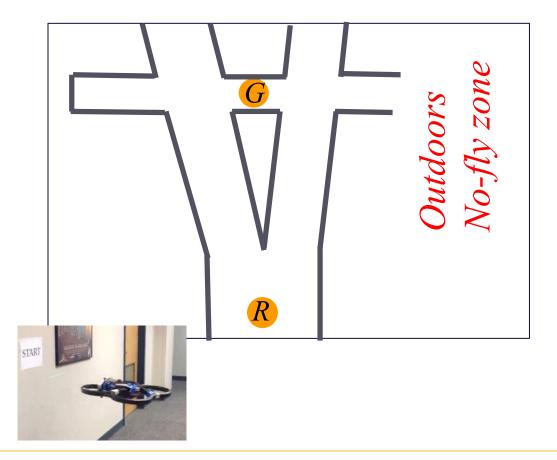
16-350 Planning & Decision-making in Robotics

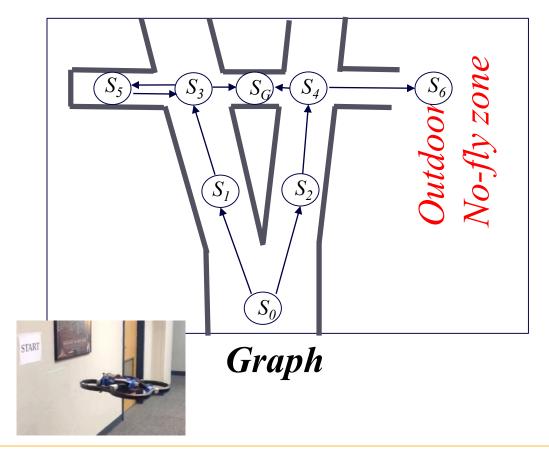
Planning under Uncertainty: Partially Observable Markov Decision Processes (POMDP)

Maxim Likhachev
Robotics Institute
Carnegie Mellon University

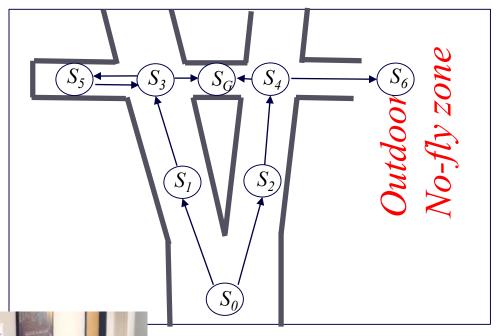
Consider a path planning example

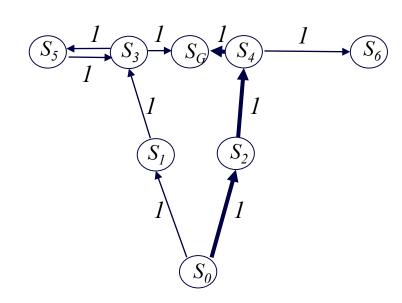


- Consider a path planning example
- Assume perfect action execution and full knowledge of the state (i.e., perfect localization)



- Consider a path planning example
- Assume perfect action execution and full knowledge of the state (i.e., perfect localization)

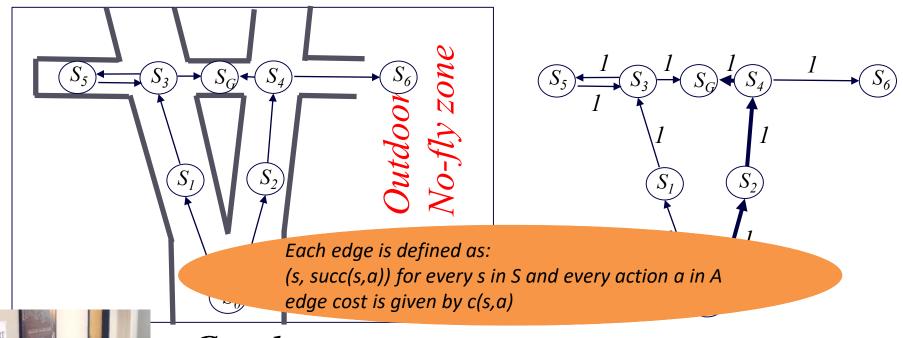




Graph:

Implicitly defined as $\{S, A, C\}$, where S – set of states, A – set of actions, C – costs of all (s,a) pairs.

