16-350
Planning Techniques for Robotics

Search Algorithms:
Uninformed A* Search

Maxim Likhachev

Robotics Institute

Carnegie Mellon University

Searching Graphs for a Least-cost Path

* Once a graph 1S constructed (from skeletonization or cell decomposition
or whatever else), W€ need to search it for a least-cost path

OR o OR . =

Carnegie Mellon University 2

Searching Graphs for a Least-cost Path

* Once a graph 1S constructed (from skeletonization or cell decomposition
or whatever else), W€ need to search it for a least-cost path

OR o OR .

S goal

PNy

Carnegie Mellon University 3

the cost ¢(S 1,8 4p0) Of

an edge from s, 10 s,

Searching Graphs for a Least-cost Path

* Many searches (including A*) work by computing g*
values for graph vertices (states)

— g%(s) — the cost of a least-cost path from s, to s
gr=1 *=3
(s
S, >
g0 % gr=?
@ : S
T
3
)
g*=2 g*=5

Carnegie Mellon University

Searching Graphs for a Least-cost Path

* Many searches (including A*) work by computing g*
values for graph vertices (states)

— g*(s) — the cost of a least-cost path from s _tos

start

g*=2 g*=5

Carnegie Mellon University 5

Searching Graphs for a Least-cost Path

* Many searches (including A*) work by computing g*
values for graph vertices (states)

— g*(s) — the cost of a least-cost path froms_ . tos

start

— g* values satisfy: g*(s) =ming.._ ,..c) 8¥(s") +c(s”,s)

g*=1 g*=3
(s)——
, ,
g*=0 1 @Kg,,_5
% ll | Sgoal
3 /
(s)——(s)
g*=2 g*=5

Carnegie Mellon University

Searching Graphs for a Least-cost Path

* Many searches (including A*) work by computing g*
values for graph vertices (states)

— g*(s) — the cost of a least-cost path from s, to s

— g* values satisfy: g*(s) =ming.._ ,..c) 8¥(s") +c(s”,s)

Once g*-values are computed,
a least-cost path from s, 10 S 44,
can be easily computed!

g*=2 g*=5

Carnegie Mellon University 7

Searching Graphs for a Least-cost Path
» Least-cost path 1s a greedy path computed by backtracking:

— start with s, and from any state s backtrack to the predecessor

state s such that | . Y "
s'=argmin 0 (€% (") +c(s",9))

@OQ
i
-
—_ . I
~
(\©]
/)
oQ
i
o

g*=2 g*=5

Carnegie Mellon University 8

Searching Graphs for a Least-cost Path

« Example on a Grid-based Graph:

8-connected grid o 1o 1o |o o |0

ik 4 212 120?212 |G
1‘_14— 1 ?1? ?
v 11 Y ? |2 ?

Carnegie Mellon University

Searching Graphs for a Least-cost Path

« Example on a Grid-based Graph:

8-connected grid

4 Tl /1t4

—

Jd
lyll

1
13

Intuition behind uninformed A*:
Starting with the start state (marked R),
always compute next the state with smallest g* value!

Carnegie Mellon University

10

Searching Graphs for a Least-cost Path

« Example on a Grid-based Graph:

8-connected grid
3.8/3.43.84.2 44438

4 4l
I 1 282428 3.83438

1‘.{4_ 1 2.4 1.4 2.4 3.4
RS 2 11 (o)1 |23

Carnegie Mellon University

Searching Graphs for a Least-cost Path

« Example on a Grid-based Graph:

8-connected grid

1 383438424448
4
I 1 282428 3.83438

1‘{4— 1 2.4 1.4 2.4 3.4
RS 2 11 (o)1 |23

Carnegie Mellon University 12

Searching Graphs for a Least-cost Path

« Example on a Grid-based Graph:

8-connected grid

1 383438424448
4
I 1 2.8 2.4 2.8 3.8 3.4 3.8

1‘{4— 1 2.4 1. 4 3.4
/11 o 2 |1 2 |3

Carnegie Mellon University 13

Uninformed A* Search

« Computes g*-values for relevant (not all) states

at any point of time:

S
the cost of a shortest path |—" 8(s)

from s

to s found so far

start

@/,...H@\...
O—e . . @

Carnegie Mellon University

14

Uninformed A* Search

« Computes g*-values for relevant (not all) states

Main function

g(S.,) = 0, all other g-values are infinite;, OPEN = {s_, .},
ComputePath();

publish solution; //compute least-cost path using g-values

ComputePath function set of candidates for expansion
while(s,,, 1s not expanded and OPEN # 0)

remove s with the smallest g(s) from OPEN;
expand s;

\ @%& |

for every expanded state
g(s) is optimal (g(s) = g*(s))

