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Probabilistic Roadmaps (PRMs)

Step 1. Preprocessing Phase: Build a roadmap (graph) G which, 

hopefully, should be accessible from any point in Cfree

Step 2. Query Phase: Given a start configuration qI and goal 

configuration qG, connect them to the roadmap G using a local planner, 

and then search the augmented roadmap for a shortest path from qI to 

qG

Great for problems where a planner 

has to plan many times for different start/goal pairs 

(step 1 needs to be done only once)

Not so great for single shot planning
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Rapidly Exploring Random Trees (RRTs) [LaValle, ’98]

No preprocessing step: starting with the initial configuration qI build the 

graph (actually, tree) until the goal configuration gG is part of it

Very effective for single shot planning



Carnegie Mellon University 4

Rapidly Exploring Random Trees (RRTs) [LaValle, ’98]

borrowed from“RRT-Connect: An Efficient Approach to Single-Query Path Planning” paper by J. Kuffner & S. LaValle

EXTEND operation
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Rapidly Exploring Random Trees (RRTs) [LaValle, ’98]

borrowed from“RRT-Connect: An Efficient Approach to Single-Query Path Planning” paper by J. Kuffner & S. LaValle

EXTEND operation

selects closest vertex in the tree

moves by at most ε

from qnear towards q

Path to the goal is a path in the tree 

from qinit to  the vertex closest to goal
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Rapidly Exploring Random Trees (RRTs) [LaValle, ’98]

borrowed from“RRT-Connect: An Efficient Approach to Single-Query Path Planning” paper by J. Kuffner & S. LaValle

• RRT provides uniform coverage of space
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Rapidly Exploring Random Trees (RRTs) [LaValle, ’98]

borrowed from“RRT-Connect: An Efficient Approach to Single-Query Path Planning” paper by J. Kuffner & S. LaValle

• RRT provides uniform coverage of space
Pros/cons?
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Rapidly Exploring Random Trees (RRTs) [LaValle, ’98]

borrowed from“RRT-Connect: An Efficient Approach to Single-Query Path Planning” paper by J. Kuffner & S. LaValle

• Alternatively, the growth is always biased by the largest unexplored region
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Rapidly Exploring Random Trees (RRTs) [LaValle, ’98]

borrowed from“RRT-Connect: An Efficient Approach to Single-Query Path Planning” paper by J. Kuffner & S. LaValle

• Alternatively, the growth is always biased by the largest unexplored region

Under what assumptions?
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RRT-Connect [Kuffner & LaValle, ‘00]

Bi-directional growth of the tree 

+

relax the ε constraint on the growth of the tree
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RRT-Connect [Kuffner & LaValle, ‘00]

borrowed from“RRT-Connect: An Efficient Approach to Single-Query Path Planning” paper by J. Kuffner & S. LaValle
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RRT-Connect [Kuffner & LaValle, ‘00]

borrowed from“RRT-Connect: An Efficient Approach to Single-Query Path Planning” paper by J. Kuffner & S. LaValle

tries to grow Tb to qnew

that was just added to Ta

CONNECT function grows the tree 

by more than just one ε

Why swap the trees?



Carnegie Mellon University 13

RRT-Connect [Kuffner & LaValle, ‘00]

• For any q Є Cfree, limk→∞ P[d(q) < ε] = 1, where d(q) is a 

distance from configuration q to the closest vertex in the 

tree, and assuming Cfree is connected, bounded and open

• RRT-Connect is probabilistically complete: as # of samples 

approaches infinity, the algorithm is guaranteed to find a 

solution if one exists
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RRT-Connect [Kuffner & LaValle, ‘00]

• For any q Є Cfree, limk→∞ P[d(q) < ε] = 1, where d(q) is a 

distance from configuration q to the closest vertex in the 

tree, and assuming Cfree is connected, bounded and open

• RRT-Connect is probabilistically complete: as # of samples 

approaches infinity, the algorithm is guaranteed to find a 

solution if one exists

Is RRT-Connect asymptotically (as k→∞) optimal?

No, more on this later
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RRT-Connect [Kuffner & LaValle, ‘00]

• For any q Є Cfree, limk→∞ P[d(q) < ε] = 1, where d(q) is a 

distance from configuration q to the closest vertex in the 

tree, and assuming Cfree is connected, bounded and open

• RRT-Connect is probabilistically complete: as # of samples 

approaches infinity, the algorithm is guaranteed to find a 

solution if one exists

Applicability of RRT vs. RRT-Connect to 

kinodynamic planning?
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Sampling-based approaches

Typical setup:

• Run PRM/RRT/RRT-Connect/…

• Post-process the generated solution to make it more 

optimal

An important but

often time-consuming step

Could also be highly non-trivial
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Post-processing

17

Any ideas how to post-process it?

Consider this path generated by RRT or PRM or A* on a grid-based graph:
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Simple Post-processing via Short-cutting

• Short-cutting a path consisting of a series of points

18

NewPath=[]; P=start point, P1 = point P+1 along the path

while P != goal point

while line segment [P,P1+1] is obstacle-free AND P1+1 < goal point

P1 = point P1+1 along the path;

NewPath+= [P,P1]; P = P1; P1 = point P+1 along the path;
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Simple Post-processing via Short-cutting

• Short-cutting a path consisting of a series of points
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NewPath=[]; P=start point, P1 = point P+1 along the path

while P != goal point

while line segment [P,P1+1] is obstacle-free AND P1+1 < goal point

P1 = point P1+1 along the path;

NewPath+= [P,P1]; P = P1; P1 = point P+1 along the path;

P

P1
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Simple Post-processing via Short-cutting

