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• Let v*(s) be minimal expected cost-to-goal for state s

• Optimal policy π*:

minimizes the expected cost-to-goal

π* = argminπ E{cost-to-goal}
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Why?

• Optimal policy π*:

π*(s) = argmina E{c(s,a,s’)+v*(s’)}
(expectation over outcomes s’ of action a executed at state s)
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• Optimal expected cost-to-goal values v* satisfy:

v*(sgoal)=0

v*(s) = mina E{c(s,a,s’)+v*(s’)} for all s ≠ sgoal

(expectation over outcomes s’ of action a executed at state s)

Bellman optimality equation
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• Value Iteration (VI):

Initialize v-values of all states to finite values;

Iterate over all s in MDP and re-compute until convergence:

v(sgoal) = 0

v(s) = mina E{c(s,a,s’)+v(s’)} for any s ≠ sgoal
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• Value Iteration (VI):

Initialize v-values of all states to finite values;

Iterate over all s in MDP and re-compute until convergence:

v(sgoal) = 0

v(s) = mina E{c(s,a,s’)+v(s’)} for any s ≠ sgoal

Bellman update equation 

(or backup)
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• Value Iteration (VI):

Initialize v-values of all states to finite values;

Iterate over all s in MDP and re-compute until convergence:

v(sgoal) = 0

v(s) = mina E{c(s,a,s’)+v(s’)} for any s ≠ sgoal

best to initialize to admissible values 

(under-estimates of the actual costs-to-goal)

converges to an optimal value function

(v(s)=v*(s) for all s) 

for any iteration order

the speed of convergence

depends on iteration order
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• Value Iteration (VI):

Initialize v-values of all states to finite values;

Iterate over all s in MDP and re-compute until convergence:

v(sgoal) = 0

v(s) = mina E{c(s,a,s’)+v(s’)} for any s ≠ sgoal

best to initialize to admissible values 

(under-estimates of the actual costs-to-goal)

converges to an optimal value function

(v(s)=v*(s) for all s) 

for any iteration order

the speed of convergence

depends on iteration order

Any ideas for the order?
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Initialize v-values of all states to finite values;
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• Value Iteration (VI):

Initialize v-values of all states to finite values;

Iterate over all s in MDP and re-compute until convergence:
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• Value Iteration (VI):

Initialize v-values of all states to finite values;

Iterate over all s in MDP and re-compute until convergence:

v(sgoal) = 0

v(s) = mina E{c(s,a,s’)+v(s’)} for any s ≠ sgoal
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• Value Iteration (VI):

Initialize v-values of all states to finite values;

Iterate over all s in MDP and re-compute until convergence:

v(sgoal) = 0

v(s) = mina E{c(s,a,s’)+v(s’)} for any s ≠ sgoal

v=0

v=2

v=1v=4
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after backing up sstart

Usual convergence condition: Bellman error over all states < ∆

Bellman error: |v(s) - mina E{c(s,a,s’)+v(s’)}| for any s ≠ sgoal
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• Value Iteration (VI):

Initialize v-values of all states to finite values;

Iterate over all s in MDP and re-compute until convergence:
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v(s) = mina E{c(s,a,s’)+v(s’)} for any s ≠ sgoal

v=0
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v=1v=4
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v=2
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Usual convergence condition: Bellman error over all states < ∆

Bellman error: |v(s) - mina E{c(s,a,s’)+v(s’)}| for any s ≠ sgoal
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• Value Iteration (VI):

Initialize v-values of all states to finite values;

Iterate over all s in MDP and re-compute until convergence:

v(sgoal) = 0

v(s) = mina E{c(s,a,s’)+v(s’)} for any s ≠ sgoal

v=0

v=2.1

v=1v=4

v=4.1

v=2

after backing up s2

Usual convergence condition: Bellman error over all states < ∆

Bellman error: |v(s) - mina E{c(s,a,s’)+v(s’)}| for any s ≠ sgoal
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• Value Iteration (VI):

Initialize v-values of all states to finite values;