Carnegie Mellon University 15

Uninformed A* Search

« Computes g*-values for relevant (not all) states

ComputePath function
while(s,,, 1s not expanded and OPEN # 0)

remove s with the smallest g(s) from OPEN;
expand s;

o

%@

Carnegie Mellon University

16

Uninformed A* Search

« Computes g*-values for relevant (not all) states

ComputePath function
while(s,,,, 18 not expanded and OPEN # 0)
remove s with the smallest g(s) from OPEN;,
isert s into CLOSED;
for every successor s’ of s such that s 'not in CLOSED
if g(s) > g(s) + ¢(s.s) \
g(s) = g(s) tc(s,s);
/ insert s into OPEN;

set of states that have already been expanded

=00
(s)—2—
g=0
Sy i
/
(5)——

g§= X g~ X
Carnegie Mellon University 17

tries to decrease g(s’) using the
found path from s, tos

Start

Uninformed A* Search

« Computes g*-values for relevant (not all) states

ComputePath function
while(s,,,, 18 not expanded and OPEN # 0)
remove s with the smallest g(s) from OPEN;,
isert s into CLOSED;
for every successor s’ of s such that s 'not in CLOSED
i g(s’) > g(s) +c(s.s)
g(s) = g(s) tc(s,s);
insert s ' into OPEN;

@éé& :
CLOSED = {]

OPEN = {Sguyf

next state to expand: s, .. @

Carnegie Mellon University 18

Uninformed A* Search

« Computes g*-values for relevant (not all) states

ComputePath function
while(s, . 1s not expanded and OPEN # 0)

goal
remove s with the smallest g(s) from OPEN;,
isert s into CLOSED;

for every successor s’ of s such that s 'not in CLOSED

ifg(s’) > g(s) + c(s,5”)
g(Sy > g(Sstart) T C(Sstart’sy
g(s’) = g(s) +c(s.s);
insert s” into OPEN; /
CLOSED = {} @\ g=
OPEN = {5,141 Sgoa

next state to expand: s, .. @

Carnegie Mellon University 19

Uninformed A* Search

« Computes g*-values for relevant (not all) states

ComputePath function
while(s, . 1s not expanded and OPEN # 0)

goal
remove s with the smallest g(s) from OPEN;,
isert s into CLOSED;

for every successor s’ of s such that s 'not in CLOSED

it g(s’) > g(s) +c(s,s)
@ éD\

g(s’) = g(s) +c(s.s);
%@

insert s ' into OPEN;
Carnegie Mellon University

20

Uninformed A* Search

« Computes g*-values for relevant (not all) states

ComputePath function
while(s,,,, 18 not expanded and OPEN # 0)
remove s with the smallest g(s) from OPEN;,
isert s into CLOSED;
for every successor s’ of s such that s 'not in CLOSED
i g(s’) > g(s) +c(s.s)
g(s) = g(s) tc(s,s);
insert s ' into OPEN;

@’
CLOSED - {Sstart} ®\ ~

OPEN = {s,}

next state to expand: s, @

Carnegie Mellon University 21

Uninformed A* Search

« Computes g*-values for relevant (not all) states

ComputePath function
while(s,,,, 18 not expanded and OPEN # 0)
remove s with the smallest g(s) from OPEN;,
isert s into CLOSED;
for every successor s’ of s such that s 'not in CLOSED
i g(s’) > g(s) +c(s.s)
g(s) = g(s) tc(s,s);
insert s ' into OPEN;

@’
CLOSED {Sstart’ } @\ ~

OPEN = {s,s,}

next state to expand: ? _,@

Carnegie Mellon University 22

Uninformed A* Search

« Computes g*-values for relevant (not all) states

ComputePath function
while(s,,,, 18 not expanded and OPEN # 0)
remove s with the smallest g(s) from OPEN;,
isert s into CLOSED;
for every successor s’ of s such that s 'not in CLOSED
i g(s’) > g(s) +c(s.s)
g(s) = g(s) tc(s,s);
insert s ' into OPEN;

@’
CLOSED {Sstart’ } @\ ~

OPEN = {s,s,}

next state to expand: s, @

Carnegie Mellon University 23

Uninformed A* Search

« Computes g*-values for relevant (not all) states

ComputePath function
while(s,,,, 18 not expanded and OPEN # 0)
remove s with the smallest g(s) from OPEN;,
isert s into CLOSED;
for every successor s’ of s such that s 'not in CLOSED
i g(s’) > g(s) +c(s.s)
g(s) = g(s) tc(s,s);
insert s ' into OPEN;

@’
CLOSED = {Sstart’ §28 4} @\

OPEN = {s,,s;}

next state to expand: ? 3 @

g=2 g=35

Carnegie Mellon University

24

Uninformed A* Search

« Computes g*-values for relevant (not all) states

ComputePath function
while(s,,,, 18 not expanded and OPEN # 0)
remove s with the smallest g(s) from OPEN;,
isert s into CLOSED;
for every successor s’ of s such that s 'not in CLOSED
i g(s’) > g(s) +c(s.s)
g(s) = g(s) tc(s,s);
insert s ' into OPEN;

@’
CLOSED = {Sstart’ §28 4} @\

OPEN = {s,,s;}

next state to expand: s, 3 @

g=2 g=J

Carnegie Mellon University

25

Uninformed A* Search

« Computes g*-values for relevant (not all) states

ComputePath function
while(s,,,, 18 not expanded and OPEN # 0)
remove s with the smallest g(s) from OPEN;,
isert s into CLOSED;
for every successor s’ of s such that s 'not in CLOSED
i g(s’) > g(s) +c(s.s)
g(s) = g(s) tc(s,s);
insert s ' into OPEN;

