16-350

Planning Techniques for Robotics

Planning under Uncertainty: Solving Markov Decision Processes

Maxim Likhachev

Robotics Institute

Carnegie Mellon University

- Optimal policy *π**: minimizes the *expected* cost-to-goal *π* = argmin^π E{cost-to-goal}*
- Let *v*(s)* be minimal expected cost-to-goal for state *s*

• Optimal policy *π**:

 $\pi^*(s) = \argmin_{a} E\{c(s, a, s') + v^*(s')\}$ *(expectation over outcomes s' of action a executed at state s)*

• Optimal expected cost-to-goal values *v** satisfy: $v^*(s_{goal})=0$ $v^*(s) = min_a E\{c(s, a, s') + v^*(s')\}$ *for all* $s \neq s_{goal}$ *(expectation over outcomes s' of action a executed at state s)*

Bellman optimality equation

• Value Iteration (VI):

$$
v(s_{goal}) = 0
$$

$$
v(s) = min_a E{c(s, a, s') + v(s')} for any s \neq s_{goal}
$$

• Value Iteration (VI):

Initialize *v*-values of all states to finite values; Iterate over all *s* in MDP and re-compute until convergence:

$$
v(s_{goal}) = 0
$$

$$
v(s) = min_a E{c(s,a,s') + v(s') } for any s \neq s_{goal}
$$

Bellman update equation (or backup)

• Value Iteration (VI):

best to initialize to admissible values (under-estimates of the actual costs-to-goal)

Initialize *v*-values of all states to finite values; Iterate over all *s* in MDP and re-compute until convergence:

$$
v(s_{goal}) = 0
$$

$$
v(s) = min_a E{c(s, a, s') + v(s')} for any s \neq s_{goal}
$$

converges to an optimal value function $(v(s)=v^*(s)$ for all s) *for any iteration order*

the speed of convergence depends on iteration order

• Value Iteration (VI):

best to initialize to admissible values (under-estimates of the actual costs-to-goal)

Initialize *v*-values of all states to finite values; Iterate over all *s* in MDP and re-compute until convergence:

$$
v(s_{goal}) = 0
$$

$$
v(s) = min_a E{c(s, a, s') + v(s')} for any s \neq s_{goal}
$$

converges to an optimal value function $(v(s)=v^*(s)$ for all s) *for any iteration order*

the speed of convergence depends on iteration order

• Value Iteration (VI):

$$
v(s_{goal}) = 0
$$

$$
v(s) = min_a E{c(s, a, s') + v(s') } for any s \neq s_{goal}
$$

• Value Iteration (VI):

$$
v(s_{goal}) = 0
$$

$$
v(s) = min_a E{c(s, a, s') + v(s') } for any s \neq s_{goal}
$$

• Value Iteration (VI):

$$
v(s_{goal}) = 0
$$

$$
v(s) = min_a E{c(s, a, s') + v(s') } for any s \neq s_{goal}
$$

• Value Iteration (VI):

$$
v(s_{goal}) = 0
$$

$$
v(s) = min_a E{c(s, a, s') + v(s') } for any s \neq s_{goal}
$$

• Value Iteration (VI):

$$
v(s_{goal}) = 0
$$

$$
v(s) = min_a E{c(s, a, s') + v(s') } for any s \neq s_{goal}
$$

• Value Iteration (VI):

Initialize *v*-values of all states to finite values; Iterate over all *s* in MDP and re-compute until convergence:

$$
v(s_{goal}) = 0
$$

$$
v(s) = min_a E{c(s,a,s') + v(s')\ for any s \neq s_{goal}
$$

• Value Iteration (VI):

Initialize *v*-values of all states to finite values; Iterate over all *s* in MDP and re-compute until convergence:

$$
v(s_{goal}) = 0
$$

$$
v(s) = min_a E{c(s,a,s') + v(s')\ for any s \neq s_{goal}
$$

• Value Iteration (VI):

Initialize *v*-values of all states to finite values; Iterate over all *s* in MDP and re-compute until convergence:

$$
v(s_{goal}) = 0
$$

$$
v(s) = min_a E{c(s,a,s') + v(s')\ for any s \neq s_{goal}
$$

• Value Iteration (VI):

Initialize *v*-values of all states to finite values; Iterate over all *s* in MDP and re-compute until convergence:

$$
v(s_{goal}) = 0
$$

$$
v(s) = min_a E{c(s, a, s') + v(s') } for any s \neq s_{goal}
$$

• Value Iteration (VI):

Initialize *v*-values of all states to finite values; Iterate over all *s* in MDP and re-compute until convergence:

$$
v(s_{goal}) = 0
$$

$$
v(s) = min_a E{c(s,a,s') + v(s')\ for any s \neq s_{goal}
$$

• Value Iteration (VI):

Initialize *v*-values of all states to finite values; Iterate over all *s* in MDP and re-compute until convergence:

$$
v(s_{goal}) = 0
$$

$$
v(s) = min_a E{c(s,a,s') + v(s')} for any s \neq s_{goal}
$$

• Value Iteration (VI):