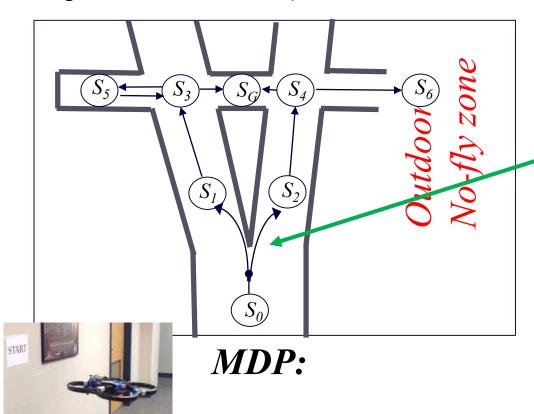
- Consider a path planning example
- Assume perfect action execution and full knowledge of the state (i.e., perfect localization)



Graph:

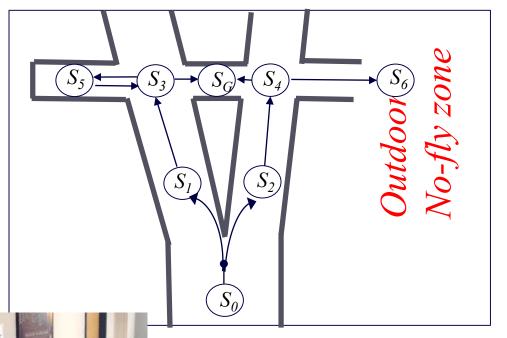
Implicitly defined as $\{S, A, C\}$, where S – set of states, A – set of actions, C – costs of all (s,a) pairs.

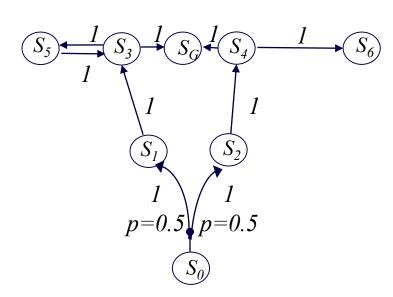
- Consider a path planning example
- Assume **imperfect action execution** and full knowledge of the state (i.e., perfect localization)



Let's assume 50% chance of ending up on the left and 50% ending up on the right

- Consider a path planning example
- Assume **imperfect action execution** and full knowledge of the state (i.e., perfect localization)

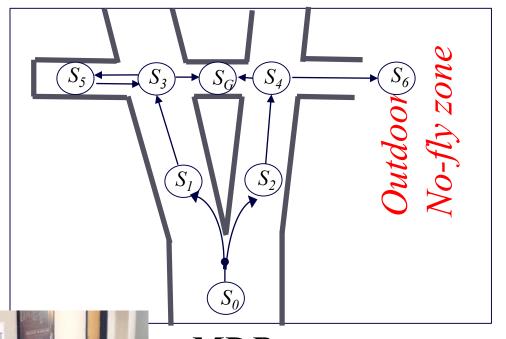


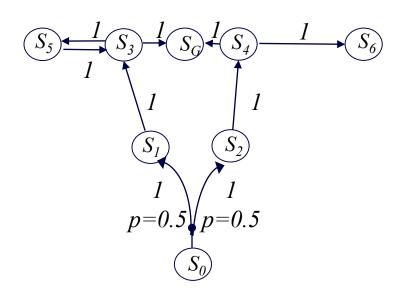


MDP:

Defined as $\{S, A, T, C\}$, where S – set of states, A – set of actions, T(s,a,s') – Prob(s'|s,a), C – costs of all (s,a) pairs

- Consider a path pl What is an optimal policy here?
- Assume **imperfect action execution** and full knowledge of the state (i.e., perfect localization)

