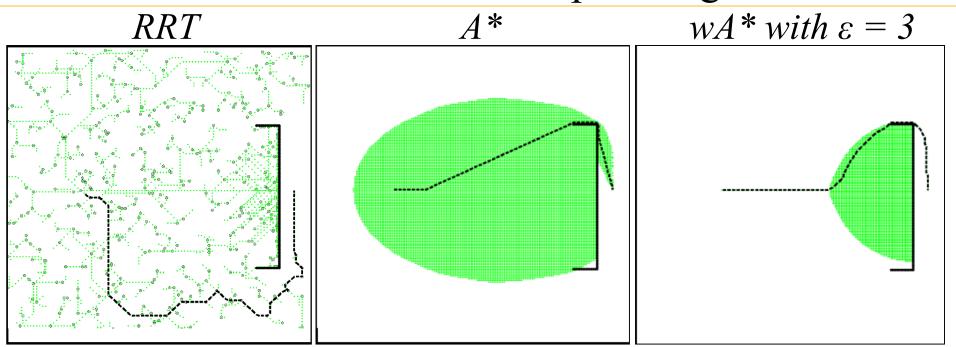
RRTs vs A*-based planning



• RRTs:

- sparse exploration, usually little memory and computations required, works well in high-D
- solutions can be highly sub-optimal, requires post-processing,
 which in some cases can be very hard to do, the solution is still restricted to the same homotopic class

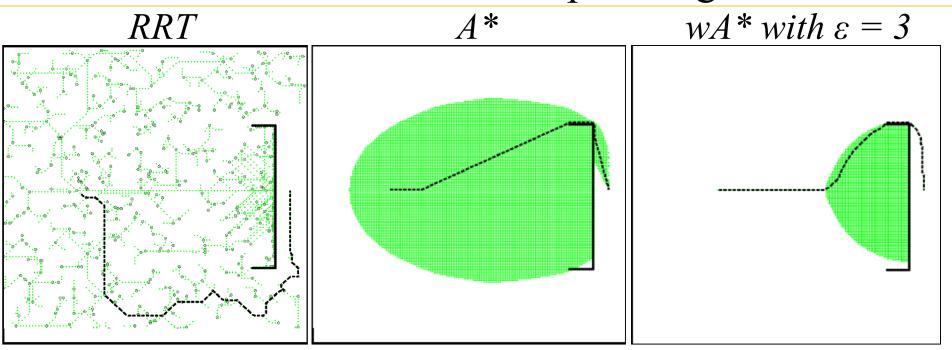
RRTs vs A*-based planning



• RRTs:

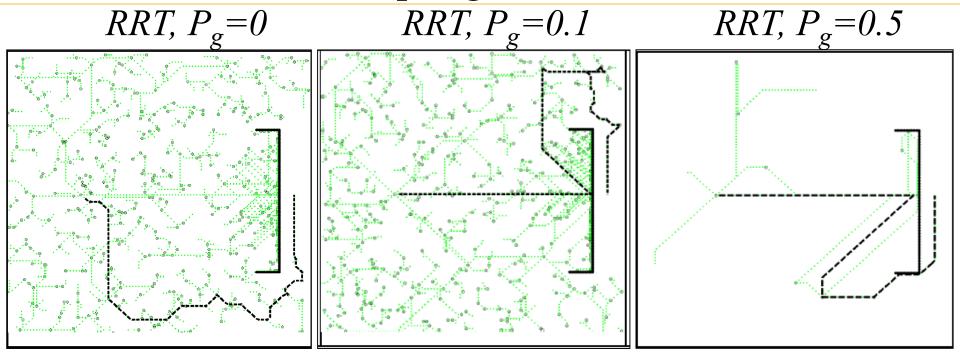
- does not incorporate a (potentially complex) cost function
- there exist versions (e.g., RRT*) that try to incorporate the cost function and converge to a provably least-cost solution in the limit of samples (but typically computationally more expensive than RRT)