• Short-cutting a path consisting of a series of points
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Simple Post-processing via Short-cutting

• Short-cutting a path consisting of a series of points
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Examples of RRT in action

borrowed from“RRT-Connect: An Efficient Approach to Single-Query Path Planning” paper by J. Kuffner & S. LaValle

RRT-connect path after postprocessing
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Examples of RRT in action

borrowed from“RRT-Connect: An Efficient Approach to Single-Query Path Planning” paper by J. Kuffner & S. LaValle

RRT-connect path after postprocessing
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Examples of RRT in action

borrowed from“RRT-Connect: An Efficient Approach to Single-Query Path Planning” paper by J. Kuffner & S. LaValle

RRT-connect path after postprocessing
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Examples of RRT

borrowed from“Rapidly-Exploring Random Trees: A new tool for Path Planning” paper by S. LaValle

5DOF kinodynamic planning for a car
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PRMs vs. RRTs

• PRMs construct a roadmap and then searches it for a 

solution whenever qI, gG are given

– well-suited for repeated planning in between different pairs of qI, 

gG (multiple queries)

• RRTs construct a tree for a given qI, qG until the tree has a 

solution

– well-suited for single-shot planning in between a single pair of qI, 

gG (single query)

– There exist extensions of RRTs that try to reuse a previously 

constructed tree when replanning in response to map updates
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RRTs vs A*-based planning

• RRTs: 

– sparse exploration, usually little memory and computations 

required, works well in high-D

– solutions can be highly sub-optimal, requires post-processing, 

which in some cases can be very hard to do, the solution is still 

restricted to the same homotopic class

RRT A* wA* with ε = 3
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RRTs vs A*-based planning

• RRTs: 

– does not incorporate a (potentially complex) cost function

– there exist versions (e.g., RRT*) that try to incorporate the cost 

function and converge to a provably least-cost solution in the limit 

of samples (but typically computationally more expensive than 

RRT)

RRT A* wA* with ε = 3
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RRTs vs A*-based planning

• A* and weighted A* (wA*): 

– returns a solution with optimality (or sub-optimality) guarantees 

with respect to the discretization used

– explicitly minimizes a cost function

– requires a thorough exploration of the state-space resulting in high 

memory and computational requirements

RRT A* wA* with ε = 3
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Sampling in RRTs

• Uniform: qrand is a random sample in Cfree

• Goal-biased: with a probability (1-Pg), qrand is chosen as a 

random sample in Cfree, with probability Pg, qrand is set to gG

RRT, Pg=0 RRT, Pg=0.1 RRT, Pg=0.5
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Sampling in RRTs

• Uniform: qrand is a random sample in Cfree

• Goal-biased: with a probability (1-Pg), qrand is chosen as a 

random sample in Cfree, with probability Pg, qrand is set to gG

RRT, Pg=0 RRT, Pg=0.1 RRT, Pg=0.5

Very useful!
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RRT* [Karaman & Frazzoli, ‘06]

RRT 

+ 

“re-wiring of nodes”
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Properties of RRT again…

Is RRT 

asymptotically (in the limit of the number of samples) complete?

Is RRT 

asymptotically (in the limit of the number of samples) optimal?

Why?
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RRT* [Karaman & Frazzoli, ‘06]

borrowed from“Incremental Sampling-based Algorthms for Optimal Motion Planning” paper by S. Karaman & E. Frazzoli

Main loop (same as in RRT): Extend(G,x) (same as in RRT + “re-wiring”):



Carnegie Mellon University 37

RRT* [Karaman & Frazzoli, ‘06]

borrowed from“Incremental Sampling-based Algorthms for Optimal Motion Planning” paper by S. Karaman & E. Frazzoli

Main loop (same as in RRT): Extend(G,x) (same as in RRT + “re-wiring”):

Re-wiring:

Checking if we can improve (re-wire) 

the cost of other nodes near 

the new node xnew
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RRT* [Karaman & Frazzoli, ‘06]

borrowed from“Incremental Sampling-based Algorthms for Optimal Motion Planning” paper by S. Karaman & E. Frazzoli

Main loop (same as in RRT): Extend(G,x) (same as in RRT + “re-wiring”):

Re-wiring:

Checking if we can improve (re-wire) 

the cost of other nodes near 

the new node xnew

Ɛ
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RRT* [Karaman & Frazzoli, ‘06]

borrowed from“Incremental Sampling-based Algorthms for Optimal Motion Planning” paper by S. Karaman & E. Frazzoli

Main loop (same as in RRT): Extend(G,x) (same as in RRT + “re-wiring”):

Re-wiring:

Checking if we can improve (re-wire) 

the cost of other nodes near 

the new node xnew

RRT* (unlike RRT) is asymptotically optimal: 

converges to an optimal solution in the limit of the number of samples

Ɛ
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RRT vs RRT*

borrowed from“Incremental Sampling-based Algorthms for Optimal Motion Planning” paper by S. Karaman & E. Frazzoli

The growth of the RRT tree over time & its effect on the solution

The growth of the RRT* tree over time & its effect on the solution
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RRT vs RRT*

borrowed from“Incremental Sampling-based Algorthms for Optimal Motion Planning” paper by S. Karaman & E. Frazzoli

The growth of the RRT tree over time & its effect on the solution

The growth of the RRT* tree over time & its effect on the solution

Any downsides to RRT* as compared to RRT?



• Pros and Cons of RRT, PRM, RRT-Connect, RRT*

• How RRT, RRT-Connect and RRT* operate

• What guarantees RRT/RRT* provide

• Simple shortcutting algorithm

What You Should Know…
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