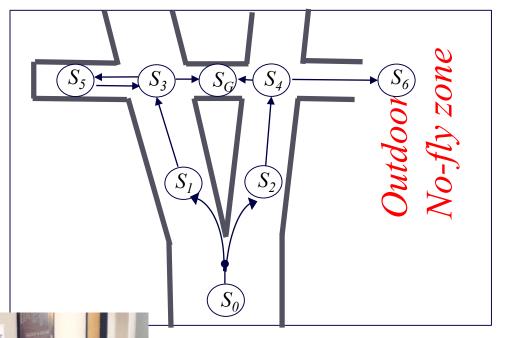


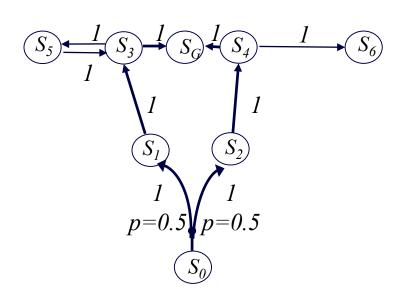


MDP:

Defined as $\{S, A, T, C\}$, where S – set of states, A – set of actions, T(s,a,s') – Prob(s'|s,a), C – costs of all (s,a) pairs

- Consider a path pl What is an optimal policy here?
- Assume **imperfect action execution** and full knowledge of the state (i.e., perfect localization)

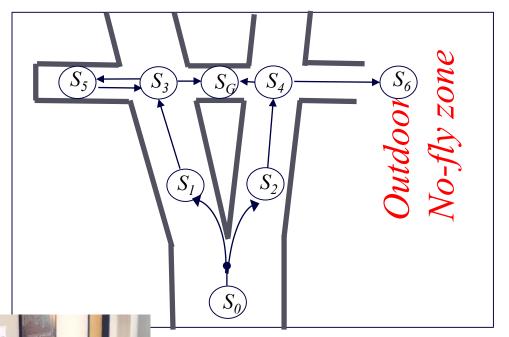


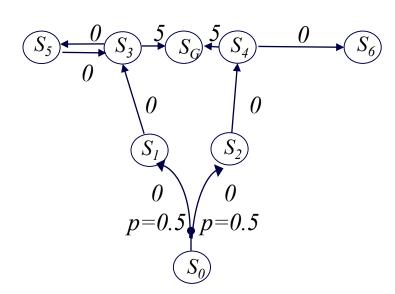


MDP:

Defined as $\{S, A, T, C\}$, where S – set of states, A – set of actions, T(s,a,s') - Prob(s'|s,a), C – costs of all (s,a) pairs

- Consider a path planning example
- Assume **imperfect action execution** and full knowledge of the state (i.e., perfect localization)

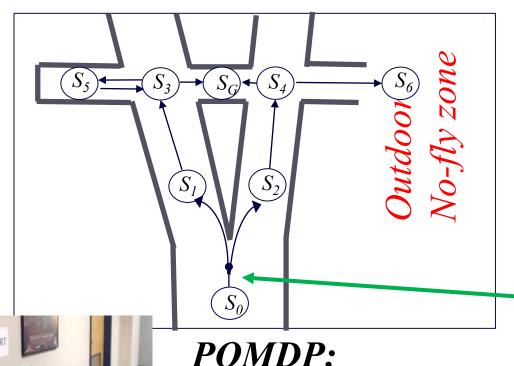




MDP (rewards version):

Defined as $\{S, A, T, R\}$, where S – set of states, A – set of actions, T(s,a,s') - Prob(s'|s,a), R – rewards for all (s,a) pairs

- Consider a path planning example
- Assume imperfect action execution and partial observability of the state (i.e., imperfect localization)



Let's assume UAV initially knows it is at S_0 During execution: it can only sense adjacent obstacles and being at goal