RRTs vs A*-based planning



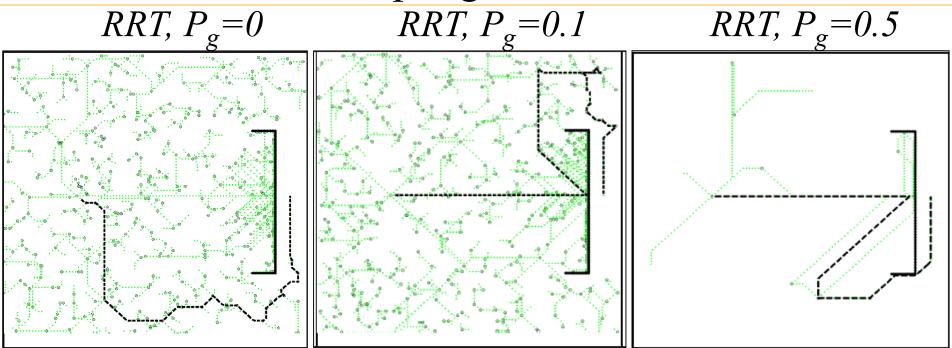
- A* and weighted A* (wA*):
 - returns a solution with optimality (or sub-optimality) guarantees
 with respect to the discretization used
 - explicitly minimizes a cost function
 - requires a thorough exploration of the state-space resulting in high memory and computational requirements

Sampling in RRTs



- Uniform: q_{rand} is a random sample in C_{free}
- Goal-biased: with a probability $(1-P_g)$, q_{rand} is chosen as a random sample in C_{free} , with probability P_g , q_{rand} is set to g_G

Sampling in RRTs



- Uniform: q_{rand} is a random sample in C_{free}
- Goal-biased: with a probability $(1-P_g)$, q_{rand} is chosen as a random sample in C_{free} , with probability P_g , q_{rand} is set to g_G

Very useful!

RRT

+

"re-wiring of nodes"

Properties of RRT again...

Is RRT

asymptotically (in the limit of the number of samples) complete?

Is RRT

asymptotically (in the limit of the number of samples) optimal?

Why?

Main loop (same as in RRT):

```
1 V \leftarrow \{x_{\text{init}}\}; E \leftarrow \emptyset; i \leftarrow 0;

2 while i < N do

3 G \leftarrow (V, E);

4 x_{\text{rand}} \leftarrow \text{Sample}(i); i \leftarrow i + 1;

5 (V, E) \leftarrow \text{Extend}(G, x_{\text{rand}});
```

Extend(G,x) (same as in RRT + "re-wiring"):

```
1 V' \leftarrow V: E' \leftarrow E:
2 x_{\text{nearest}} \leftarrow \texttt{Nearest}(G, x);
x_{\text{new}} \leftarrow \text{Steer}(x_{\text{nearest}}, x);
4 if ObstacleFree(x_{\text{nearest}}, x_{\text{new}}) then
           V' \leftarrow V' \cup \{x_{\text{new}}\};
           x_{\min} \leftarrow x_{\text{nearest}};
          X_{\text{near}} \leftarrow \text{Near}(G, x_{\text{new}}, |V|);
7
           for all x_{\text{near}} \in X_{\text{near}} do
                  if ObstacleFree(x_{\text{near}}, x_{\text{new}}) then
              10
1
12
           E' \leftarrow E' \cup \{(x_{\min}, x_{\text{new}})\};
13
           for all x_{near} \in X_{near} \setminus \{x_{min}\} do
4
                  if ObstacleFree(x_{new}, x_{near}) and
15
                  Cost(x_{near}) > Cost(x_{new}) + c(Line(x_{new}, x_{near}))
              x_{	ext{parent}} \leftarrow 	ext{Parent}(x_{	ext{near}}); \ E' \leftarrow E' \setminus \{(x_{	ext{parent}}, x_{	ext{near}})\}; \ E' \leftarrow E' \cup \{(x_{	ext{new}}, x_{	ext{near}})\};
is return G' = (V', E')
```

borrowed from "Incremental Sampling-based Algorthms for Optimal Motion Planning" paper by S. Karaman & E. Frazzoli

Main loop (same as in RRT):

```
1 V \leftarrow \{x_{\text{init}}\}; E \leftarrow \emptyset; i \leftarrow 0;

2 while i < N do

3 G \leftarrow (V, E);

4 x_{\text{rand}} \leftarrow \text{Sample}(i); i \leftarrow i + 1;

5 (V, E) \leftarrow \text{Extend}(G, x_{\text{rand}});
```

Re-wiring:

