
16-350: Planning Techniques for Robotics

Homework 1: Robot Chasing Target

Due: Feb 14 (Wed), 11:59pm

Professor: Maxim Likhachev Spring 2024 TA: Itamar Mishani, Siddharth saha

1 Undergraduate and graduate Assignment

1.1 Task:

Write a planner for the robot to catch a target in a 2D grid world while minimizing the cost incurred
by the robot (NOT the time it takes). The gridworld is 8-connected (that is, the robot can only
move by at most one cell along X or Y axis or diagonally). During execution, the planner will be
given a costmap and the collision threshold. The costmap contains the associated cost for moving
through each cell in the grid. This cost will be a positive integer. Any cell with a cost greater than
or equal to the collision threshold is to be considered an obstacle that the robot cannot traverse.
For graduate students, the biggest grid in this assignment is around 2000x2000 cells,
and for undergraduates is around 200x200 cells.

The planner will be given the start position of the robot, along with the trajectory of the moving
target as a sequence of positions (e.g., [(5,6), (5,7), (4,5)]). The target will also be moving on the
8-connected grid, and has a speed of one step per second.

1.2 Code:

Your code is within the folder code, where you will have c++ and python files, as well as two maps
directories, undergrad and grad. The planner function must output a single robot move. The
planner should reside in the planner.cpp file. Currently, the file contains a greedy planner that
always moves the robot in the direction that decreases the distance in between the robot and the
target. The planner function (inside planner.cpp) is as follows:

static void planner(

int* map,

int collision thresh,

int x size,

int y size,

int robotposeX,

int robotposeY,

int target steps,

int* target traj,

int targetposeX,

int targetposeY,

int curr time,

int* action ptr

1



Homework 1 2

)

1.3 Inputs:

Each cell in the map of size (x size, y size) is associated with the cost of moving through it
(positive integer). Note that if the robot stays in the same cell c for T time steps, then it will incur
a cost of cost(c) · T .

The cost of moving through cell (x, y) in the map should be accessed as:

(int)map[GETMAPINDEX(x,y,x size,y size)].

If it is less than collision thresh, then the cell (x, y) is traversable. Otherwise, it is an obstacle
that the robot cannot traverse. Note that cell coordinates start with 1. In other words, x can
range from 1 to x size. The target’s trajectory target traj of size target steps is a sequence
of target positions (for example, (2,3), (2,4), (3,4)). At the current time step (curr time), the
current robot pose is given by (robotposeX, robotposeY) and the current target pose is given
by (targetposeX, targetposeY). The target will also be moving on the 8-connected grid, at the
speed of one step per second along its trajectory. Therefore, at the next second, the target will be
at (current time + 1)th step in its trajectory target traj.

You are provided with a few test maps. Target, robot, and map cost information is specified in
text files named map*.txt. Specifically, the format of the text file is:

1. The letter N followed by two comma separated integers on the next line (say N1 and N2
written as N1,N2). This is the map’s size.

2. The letter C followed by an integer on the next line. This is the map’s collision threshold.

3. The letter R followed by two comma separated integers on the next line. This is the starting
position of the robot in the map.

4. The letter T followed by a sequence of two comma separated integers on each line. This is
the trajectory of the moving object.

5. The letter M followed by N1 lines of N2 comma separated floating point values per line. This
is the map.

runtest.cpp parses the text files, and calls your planner function (with these inputs) once per
simulation step.

1.4 Outputs:

At every simulation step, the planner function should output the robot’s next pose in the 2D vector
action ptr. The robot is allowed to move on an 8-connected grid. All the moves must be valid
with respect to obstacles and map boundaries (see the current planner inside planner.cpp for how
it tests the validity of the next robot pose).



Homework 1 3

runtest.cpp evaluates and prints four values—a boolean specifying whether the object was caught,
and three integers specifying the time taken to run the test, the number of moves made by the
robot, and the cost of the path traversed by the robot.

1.5 Frequency of Moves:

The planner is supposed to produce the next move within 1 second. Within 1 second, the target
also makes one move. If the planner takes longer than 1 second to plan, the target will have moved
by a longer distance in the meantime. In other words, if the planner takes K seconds (rounded up
to the nearest integer) to plan the next move of the robot, then the target will move by K steps in
the meantime.