After taking this action, UAV doesn't know whether it is at state S_1 or S_2

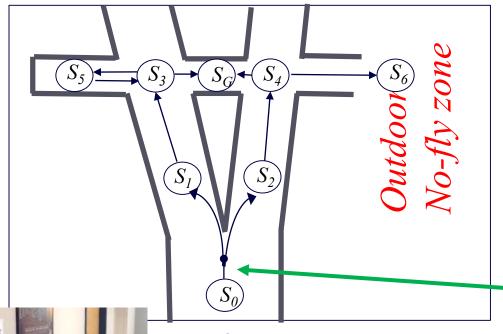
- Consider a path plant What is an optimal policy here?
- Assume imperfect action execution and partial observability of the state (i.e., imperfect localization)



Let's assume *UAV* initially knows it is at S_0 During execution: it can only sense adjacent obstacles and being at goal

After taking this action, UAV doesn't know whether it is at state S_1 or S_2

- Consider a path planning example
- Assume imperfect action execution and partial observability of the state (i.e., imperfect localization)

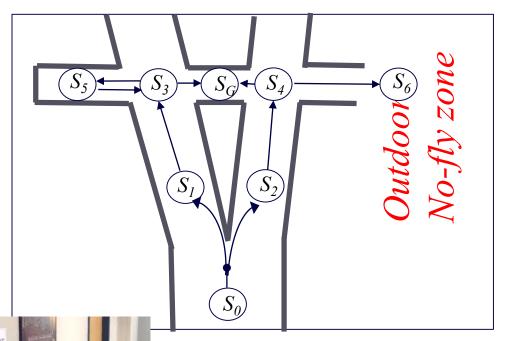


Let's assume UAV initially knows it is at S_0 During execution: it can only sense adjacent obstacles and being at goal

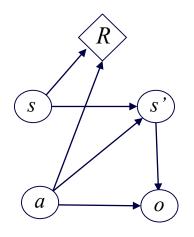
After taking this action, UAV doesn't know whether it is at state S_1 or S_2

POMDP: $\{S, A, T, R, \Omega, O\}$, where S, A, T, R (or C) – same as in MDP, Ω – set of all possible observation vectors o, O(s',a,o) – Prob(o|s',a) probability of seeing o after executing action a and ending up at state s'

- Consider a path planning example
- Assume imperfect action execution and partial observability of the state (i.e., imperfect localization)



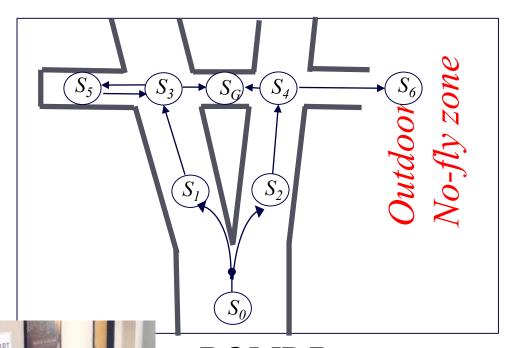
Causal relationship



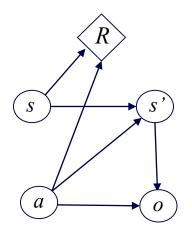
POMDP: $\{S, A, T, R, \Omega, O\}$, where S, A, T, R (or C) – same as in MDP, Ω – set of all possible observation vectors o, O(s',a,o) – Prob(o|s',a) probability of seeing o after executing action a and ending up at state s'

Example of POMDP problems where the robot knows its own pose perfectly (perfect localization)?

• Assume imperfect action execution and partial observability of the state (i.e., imperfect localization)

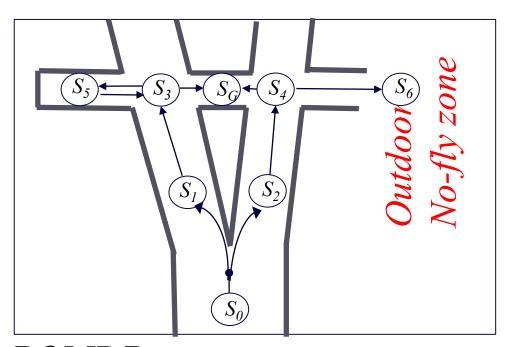


Causal relationship

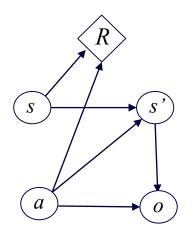


POMDP: $\{S, A, T, R, \Omega, O\}$, where S, A, T, R (or C) – same as in MDP, Ω – set of all possible observation vectors o, O(s',a,o) – Prob(o|s',a) probability of seeing o after executing action a and ending up at state s'