@
CLOSED = {Ssmﬁ,Sg,S4JS1} @\

OPEN = {s 3,Sg0al}

next state to expand: ? 3 @

g=2 g=J

Carnegie Mellon University

26

Uninformed A* Search

Optional but useful optimization:
If OPEN contains multiple states with the smallest g-values
and s, s one of them,
then select s, for expansion

 Computes g*-val

ComputePath function
while(s,,,, 1s not expanded an
remove s with the smallest g(s) from OPEN;,
isert s into CLOSED;
for every successor s’ of s such that s 'not in CLOSED
ifg(s) > g(s) + c(s,s)
g(s’) = g(s) +c(s,s);
insert s ' into OPEN;

CLOSED = {s,,.,55,5,5;}
OPEN = {53,500/

next state to expand.: S g0al

Carnegie Mellon University

Uninformed A* Search

« Computes g*-values for relevant (not all) states

ComputePath function
while(s, . 1s not expanded and OPEN # 0)

oal
remoie s with the smallest g(s) from OPEN;
isert s into CLOSED;
for every successor s’ of s such that s 'not in CLOSED
i g(s’) > g(s) +c(s.s)
g(s) = g(s) tc(s,s);

insert s ' into OPEN;
CLOSED = {s

@’
start SZ’S4’SI’Sg0a @\
OPEN = {s;}

done 3 @

g=2 g=J

Carnegie Mellon University

28

Uninformed A* Search

« Computes g*-values for relevant (not all) states

ComputePath function
while(s,,,, 18 not expanded and OPEN # 0)
remove s with the smallest g(s) from OPEN;,
isert s into CLOSED;
for every successor s’ of s such that s 'not in CLOSED
i g(s’) > g(s) +c(s.s)
g(s) = g(s) tc(s,s);
insert s ' into OPEN;

for every expanded state g(s)=g *(S)
for every other state g(s) > g*(s) —3>@

we can now compute a least-cost path g=2 g=5

Carnegie Mellon University

29

Uninformed A* Search

« Computes g*-values for relevant (not all) states

ComputePath function
while(s,,,, 18 not expanded and OPEN # 0)
remove s with the smallest g(s) from OPEN;,
isert s into CLOSED;
for every successor s’ of s such that s 'not in CLOSED
i g(s’) > g(s) +c(s.s)
g(s) = g(s) tc(s,s);
insert s ' into OPEN;

for every expanded state g(s)=g *(S)
for every other state g(s) > g*(s) —3>@

we can now compute a least-cost path g=2 g=5

Carnegie Mellon University

30

Uninformed A* Search

« Computes g*-values for relevant (not all) states

ComputePath function
while(s, , 1s not expanded and OPEN # 0)

goal
remove s with the smallest g(s) from OPEN;,
isert s into CLOSED;

for every successor s’ of s such that s 'not in CLOSED

ifg(s) > g(s) + c(s,s)
@ @k
—>

g(s’) = g(s) +c(s.s);
%@

insert s ' into OPEN;

for every expanded state g(s) g*(s)
for every other state g(s) > g*(s) -

we can now compute a least-cost path

Carnegie Mellon University

31

Uninformed A* Search: Proofs

Theorem 1. For every expanded state s, it is guaranteed
that g(s)=g*(s)

Sketch of proof by induction:

consider state s getting selected for expansion and assume that all previously
expanded states had their g-values equal to g*-values

since s was selected for expansion, then g(s) — min among states in OPEN

OPEN is a frontier of states that separates previously expanded states from the
states that have never been seen by the search

thus, the cost of the path from s, to s via any state in OPEN or any state not
previously seen will be worse than g(s) (assuming positive costs)

therefore, g(s) (the cost of the best path found so far) is already optimal

Carnegie Mellon University 32

Uninformed A* Search: Proofs

Theorem 2. Once the search terminates, it 1s guaranteed that
&(5g0a) =8 *(8 gouat)

Sketch of proof:

Carnegie Mellon University 33

Uninformed A* Search: Proofs

Theorem 3. Once the search terminates, the least-cost path
froms,, .tos, ,can be re-constructed by backtracking

start goa
(start with s, and from any state s backtrack to the predecessor state
s such that s'=argmin ., ., (g(s'") +c(s",5)))

Sketch of proof:

- every backtracking step from state s moves to a predecessor state s’ that
continues to be on a least-cost path (because all predecessors u not on a least-
cost path will have have g(u)+cost(u,s) that are strictly larger than

g(s’)+cost(s’,s))

Carnegie Mellon University 34

What You Should Know...

Given g*-values, how to re-construct a least-cost path

Operation of Uninformed A*

Properties of uninformed A* search
— g-values of expanded states are optimal (g=g*)

— for every expanded state, one can re-construct a least-cost path
to 1t via back-tracking

Sketch of proof for why uninformed A* returns a least-
cost path

Carnegie Mellon University 35