Note: After the last cell on its trajectory, the object disappears. So, if the given object’s trajectory
is of length 40, then at time step = 41 the object disappears and the robot can no longer catch it.
This means for a moving object trajectory that is T steps long, your planner has at most T seconds
to find (and execute) a full solution.

1.6 Execution:

Within the code directory there are two subdirectories, undergrad and grad, each containing a
maps to test your planner. To compile the cpp code, open a terminal in the code directory and
run:

>> g++ runtest.cpp planner.cpp

To run the planner:

>> ./a.out <student type>/map<map number>.txt

where <student type> is undergrad or grad. For example, to run the planner on map1.txt for
an undergraduate student, run:

>> ./a.out undergrad/map1.txt

To visualize the robot and target’s trajectory:

>> python visualizer.py map<map number>.txt

In the example above, to visualize the robot and target’s trajectory for map1.txt, run:

>> python visualizer.py map1.txt

Currently, the planner greedily moves towards the last position on the moving object’s trajectory.

1.7 Submission:

You will submit this assignment through Gradescope. You must upload one ZIP file named
<andrewID>.zip. This should contain:

1. A folder code that contains all code files, including but not limited to, the ones in the
homework packet. If you add subfolders, your code should handle relative paths.



Homework 1 4

2. Your writeup in <andrewID>.pdf. This should contain a summary of your approach for
solving this homework, the results for all maps (whether the object was caught, the time
taken to run the test, number of moves made by the robot, and the cost of the path traversed
by the robot), and instructions for how to compile your code.

• For your planner summary, we want details about the algorithm you implemented, data
structures used, heuristics used, any efficiency tricks, memory management details etc.
Basically, any information you think would help us understand what you have done and
gauge the quality of your homework submission.

• Include plots of the maps overlaid with the object and solved robot trajectories. Please
do not include the map text files in your submission.

1.8 Grading:

The grade will depend on two things:

1. How well-founded the approach is. In other words, can it guarantee completeness (to catch
a target, if one exists), can it provide sub-optimality or optimality guarantees on the cost of
the paths it produces, can it scale to large environments?

2. How much cost the robot incurs while catching the target.

Note: To grade your homework and to evaluate the performance of your planner, we may use
different maps than the ones provided in the directory. We can only promise that these maps will
be of similar size as the ones provided.

Note (bonus): For undergraduates, a bonus of up to 10 extra credit points will be given if your
planner can catch the target on the grad-size maps.



Homework 1 5

R

T

200 400 600 800 1000 1200 1400 1600 1800

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

10

20

30

40

50

60

70

80

90

100

Image of information in map1.txt. The green R marks the starting position of the robot, the
magenta T marks the starting position of the target, the magenta line is the target’s trajectory.
Blue cells have cost 1, red cells have cost 100, collision threshold is 100.



Homework 1 6

R

T

200 400 600 800 1000 1200 1400 1600 1800

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

1000

2000

3000

4000

5000

6000

7000

Image of information in map2.txt. The green R marks the starting position of the robot (directly
below the starting position of the target), the magenta T marks the starting position of the target,
the magenta line is the target’s trajectory. Cells have cost between 1 and 7497, inclusive. Collision
threshold is 6500.



Homework 1 7

R

T

50 100 150 200 250 300 350 400 450

50

100

150

200

250

300

350

400 10

20

30

40

50

60

70

80

90

100

Image of information in map3.txt. The green R marks the starting position of the robot, the
magenta T marks the starting position of the target, the magenta line is the target’s trajectory.
Blue cells have cost 1, red cells have cost 100, collision threshold is 100.



Homework 1 8

R

T

50 100 150 200 250 300 350 400 450

50

100

150

200

250

300

350

400

1000

2000

3000

4000

5000

6000

Image of information in map4.txt. The green R marks the starting position of the robot, the
magenta T marks the starting position of the target, the magenta line is the target’s trajectory.
Cells have cost between 1 and 6240, inclusive. Collision threshold is 5000.



Homework 1 9

Image of information in map16.txt. The green R marks the starting position of the robot, the
magenta T marks the starting position of the target, the magenta line is the target’s trajectory.
Cells have cost between 1 and 50, inclusive. Collision threshold is 50.