• **Belief state** *b*: Probability distribution over the states the robot believes it is currently in



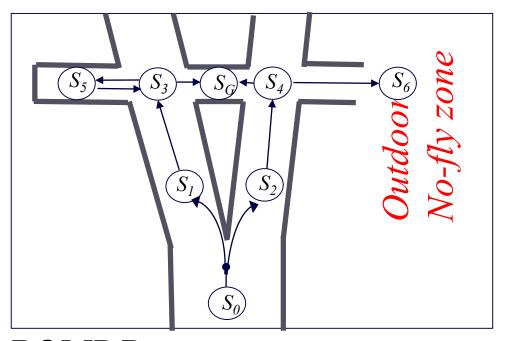
Causal relationship



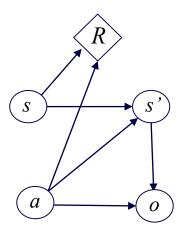
Belief state b: Probability distribution over the states the robot believes it is currently in

b-a vector of size N (# of states in S) $\Sigma^{N} b_{i} = 1$, and $b_{i} \ge 0$ for all i

Suppose the robot knows it is initially in s_0 . Then initial $b = [1,0,0,0,0,0,0]^T$. That is, $P(s_0) = 1$



Causal relationship

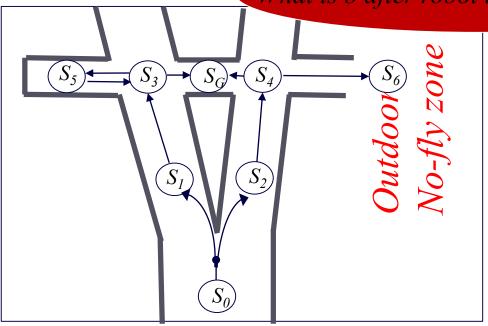


Belief state b: Probability distribution over the states the robot believes it is currently in

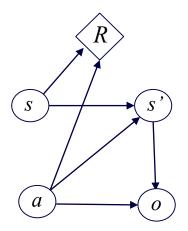
$$b-a$$
 vector of size N (# of states in S)
 $\Sigma^N b_i = 1$, and $b_i \ge 0$ for all i

Suppose the robot knows it is initially in s_0 . Then initial $b = [1,0,0,0,0,0,0]^T$. That is, $P(s_0) = 1$

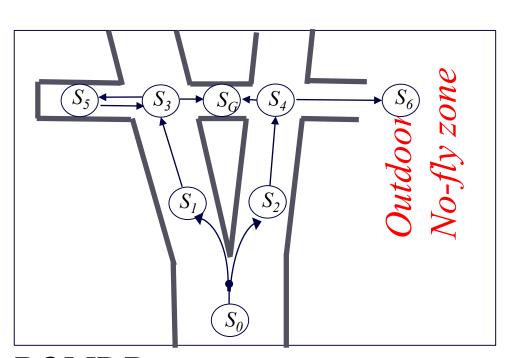
What is b after robot takes the 1st action?