Initialize *v*-values of all states to finite values; Iterate over all *s* in MDP and re-compute until convergence:

$$
v(s_{goal}) = 0
$$

$$
v(s) = min_a E{c(s,a,s') + v(s')\ for any s \neq s_{goal}
$$

• Value Iteration (VI):

Initialize *v*-values of all states to finite values; Iterate over all *s* in MDP and re-compute until convergence:

$$
v(s_{goal}) = 0
$$

$$
v(s) = min_a E{c(s,a,s') + v(s')\ for any s \neq s_{goal}
$$

• Value Iteration (VI):

Initialize *v*-values of all states to finite values; Iterate over all *s* in MDP and re-compute until convergence:

$$
v(s_{goal}) = 0
$$

$$
v(s) = min_a E{c(s, a, s') + v(s')} for any s \neq s_{goal}
$$

• Value Iteration (VI):

Initialize *v*-values of all states to finite values; Iterate over all *s* in MDP and re-compute until convergence:

$$
v(s_{goal}) = 0
$$

$$
v(s) = min_a E{c(s,a,s') + v(s')\ for any s \neq s_{goal}
$$

• Value Iteration (VI):

Initialize *v*-values of all states to finite values; Iterate over all *s* in MDP and re-compute until convergence:

$$
v(s_{goal}) = 0
$$

$$
v(s) = min_a E{c(s,a,s') + v(s')\ for any s \neq s_{goal}
$$

At convergence…

• Value Iteration (VI):

Initialize *v*-values of all states to finite values; Iterate over all *s* in MDP and re-compute until convergence:

$$
v(s_{goal}) = 0
$$

$$
v(s) = min_a E{c(s, a, s') + v(s')} for any s \neq s_{goal}
$$

At convergence… (assuming goal is reachable from every state) VI converges in finite number of iterations

• Value Iteration (VI):

Initialize ν -values of all states to f Iterate over all *s* in MDP and re-compute until convergence: *Why condition?*

$$
v(s_{goal}) = 0
$$

$$
v(s) = min_a E{c(s, a, s') + v(s') } for any s \neq s_{goal}
$$

At convergence… (assuming goal is reachable from every state) VI converges in finite number of iterations

• Value Iteration (VI):

Initialize *v*-values of all states to f^* H_{QM} me Iterate over all s in MDP and r_{measured} in α or each suite $v(s_{\text{goal}}) = 0$ $\nu(s) = \min_a E\{c(s, a, s') + \nu(s')\}$ *Jo. SLOCHUSIIC How many backups required in a graph with no stochastic actions?*

- Real-time Dynamic Programming (RTDP)
	- very popular alternative to Value Iteration
	- does NOT compute values of all states
	- focusses computations on states that are relevant
	- typically, **much more efficient than Value Iteration**

• RTDP:

Initialize *v*-values of all states to admissible values;

1. Follow greedy policy picking outcomes at random until goal is reached;

2. Backup all states visited on the way;

• RTDP:

Initialize *v*-values of all states to admissible values;

1. Follow greedy policy picking outcomes at random until goal is reached;

2. Backup all states visited on the way;

RTDP converges in finite number of iterations (assuming goal is reachable from every state)

• RTDP:

Why condition?

Initialize *v*-values of all states to admissible values,

1. Follow greedy policy picking outcomes at random until goal is reached;

2. Backup all states visited on the way;

• RTDP:

Initialize *v*-values of all states to admissible values;

1. Follow greedy policy picking outcomes at random until goal is reached;

2. Backup all states visited on the way;

Rewards version of MDPs

- Suppose we have a Trash Collecting robot
	- its task is to go around the room and pick-up trash
	- if battery is dead, it can't move anymore
	- available actions:
		- Look for trash (takes 1 min) and discovers trash with probability 0.4
		- Pick-up trash (takes 1 min), and receive reward of 100 units
		- Re-charge (takes 1 min). Battery level goes back to full 3 mins if successful with probability 0.9 (there is a chance that re-charge is not successful)

Markov Decision Processes, REWARDS version

- Optimal expected reward values *v** satisfy: $v^*(s) = max_a E\{r(s, a, s') + \gamma v^*(s')\}$ for all *s (expectation over outcomes s' of action a executed at state s)*
- Optimal policy *π**: $\pi^{*}(s) = argmax_{a} E\{r(s, a, s') + \gamma v^{*}(s')\}$
- Computing optimal *v**-values via value iteration (VI): *re-compute* $v(s) = max_a E\{r(s, a, s') + \gamma v(s')\}$ *until convergence*

Markov Decision Processes, REWARDS version

- Optimal expected reward values *v** satisfy: $v^*(s) = max_a E\{r(s, a, s') + \gamma v^*(s')\}$ for all *s (expectation over outcomes s' of action a executed at state s)*
- Optimal policy *π**: $\pi^{*}(s) = argmax_{a} E\{r(s, a, s') + \gamma v^{*}(s')\}$
- Computing optimal *v**-values via value iteration (VI): *re-compute* $v(s) = max_a E\{r(s, a, s') + \gamma v(s')\}$ *until convergence*

What You Should Know…

- Operation of Value Iteration (VI) and its properties
- Operation of RTDP and its properties
- RTDP vs. VI
- Rewards formulation of MDPs and when it should be used