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Uncertainty 1n Robotics

 So far our planners assumed no uncertainty
- execution 1s perfect

S, 9 @ @ search the graph
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for a least-cost path
froms_ _tos

start goal
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Uncertainty 1n Robotics

 So far our planners assumed no uncertainty
- execution 1s perfect

S,

S,

Sy

S, 9 @ @ search the graph

S, convert into a graph: @. for a least-cost path

froms. .tos

start goal

& 8

* Any deviations from the plan are dealt by re-planning

* Could be quite suboptimal and sometimes dangerous
- planning a path along cliff does not take into account slippage
- others examples???
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Uncertainty in Robotics

|

nning with Approximate Preferences and its Application
to Disambiguating Human Intentions in Navigation

Bradford Neuman Maxim Likhachev
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Uncertainty 1n Robotics

* Modeling uncertainty in execution during planning

Markov Decision Processes (MDP)

S, |s, | s, @

convert into an MDP
S| SO

»

Se

- at least one action in the graph has more than one outcome
- each outcome is associated with probability and cost
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Uncertainty 1n Robotics

* Modeling uncertainty in execution during planning

action dgp

Markov Decision Processes (MDP)

S, |s, | s, @

convert into an MDP
S| SO

Se

- at least one action in the graph has more than one outcome
- each outcome is associated with probability and cost
example: s;, S, S5 € succ(s,, asp),
P(ssla,,s,) = 0.9, c(s,a,,ss) = 1.4
P(s;la,,s,) = 0.05, c(s,a,,s;) = 1.0
P(s lag,s,) = 0.05, c(s,a,,s,) = 1.0
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Moving along Cliff Example

* Example on the board
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Moving-Target Search Example

» Uncertainty 1n the target moves

- What 1s a state-space and action space?

a
T
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Planning in MDPs

* What plan to compute?
- Plan that minimizes the worst-case scenario (minimax plan)
- Plan that minimizes the expected cost

P(S oallS1a1)=0. 11
g /
()

P(Sgoal|SI 1) 0.9
c(s,a,;s

S

goa

1
c(s,a,s goal

« Without uncertainty, plan 1s a single path:
a sequence of states (a sequence of actions)

* In MDPs, plan 1s a policy 7:
mapping from a state onto an action
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Planning in MDPs

* What plan to compute?
- Plan that minimizes the worst-case scenario (minimax plan)
- Plan that minimizes the expected cost

P(S oallS154)=0.11
g /
()

P(Sgoal|SI 1) 0.9
c(s,a,;s

S

goa

1
c(s,a,s ol

« Without uncertainty, plan 1s a single path:
a sequence of states (a sequence of actions)

* In MDPs, plan 1s a policy 7:

mapping from a state onto an action

Maxim Likhachev
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Minimax Formulation

P(Sgoal|S]’a]) i09

C(S]’al’sgoa

1 ﬁ?@f’aﬂf )01, e
goalP %Y V-4 ]
3 /
O O
» Optimal policy 7*; What is the best plan?

minimizes the worst cost-to-goal

* — ’ -1O-
L™ = argming max,, . .omes of nt COSt-to-goal

 worst cost-to-goal for z,=(go through s,) 1s:
1+14+3+1 =6

» worst cost-to-goal for z,=(try to go through s,) 1s:
1424242424242 + ... = 0

Maxim Likhachev Carnegie Mellon University
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Minimax Formulation

* Optimal policy 7*:
minimizes the worst cost-to-goal

* = ;
T Argming max,, comes of T

* Optimal minimax policy z* =
[{Ssz‘art’ ane}’ {S2’ asouz‘h}’ {S4’ aeaszf’ {SS” ane}’ {Sgoal’null}]

Maxim Likhachev Carnegie Mellon University
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C(Sl’al’sgoa” -

goal

{cost-to-goal)

(go through s,) =
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Computing Minimax Plans

/1
@ 1 c(s;,a;s
Pgsl ;

goal

S],CZI;ZO.II
3 /
so——()

P(Sgoal S]’a]):0'9

C(Sl’al’sgoa” -

goal

»

e Minimax backward A*:

g(Sgoq) = 0, all other g-values are infinite; OPEN = {s,,,,};
while(s,,,,, not expanded)
remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;,

insert s into CLOSED;
for every s’ s.ts € succ(s’, a) for some a and s’ not in CLOSED
£ g(s’) > max, ¢ e, o €(551) + g(u)
g(s’) = Max, ¢ geeqs, o C(5 1) + (1),
insert s ' into OPEN;