Iterate over all s in MDP and re-compute until convergence:

v(sgoal) = 0

v(s) = mina E{c(s,a,s’)+v(s’)} for any s ≠ sgoal

v=0

v=2.1

v=1v=4

v=4.1

v=2

backing up s3 and s4 has no 

effect since their Bellman 

errors are zero

Usual convergence condition: Bellman error over all states < ∆

Bellman error: |v(s) - mina E{c(s,a,s’)+v(s’)}| for any s ≠ sgoal



Maxim Likhachev 18

Computing Expected Cost Minimal Plans

Carnegie Mellon University

S2 S1

Sgoal

2

c(s1,a1,sgoal) = 2

S4 S3

3

1

Sstart

1

1

a1 P(sgoal|s1,a1)=0.9

P(sgoal|s1,a1)=0.1
c(s1,a1,s2) = 2

• Value Iteration (VI):

Initialize v-values of all states to finite values;

Iterate over all s in MDP and re-compute until convergence:

v(sgoal) = 0

v(s) = mina E{c(s,a,s’)+v(s’)} for any s ≠ sgoal

v=0

v=2.1

v=1v=4

v=4.1

v=5.1

after backing up sstart

Usual convergence condition: Bellman error over all states < ∆

Bellman error: |v(s) - mina E{c(s,a,s’)+v(s’)}| for any s ≠ sgoal
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• Value Iteration (VI):

Initialize v-values of all states to finite values;

Iterate over all s in MDP and re-compute until convergence:
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v(s) = mina E{c(s,a,s’)+v(s’)} for any s ≠ sgoal
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v=2.41

v=1v=4

v=4.1

v=5.1

after backing up s1

Usual convergence condition: Bellman error over all states < ∆

Bellman error: |v(s) - mina E{c(s,a,s’)+v(s’)}| for any s ≠ sgoal
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v=0

v=2.41

v=1v=4

v=4.41

v=5.1

after backing up s2

Usual convergence condition: Bellman error over all states < ∆

Bellman error: |v(s) - mina E{c(s,a,s’)+v(s’)}| for any s ≠ sgoal
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• Value Iteration (VI):

Initialize v-values of all states to finite values;

Iterate over all s in MDP and re-compute until convergence:
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v(s) = mina E{c(s,a,s’)+v(s’)} for any s ≠ sgoal
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Usual convergence condition: Bellman error over all states < ∆

Bellman error: |v(s) - mina E{c(s,a,s’)+v(s’)}| for any s ≠ sgoal
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• Value Iteration (VI):

Initialize v-values of all states to finite values;

Iterate over all s in MDP and re-compute until convergence:
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v(s) = mina E{c(s,a,s’)+v(s’)} for any s ≠ sgoal

v=0

v=2.441

v=1v=4

v=4.41

v=5.41

after backing up s1

Usual convergence condition: Bellman error over all states < ∆

Bellman error: |v(s) - mina E{c(s,a,s’)+v(s’)}| for any s ≠ sgoal
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Usual convergence condition: Bellman error over all states < ∆

Bellman error: |v(s) - mina E{c(s,a,s’)+v(s’)}| for any s ≠ sgoal
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• Value Iteration (VI):

Initialize v-values of all states to finite values;

Iterate over all s in MDP and re-compute until convergence:

v(sgoal) = 0

v(s) = mina E{c(s,a,s’)+v(s’)} for any s ≠ sgoal

v=0

v=2.44444…

v=1v=4

v=4.44444…

v=5.44444…

every iteration computes 

one more decimal point 

At convergence…

Usual convergence condition: Bellman error over all states < ∆

Bellman error: |v(s) - mina E{c(s,a,s’)+v(s’)}| for any s ≠ sgoal
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• Value Iteration (VI):

Initialize v-values of all states to finite values;