Checking if we can improve (re-wire)

the cost of other nodes near

the new node x_{new}

Extend(G,x) (same as in RRT + "re-wiring"):

```
1 V' \leftarrow V: E' \leftarrow E:
2 x_{\text{nearest}} \leftarrow \text{Nearest}(G, x);
x_{\text{new}} \leftarrow \text{Steer}(x_{\text{nearest}}, x);
4 if ObstacleFree(x_{\text{nearest}}, x_{\text{new}}) then
         V' \leftarrow V' \cup \{x_{\text{new}}\};
         x_{\min} \leftarrow x_{\text{nearest}};
         X_{\text{near}} \leftarrow \text{Near}(G, x_{\text{new}}, |V|);
         for all x_{\text{near}} \in X_{\text{near}} do
               if ObstacleFree(x_{\text{near}}, x_{\text{new}}) then
                    c' \leftarrow \texttt{Cost}(x_{\text{near}}) + c(\texttt{Line}(x_{\text{near}}, x_{\text{new}}));
                  12
         E' \leftarrow E' \cup \{(x_{\min}, x_{\text{new}})\};
13
         for all x_{near} \in X_{near} \setminus \{x_{min}\} do
4
               if ObstacleFree(x_{new}, x_{near}) and
15
               Cost(x_{near}) > Cost(x_{new}) + c(Line(x_{new}, x_{near}))
                16
17
is return G' = (V', E')
```

borrowed from "Incremental Sampling-based Algorthms for Optimal Motion Planning" paper by S. Karaman & E. Frazzoli

```
Main loor
                                                                                                                                          <u>''re</u>-wiring''):
                        X_{near}: set of all vertices v in V s.t. they lie within radius r from x_{new} where
                                                         r = \min\left(\left(\frac{\gamma \log|V|}{\delta}\right)^{1/d}, \quad \mathcal{E} \right),
                 d-dimensionality of space, \delta-volume of unit hyperball, \gamma-user defined constant
                                                                                     X_{\text{near}} \leftarrow \text{Near}(G, x_{\text{new}}, |V|);
                                                                                    for all x_{\text{near}} \in X_{\text{near}} do
                                                                                          if ObstacleFree(x_{near}, x_{new}) then
                                                                                             12
                         Re-wiring:
Checking if we can improve (re-wire)
                                                                                    E' \leftarrow E' \cup \{(x_{\min}, x_{\text{new}})\};
                                                                           13
                                                                                    for all x_{near} \in X_{near} \setminus \{x_{min}\} do
                                                                           4
        the cost of other nodes near
                                                                                          if {\tt ObstacleFree}(x_{\tt new},x_{\tt near}) and
                                                                           15
                  the new node x_{new}
                                                                                          Cost(x_{near}) > Cost(x_{new}) + c(Line(x_{new}, x_{near}))
                                                                                          x_{\text{parent}} \leftarrow \texttt{Parent}(x_{\text{near}}); \\ E' \leftarrow E' \setminus \{(x_{\text{parent}}, x_{\text{near}})\}; \\ E' \leftarrow E' \cup \{(x_{\text{new}}, x_{\text{near}})\};
                                                                           6
                                                                           is return G' = (V', E')
```

borrowed from "Incremental Sampling-based Algorthms for Optimal Motion Planning" paper by S. Karaman & E. Frazzoli

```
Main loop

X_{near}: set of all vertices v in V s.t. they lie within radius r from x_{new}, where 
r = \min\left(\left(\frac{\gamma}{\delta} \frac{\log|V|}{|V|}\right)^{1/d}, \quad \mathcal{E} \right),
d - dimensionality of space, \delta - volume of unit hyperball, <math>\gamma - user defined constant
(V, E) \leftarrow
```

RRT* (unlike RRT) is asymptotically optimal: converges to an optimal solution in the limit of the number of samples

Checking 17

the cost of other nodes new.