Maxim Likhachev Carnegie Mellon University
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Computing Minimax Plans

| @ P(Sgpuls,a)=0.9
@ 1 c(s,,a,s,) =2 S
Pgsfgoal] spa)=0.14 goa]

oRNGcee

e Minimax backward A*:

g(Sgoq) = 0, all other g-values are infinite; OPEN = {s,,,,};
while(s,,,,, not expanded)
remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;,

insert s into CLOSED;
for every s’ s.ts € succ(s’, a) for some a and s’ not in CLOSED
if g(5°) > max, ¢ oo, o) €551 + (1)
g(8) = max, ¢ gee(s, o (51 + g(1);
insert s * into OPEN; reduces to usual backward A* if

no uncertainty in outcomes

Maxim Likhachev Carnegie Mellon University 14



Computing Minimax Plans

P(Sgoal S]’a]):0'9
C(S]’al’sgoa -

:
S],Cl])ZO ]1 g0 h=3

g
h=2 h=3  OPEN = {s,,,/
« Minimax backward A*: next state to expand.: g,
g(Sgoq) = 0, all other g-values are infinite; OPEN = {s,,,,};
while(s,,,,, not expanded)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;,
insert s into CLOSED;
for every s’ s.ts € succ(s’, a) for some a and s’ not in CLOSED
if g(57) > MAX, & ey o €5 1) + (W)
8(5) = MY, ¢ queegsr o (5 "10) + 8(1W);
insert s " into OPEN;
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Computing Minimax Plans

§=® @ P(Sgouls,a)=0.9
@ 1 ¢fs;a, 2 g="0
P?S(Igoalls pa)=0.11 Son h=3
3 . _
()2 CLOSED =
h=2 h=3  OPEN = {s,,,/
e Minimax backward A*: next state to expand: S g0al
g(Sgoq) = 0, all other g-values are infinite; OPEN = {s,,,,};
while(s,,,,, not expanded)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;,
insert s into CLOSED;
for every s’ s.ts € succ(s’, a) for some a and s’ not in CLOSED
if g(57) > Max, ¢ yeepsr o (510 + g(1)
8(5) = MY, ¢ queegsr o (5 "10) + 8(1W);
insert s into OPEN; y ﬁ o Sgoal expar de d,

what are g(s;) and g(s;)?
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Computing Minimax Plans
g =0 g =00

6/ C(51,41:Sgoa
@ 1 c(s;a
Brar

goall® 1:6117220.] 1 §=:30
o (50— ;@%LOSED = {5 0ud

P(Sgoal S]’a]):0'9

g:

g
h=2 =3  OPEN = {5,/
e Minimax backward A*: next state to expand. s;
g(Sgoq) = 0, all other g-values are infinite; OPEN = {s,,,,};
while(s,,,,, not expanded)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;,
insert s into CLOSED;
for every s’ s.ts € succ(s’, a) for some a and s’ not in CLOSED
if g(57) > MAX, & ey o €5 1) + (W)
8(5) = MY, ¢ queegsr o (5 "10) + 8(1W);
insert s " into OPEN;
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Computing Minimax Plans
g =0 g =00

6/ C(51,41:Sgoa
@ 1 c(s;a
Brar

goal Sl’al)zo.]/lv 898/ h=3
=4 @ 3 ;@ ] CLOSED —_ {Sgan’S_?}

P(Sgoal S]’a]):0'9

g:

g
h=2 =3  OPEN = {s
e Minimax backward A*: next state to expand: s,
g(Sgoq) = 0, all other g-values are infinite; OPEN = {s,,,,};
while(s,,,,, not expanded)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;,
insert s into CLOSED;
for every s’ s.ts € succ(s’, a) for some a and s’ not in CLOSED
if g(57) > MAX, & ey o €5 1) + (W)
8(5) = MY, ¢ queegsr o (5 "10) + 8(1W);
insert s " into OPEN;
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Computing Minimax Plans
g=> g=»

6/ C(51,41:Sgoa
@ 1 c(s;a
Brar

goal Sl’al)zo.]/lv goal/ p=3
_ 4 @ 3 =@ . CLOSED = {5,,,,53.5,}

P(Sgoal S]’a]):0'9

g:

g
h=2 =3 OPEN = {s,}
e Minimax backward A*: next state to expand.: s,
g(Sgoq) = 0, all other g-values are infinite; OPEN = {s,,,,};
while(s,,,,, not expanded)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;,
insert s into CLOSED;
for every s’ s.ts € succ(s’, a) for some a and s’ not in CLOSED
if g(57) > MAX, & ey o €5 1) + (W)
8(5) = MY, ¢ queegsr o (5 "10) + 8(1W);
insert s " into OPEN;
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Computing Minimax Plans

g=0o @ P(Sgouls,a)=0.9
@ 1 c(s,a, 2 g=10
P?S{goaljs »a ]):0.]/17 goal) p_3
.y @ 3 ;@ g:] CLOSED = {54,535 455/
h=2 =3 OPEN={s_ .5}
« Minimax backward A*: next state to expand. s,