Iterate over all s in MDP and re-compute until convergence:
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v=0

v=2.44444…

v=1v=4

v=4.44444…

v=5.44444…

every iteration computes 

one more decimal point 

At convergence…

Usual convergence condition: Bellman error over all states < ∆

Bellman error: |v(s) - mina E{c(s,a,s’)+v(s’)}| for any s ≠ sgoal

optimal policy is given by greedy policy:

always select an action that minimizes

E{c(s,a,s’)+v(s’)}

expected cost of executing greedy policy is at most: 

v*(sstart)cmin/(cmin-∆)

where cmin is minimum edge cost



Maxim Likhachev 27

Computing Expected Cost Minimal Plans

Carnegie Mellon University

S2 S1

Sgoal

2

c(s1,a1,sgoal) = 2

S4 S3

3

1

Sstart

1

1

a1 P(sgoal|s1,a1)=0.9

P(sgoal|s1,a1)=0.1
c(s1,a1,s2) = 2

• Value Iteration (VI):

Initialize v-values of all states to finite values;

Iterate over all s in MDP and re-compute until convergence:
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v(s) = mina E{c(s,a,s’)+v(s’)} for any s ≠ sgoal

v=0

v=2.44444…

v=1v=4

v=4.44444…

v=5.44444…

every iteration computes 

one more decimal point 

At convergence…

Usual convergence condition: Bellman error over all states < ∆

Bellman error: |v(s) - mina E{c(s,a,s’)+v(s’)}| for any s ≠ sgoal

VI converges in finite number of iterations 

(assuming goal is reachable from every state)

Why condition?
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• Value Iteration (VI):

Initialize v-values of all states to finite values;

Iterate over all s in MDP and re-compute until convergence:

v(sgoal) = 0

v(s) = mina E{c(s,a,s’)+v(s’)} for any s ≠ sgoal

v=0

v=2.44444…

v=1v=4

v=4.44444…

v=5.44444…

every iteration computes 

one more decimal point 

At convergence…

Usual convergence condition: Bellman error over all states < ∆

Bellman error: |v(s) - mina E{c(s,a,s’)+v(s’)}| for any s ≠ sgoal

VI converges in finite number of iterations 

(assuming goal is reachable from every state)

How many backups 

required in a graph with no 

stochastic actions?
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• Real-time Dynamic Programming (RTDP)
- very popular alternative to Value Iteration

- does NOT compute values of all states

- focusses computations on states that are relevant

- typically, much more efficient than Value Iteration

v=0

v=2.44444…

v=1v=4

v=4.44444…

v=5.44444…
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• RTDP:

Initialize v-values of all states to admissible values;

1. Follow greedy policy picking outcomes at random until goal

is reached;

2. Backup all states visited on the way;

3. Reset to sstart and repeat 1-3 until all states on the current

greedy policy have Bellman errors < ∆;

v=0

v=2.44444…

v=1v=4

v=4.44444…

v=5.44444…
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Initialize v-values of all states to admissible values;

1. Follow greedy policy picking outcomes at random until goal

is reached;

2. Backup all states visited on the way;

3. Reset to sstart and repeat 1-3 until all states on the current

greedy policy have Bellman errors < ∆;

v=0

v=2.44444…

v=1v=4

v=4.44444…

v=5.44444…

For any state s, picking action a that 

minimizes E{c(s,a,s’)+v(s’)}

Picking successor state s’ at random 

according to probability P(s’|a,s) 

Updating v(s) = minaE{c(s,a,s’)+v(s’)} 
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Computing Expected Cost Minimal Plans with RTDP
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S2 S1

Sgoal

2

c(s1,a1,sgoal) = 2

S4 S3

3

1

Sstart

1

1

a1 P(sgoal|s1,a1)=0.9

P(sgoal|s1,a1)=0.1
c(s1,a1,s2) = 2

• RTDP:

Initialize v-values of all states to admissible values;

1. Follow greedy policy picking outcomes at random until goal

is reached;

2. Backup all states visited on the way;

3. Reset to sstart and repeat 1-3 until all states on the current

greedy policy have Bellman errors < ∆;

v=0

v=2.44444…

v=1v=4

v=4.44444…

v=5.44444…

RTDP focusses its backups on what is 

relevant to the optimal plan rather than computing

ALL state values (what VI does)
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Computing Expected Cost Minimal Plans with RTDP
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S2 S1

