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Typical Planning Architecture for Autonomous Vehicle
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Motivation

* Planning long complex maneuvers for the Urban
Challenge vehicle from CMU (Tartanracing team)

 Planner suitable for

— autonomous parking in very large (200m by 200m) cluttered
parking lots

— navigating in off-road conditions

— navigating cluttered intersections/driveways
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Desired Properties

* Generate a path that can be tracked well (at up to Sm/sec):

— path 1s a 4-dimensional trajectory:

x, Yy, 0, v
( v, )

orientation speed
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Desired Properties

e Fast (2D-like) planning in trivial environments:

200 by 200m parking lot
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Desired Properties

* But can also handle large non-trivial environments:

200 by 200m parking lot

Carnegie Mellon University

15



Desired Properties

* Anytime property: finds the best path 1t can within X secs
and then improves the path while following 1t
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Desired Properties

 Fast replanning, especially since we need to avoid other
vehicles

planning a path that avoids other vehicles
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Desired Properties

 Fast replanning, especially since we need to avoid other
vehicles

ehicles
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The Approach

e Define an Implicit graph

— multi-resolution version of a lattice graph

» Search the graph for a least-cost path

— Anytime D* (ARA* + D* Lite)
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Building the Graph
 Lattice-based graph:

outcome state is the center of the corresponding cell

each transition is feasible
(constructed beforehand)

action template

P
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Building the Graph
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Building the Graph
 Lattice-based graph:

outcome state is the center of the corresponding cell
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Building the Graph

e Multi-resolution lattice:
— high density in the most constrained areas (€.g., around start/goal)

— low density 1n areas with higher freedom for motions

most constrained areas
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Building the Graph

 The construction of multi-resolution lattice:

— the action space of a low-resolution lattice 1s a strict subset of the
action space of the high-resolution lattice
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Building the Graph

 The construction of multi-resolution lattice:

— the action space of a low-resolution lattice 1s a strict subset of the
action space of the high-resolution lattice

— the state-space of a low-resolution lattice 1s discretized to be a
subset of the possible discretized values of the state variables in the
high-resolution lattice
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Building the Graph

e Multi-resolution lattice used for Urban Challenge:

dense-resolution lattice

initial |
} =
heading™ |

36 actions,
32 discrete values of heading
0.25m discretization for x,y

5

low-resolution lattice

_initial
heading™

24 actions,
16 discrete values of heading
0.25m discretization for x,y
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Building the Graph

* Properties of multi-resolution lattice:

— utilization of low-resolution lattice: every path that uses only the
action space of the low-resolution lattice is guaranteed to be a
valid path in the multi-resolution lattice

— validity of paths: every path in the multi-resolution lattice is
guaranteed to be a valid path in a lattice that uses only the action
space of the high-resolution lattice
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Building the Graph

 Benefit of the multi-resolution lattice:

Lattice States Expanded | Planning Time (s)
High-resolution 2,933 0.19
Multi-resolution 1,228 0.06
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Searching the Graph
* Anytime D*:

— anytime incremental version of A*

— anytime: computes the best path it can within provided time and
improves 1t while the robot starts execution.

— incremental: it reuses its previous planning efforts and as a
result, re-computes a solution much faster
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Searching the Graph

set £to large value;

until goal is reached -

ComputePathwithReuse();e—

publish & -suboptimal path for execution;
update the map based on new sensory information;
update current state of the agent;
if significant changes were observed
increase ¢ or replan from scratch;

else
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Searching the Graph
* Anytime behavior of Anytime D*:

cost = 133,736
€=3.0 .
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Searching the Graph

* Incremental behavior of Anytime D*:

initial path a path after re-planning
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Searching the Graph

* Performance of Anytime D* depends strongly on
heuristics /4(s): estimates of cost-to-goal

should be consistent and admissible (never overestimate cost-to-goal)

goal
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Searching the Graph
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heuristics /4(s): estimates of cost-to-goal

should be consistent and admissible (never overestimate cost-to-goal)

goal

Carnegie Mellon University

34



Searching the Graph

* In our planner: A(s) = max(h,,,.(s), h,,(s)), where

enyv
— h,,..(s) — mechanism-constrained heuristic
— h,, (s) —environment-constrained heuristic

h,,..n(S) — considers only dynamics constraints h,,.(s) — considers only environment
and ignores environment constraints and ignores dynamics

t*‘D
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Searching the Graph
* In our planner: A(s) = max(h,,,..(s), h,,.(S))

* h,..(s)—admissible and consistent
* h, (s)—admissible and consistent

* h(s) —admissible and consistent

Theorem. The cost of a path returned by Anytime D* is no more than
¢ times the cost of a least-cost path from the vehicle configuration to
the goal configuration using actions in the multi-resolution lattice,
where ¢ is the current value by which Anytime D* inflates heuristics.
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Searching the Graph

 Benefit of the combined heuristics:
[~

Heuristic States Expanded Planning Time (s)
Environment-constrained only 26,108 1.30
Mechanism-constrained only 124,794 3.49
Combined 2,019 0.06

Carnegie Mellon University

45



Optimizations

* Pre-compute as much as possible

— convolution cells for each action for each nitial heading
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Results

* Plan improvement

Tartanracing, CMU
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Results
* Replanning 1n a large parking lot (200 by 200m)

b

Tartanracing, CMU
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What You Should Know...

Typical hierarch of planners used in self-driving

Multi-resolution lattice

Benefits of anytime and incremental planning

Ways to generate informative heuristics for motion planning
for self-driving
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