the new node x_{new}

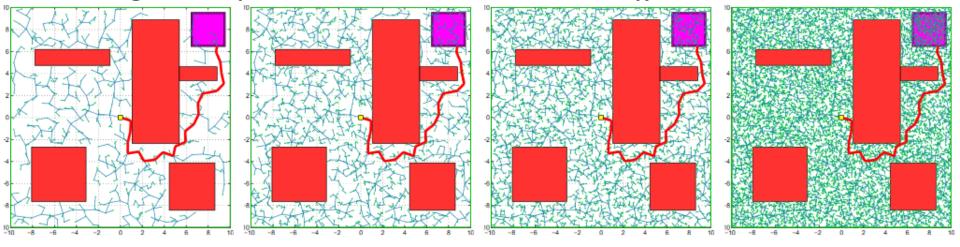
```
If UbstacleFree(x_{\mathrm{new}}, x_{\mathrm{near}}) and \operatorname{Cost}(x_{\mathrm{near}}) > \operatorname{Cost}(x_{\mathrm{new}}) + c(\operatorname{Line}(x_{\mathrm{new}}, x_{\mathrm{near}})) then \begin{bmatrix} x_{\mathrm{parent}} \leftarrow \operatorname{Parent}(x_{\mathrm{near}}); \\ E' \leftarrow E' \setminus \{(x_{\mathrm{parent}}, x_{\mathrm{near}})\}; \\ E' \leftarrow E' \cup \{(x_{\mathrm{new}}, x_{\mathrm{near}})\}; \end{bmatrix}
18 return G' = (V', E')
```

|U|.

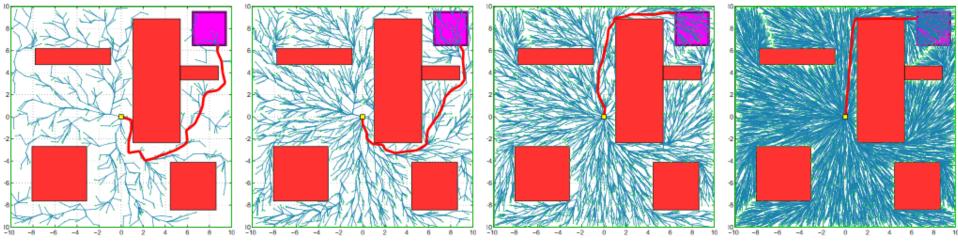
borrowed from "Incremental Sampling-based Algorithms for Optimal Motion Planning" paper by S. Karaman & E. Frazzoli

RRT vs RRT*

The growth of the RRT tree over time & its effect on the solution



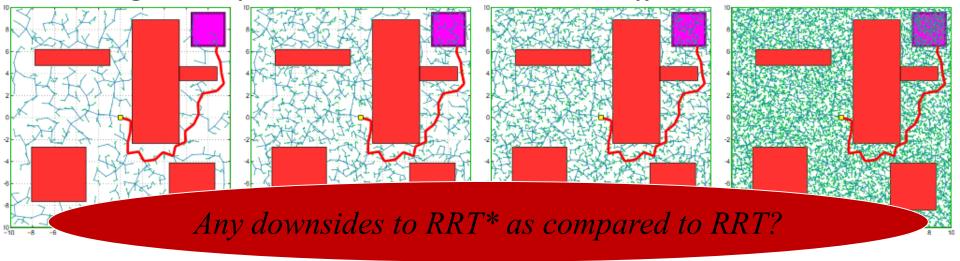
The growth of the RRT* tree over time & its effect on the solution



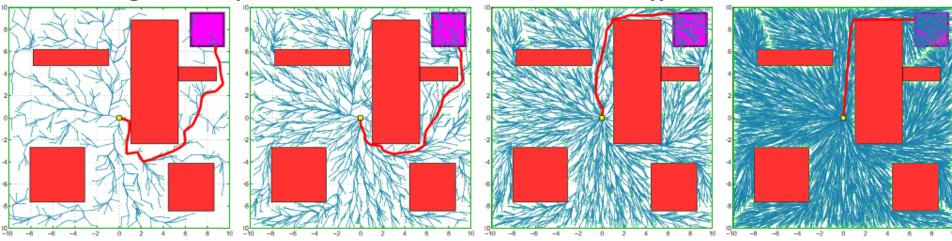
borrowed from "Incremental Sampling-based Algorithms for Optimal Motion Planning" paper by S. Karaman & E. Frazzoli

RRT vs RRT*

The growth of the RRT tree over time & its effect on the solution



The growth of the RRT* tree over time & its effect on the solution



borrowed from "Incremental Sampling-based Algorithms for Optimal Motion Planning" paper by S. Karaman & E. Frazzoli

What You Should Know...

- Pros and Cons of RRT, PRM, RRT-Connect, RRT*
- How RRT, RRT-Connect and RRT* operate
- What guarantees RRT/RRT* provide
- Simple shortcutting algorithm