Sgoal

2

c(s1,a1,sgoal) = 2

S4 S3

3

1

Sstart

1

1

a1 P(sgoal|s1,a1)=0.9

P(sgoal|s1,a1)=0.1
c(s1,a1,s2) = 2

• RTDP:

Initialize v-values of all states to admissible values;

1. Follow greedy policy picking outcomes at random until goal

is reached;

2. Backup all states visited on the way;

3. Reset to sstart and repeat 1-3 until all states on the current

greedy policy have Bellman errors < ∆;

v=0

v=2.44444…

v=1v=4

v=4.44444…

v=5.44444…

RTDP converges in finite number of iterations 

(assuming goal is reachable from every state)

Why condition?
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Computing Expected Cost Minimal Plans with RTDP

Carnegie Mellon University

S2 S1

Sgoal

2

c(s1,a1,sgoal) = 2

S4 S3

3

1

Sstart

1

1

a1 P(sgoal|s1,a1)=0.9

P(sgoal|s1,a1)=0.1
c(s1,a1,s2) = 2

• RTDP:

Initialize v-values of all states to admissible values;

1. Follow greedy policy picking outcomes at random until goal

is reached;

2. Backup all states visited on the way;

3. Reset to sstart and repeat 1-3 until all states on the current

greedy policy have Bellman errors < ∆;

v=0

v=2.44444…

v=1v=4

v=4.44444…

v=5.44444…

expected cost of executing greedy policy is at most: 

v*(sstart)cmin/(cmin-∆)

where cmin is minimum edge cost
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Rewards version of MDPs
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• Suppose we have a Trash Collecting robot
– its task is to go around the room and pick-up trash

– if battery is dead, it can’t move anymore

– available actions:
• Look for trash (takes 1 min) and discovers trash with probability 0.4

• Pick-up trash (takes 1 min), and receive reward of 100 units

• Re-charge (takes 1 min). Battery level goes back to full 3 mins if

successful with probability 0.9 (there is a chance that re-charge is not

successful)

Example on the board
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Markov Decision Processes, REWARDS version
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• Optimal expected reward values v* satisfy:

v*(s) = maxa E{r(s,a,s’)+γv*(s’)} for all s
(expectation over outcomes s’ of action a executed at state s)

• Optimal policy π*:

π*(s) = argmaxa E{r(s,a,s’)+ γv*(s’)}

• Computing optimal v*-values via value iteration (VI):
re-compute v(s) = maxa E{r(s,a,s’)+ γv(s’)} until convergence

S2 S1

S5

0

r(s1,a1,sgoal) = 10

S4 S3

0 5

Sstart

0

0

a1 P(sgoal|s1,a1)=0.9

P(sgoal|s1,a1)=0.1
r(s1,a1,s2) = 0

0
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Markov Decision Processes, REWARDS version
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• Optimal expected reward values v* satisfy:

v*(s) = maxa E{r(s,a,s’)+γv*(s’)} for all s
(expectation over outcomes s’ of action a executed at state s)

• Optimal policy π*:

π*(s) = argmaxa E{r(s,a,s’)+ γv*(s’)}

• Computing optimal v*-values via value iteration (VI):
re-compute v(s) = maxa E{r(s,a,s’)+ γv(s’)} until convergence

S2 S1

S5

0

r(s1,a1,sgoal) = 10

S4 S3

0 5

Sstart

0

0

a1 P(sgoal|s1,a1)=0.9

P(sgoal|s1,a1)=0.1
r(s1,a1,s2) = 0

0discount factor in (0 1] (e.g., 0.95)

especially useful when there is no goal
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What You Should Know…

Carnegie Mellon University

• Operation of Value Iteration (VI) and its properties

• Operation of RTDP and its properties

• RTDP vs. VI

• Rewards formulation of MDPs and when it should be

used