g(Sgoq) = 0, all other g-values are infinite; OPEN = {s,,,,};
while(s,,,,, not expanded)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;,
insert s into CLOSED;
for every s’ s.ts € succ(s’, a) for some a and s’ not in CLOSED
if g(57) > MAX, & ey o €5 1) + (W)
8(5) = MY, ¢ queegsr o (5 "10) + 8(1W);
insert s " into OPEN;
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Computing Minimax Plans

g=0o @ P(Sgouls,a)=0.9
@ 1 ¢(s,a, 2 g=0
P?S(]goal] S], al) _O,I/IVSgOal h=3
g=4 @ 3 :@ g~ ?LOSED B {SgOQI’S3’S4’S2’SSmr1}
h=2 n=30PEN = {s,}
e Minimax backward A*: DONE

g(S4,q) = 0; all other g-values are infinite; OPEN = {s,,,}
while(s,,,,, not expanded)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;,
insert s into CLOSED;
for every s’ s.ts € succ(s’, a) for some a and s’ not in CLOSED
if g(57) > MAX, & ey o €5 1) + (W)
8(5) = MY, ¢ queegsr o (5 "10) + 8(1W);
insert s " into OPEN;
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Computing Minimax Plans

g=0o @ P(Sgouls,a)=0.9
h=0 1 C(S]’al’sgoa -
@ L efspays g 0
P (Sgoal Sl’al) y Doul
g=4 Q @ LOSED {Sgoal,S3,S 4’S2’Sstarﬂz
h=2 4—3OPEN = {5,/
e Minimax backward A*: DONE
g(S4,q) = 0; all other g-values are infinite; OPEN = {s,,,}
while(s,,,,, not expanded)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;,
insert s into CLOSED;
for every s’ s.ts € succ(s’, a) for some a and s’ not in CLOSED
if g(57) > MAX, & ey o €5 1) + (W)
8(5) = MY, ¢ gyeege o) €05 1) + G);
insert s’ into OPEN;

in this example, the computed policy is a path,
but in general it is a DAG (directed acyclic graph
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Computing Minimax Plans

g=0o @ P(Sgouls,a)=0.9
61/ c(s,a J,Sgoa =
@ 1 c(s;,a;s g 0
s, o
g=4 Q @ LOSED {Sgoal’S.?’5’41"5‘2’SstarﬂZ
h=2 r—3OPEN = s}
» Minimax backward A*: DONE
g(Sgoq) = 0, all other g-values are infinite; OPEN = {s,,,,};
while(s,,,,, not expanded)
remove s with the smallest [f(s) = g(s)+h(s)] from 2777
insert s into CLOSED; What are its branches?
for every s’ s.ts € succ(s’, a) for somu Why DAG?

lfg(S’) > max, € succ(s’, a) C(S ” Ll) T g(u/
g(S’) — max, € succ(s’, a) C(S | l/l) T g(l/l),
insert s’ into OPEN;,

in this example, the computed policy is a path,
but in general it is a DAG (directed acyclic graph
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Computing Minimax Plans

g=0o @ P(Sgouls,a)=0.9
h=0 1 C(Sl’al’sgoa” =2
@ 1 c(s,a,s g 0
P (Sgoaz Sl’al) y Seou
g=4 Q @ LOSED {Sgoal,S3,S 4’S2’SstarﬂZ
h=2 1—3OPEN = s,/
e Minimax backward A*: DONE
g(S4,q) = 0; all other g-values are infinite; OPEN = {s,,,}
while(s,,,,, not expanded)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;,

insert s into CLOSED;

for every s’ s.ts € succ(s’, a) for some a and s’ not in CLOSED
£ 8(s’) > Max, ¢ gueers’, o) €S 1) Lo

g(s’) = max, € succ(s’, a) g Minimax A* guarantees to find an optimal plan,
insert s’ into OPEN- and never expands a state more than once,
’ provided heuristics are consistent (just like A*)

Maxim Likhachev Carnegie Mellon University 24



Computing Minimax Plans

* Pros/cons of minimax plans

- robust to uncertainty

- overly pessimistic

- harder to compute than normal paths
- especially 1f backwards minimax A* does not apply
- even 1f backwards minimax A* does apply, still more
expensive than computing a single path with A* (heuristics
are not guiding well)

Why?

Maxim Likhachev Carnegie Mellon University 25



What You Should Know..

 What 1s and MDP (Markov Decision Process) and how
it differs from normal Graphs

* What 1s Minimax solution to MDPs
* Pros and cons of Minimax solutions

* Operation of Minimax backward A*

Maxim Likhachev Carnegie Mellon University 26
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