16-350 Planning Techniques for Robotics

Planning Representations: Lattice-based Graphs

Maxim Likhachev Robotics Institute Carnegie Mellon University

What's wrong with using Grid-based Graphs when planning for non-omnidirectional robots?

What's wrong with using Grid-based Graphs when planning for non-omnidirectional robots?

"Can't turn in place"

e.g., constraints on turning rate (rate of change in wheel orientation) and inertial constraints (kinodynamic planning)

What's wrong with using Grid-based Graphs when planning for non-omnidirectional robots?

"Can't turn in place"

e.g., constraints on turning rate (rate of change in wheel orientation) and inertial constraints (kinodynamic planning)

Kinodynamic planning: Planning representation includes $\{X, \dot{X}\}$, where X-configuration and \dot{X} -derivative of X (dynamics of X)

 (x,y,Θ,v) planning with Anytime D* (Anytime Incremental A*) on Lattice Graphs

 (x,y,Θ) planning with ARA*-based algorithm on Lattice Graphs

Joint work with V. Kumar (Upenn), I. Kaminer (NPS) and V. Dobrokhodov (NPS) [thakur et al., '13]

- Graph $\{V, E\}$ where
 - -V: centers of the grid-cells
 - E: motion primitives that connect centers of cells via short-term **feasible** motions

each transition is feasible (typically, constructed beforehand)

motion primitives

outcome state is the center of the corresponding cell in a grid

- Graph {V, E} where
 - -V: centers of the grid-cells
 - E: motion primitives that connect centers of cells via short-term **feasible** motions

- Graph $\{V, E\}$ where
 - -V: centers of the grid-cells
 - E: motion primitives that connect centers of cells via short-term **feasible** motions

- Graph $\{V, E\}$ where
 - -V: centers of the grid-cells
 - E: motion primitives that connect centers of cells via short-term **feasible** motions

• **Board example** for (x, y, Θ) planning for a unicycle model (minimum turning radius)

• What are Lattice graphs and how they get constructed