16-350

Planning Techniques for Robotics

Case Study: Planning for Mobile Manipulation and Articulated Robots

Maxim Likhachev Robotics Institute Carnegie Mellon University

Two Examples

- Planning for Mobile Manipulation
- Planning for Articulated Robots

Two Examples

- Planning for Mobile Manipulation
- Planning for Articulated Robots

Robotic Bartender Demo ([Phillips et al.])

• Robot takes in a command from User Interface as to what soda can and snack to deliver

Graph for Navigation with Complex 3D Body [Hornung et al., '12]

- 3D (*x,y,θ*) lattice-based graph representation for full-body collision checking
	- takes set of motion primitives as input
	- takes *N* footprints of the robot defined as polygons as input
	- each footprint corresponds to the projection of a part of the body onto x,y plane
	- collision checking/cost computation is done for each footprint at the corresponding projection of the 3D map

Graph for Navigation with Complex 3D Body [Hornung et al., '12]

- 3D (*x,y,θ*) lattice-based graph representation for full-body collision checking
	- takes set of motion primitives as input
	- takes *N* footprints of the robot defined as polygons as input
	- each footprint corresponds to the projection of a part of the body onto x,y plane
	- collision checking/cost computation is done for each footprint at the corresponding projection of the 3D map

Two Examples

- Planning for Mobile Manipulation
- Planning for Articulated Robots

Little Dog Demo [Vernaza et al., '09]

- Little Dog robot needs to traverse a fully-known terrain
- Planning
	- Plans footsteps first with an anytime variant of A^*
	- Compute COM of the robot afterwards to support execution

Footstep Planner [Vernaza et al., '09]

Assumptions of the planner:

- Only one leg lifted at a time to ensure static stability
- Center of mass shifts during quadsupport phase to prevent tipping
- Footholds chosen deliberately to maximize stability

Footstep Planner [Vernaza et al., '09]

Planner builds Graph:

Implicit or explicit graph?

- **Node (stance):** 9-dimensional foothold configuration
	- feet positions and current gait phase
- **Edge: feasible transition between stances**
- **Edge costs** for transitions computed based on risk, anticipated delay

Footstep Planner [Vernaza et al., '09]

Planner builds (implicit) Graph:

Requires definition of:

GetSuccessors(state S)

GetCost(state S, state S')

- **Node (stance): 9-dime.** configuration
	- feet positions and current gait phase
- **Edge: feasible transition between stances**
- **Edge costs** for transitions computed based on risk, anticipated delay

Implementation of *GetSuccessors(s)* Function

$$
\begin{array}{c}\n\text{S} \\
\text{S} \\
\text
$$

- Finite set of good quality candidate footholds selected prior to planning
- Valid stances are kinematically feasible 4-tuples of candidate footholds
- Successors of a given stance computed by:
	- determining reachable candidate footholds that result in a valid stance

Edgecosts are weighted sum of:

- Edgecosts are weighted sum of:
	- **Overhead**
		- Fixed cost per step
	- **Center of mass travel**
		- Discourages backwards motion of COM
	- **Incircle radius**
		- Farthest distance from interior to exterior of support triangle

- Edgecosts are weighted sum of:
	- **Collision**
		- Risk of body/foot colliding with terrain
	- **Foot height variance**
		- Encourages robot to stay level

- Edgecosts are weighted sum of:
	- **Reachability**
		- Robot's ability to reach next foothold, switch to next support triangle without dragging feet

Terrain slope

 Ensures terrain slope supports direction of motion

Terrain cost

 Considers slippage potential given terrain

Lots of features make up the cost function.

- Edgecosts are weighted sum of:
	- **Reachability**
		- Robot's ability to *Fine tuning them is not fun* \odot support triangle without

Terrain slope

 Ensures terrain slope supports direction of motion

Terrain cost

 Considers slippage potential given terrain

- Edgecosts are weighted sum of:
	- **Reachability**
		- support triangle without

• Robot's ability to *Fine tuning them is not fun* \odot *Lots of features make up the cost function.*

1000

- **Terrain slope**
	- Ensures terrain sl direction

There are ways to learn them but this is a topic for an advanced class

- **Terrain cost**
	- Considers slippage potential given terrain

Sometimes smart but often stupid

Search-based planning for a legged robot over rough terrain

Paul Vernaza, Maxim Likhachev, Subhrajit Bhattacharya, Sachin Chitta*, Aleksandr Kushleyev, Daniel D. Lee

GRASP Laboratory University of Pennsylvania

*Willow Garage, Inc.

no footstep planning

What You Should Know…

- Typical pipeline for mobile manipulation
- Use of multiple planners for mobile manipulation
- Factors and cost terms involved when planning locomotion for articulated robots (e.g., quadrupeds and humanoids)