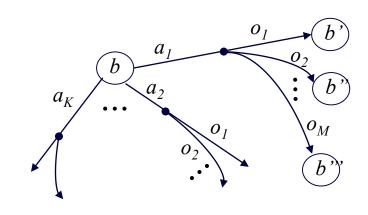
Causal relationship



• **Belief state** *b*: Probability distribution over the states the robot believes it is currently in



Belief State Space (for K actions, M possible observations)



POMDP: $\{S, A, T, R, \Omega, O\}$, where T(s,a,s') = P(s'|s,a), R(s,a), O(s',a,o) = Prob(o|s',a)

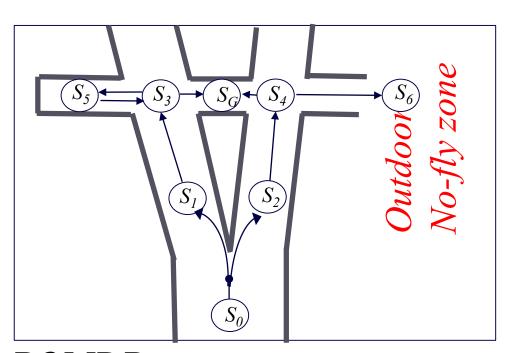
Belief state b: Probability distribution over the states the robot believes it is currently in

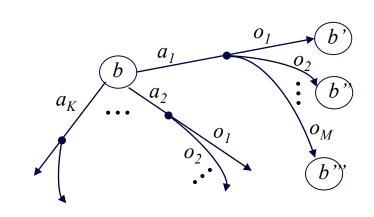
b': P(s'|b,a,o) for every s' in S;

$$b'(s') = P(s'|b,a,o) = \frac{O(s',a,o)\sum_{s}\{T(s,a,s')*b(s)\}}{P(o|b,a)}$$

Here how outcome beliefs are computed

Belief State Space (for K actions, M possible observations)





Belief state b: Probability distribution over the states the robot believes it

is currently in

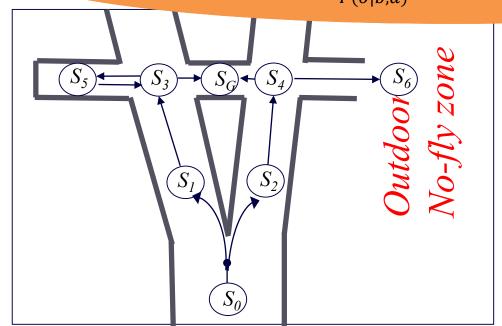
b': P(s'|b,a,o) for every s' in S;

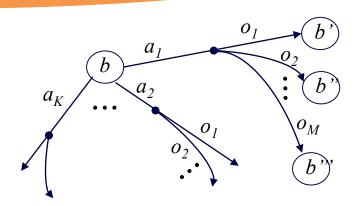
$$b'(s') = P(s'|b,a,o) = \frac{O(s',a,o) \sum_{s} \{T(s,a,s') * b(s)\}}{P(o|b,a)}$$

Here how outcome beliefs are computed

Derivation:

$$P(s'|b,a,o) = \frac{P(o|b,a,s')P(s'|b,a)}{P(o|b,a)} = \frac{P(o|s',a)\sum_{s}\{P(s'|s,a)*P(s)\}}{P(o|b,a)}$$
 .ations)





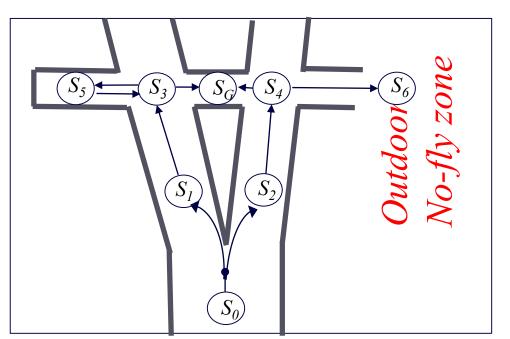
Belief state *b*: Probability distribution over the states the robot believes it is currently in

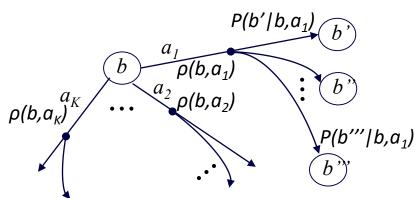
What is Belief State Space?

It is MDP!

We just need to compute transition probabilities $\tau(b,a,b') = P(b'|b,a)$ and reward function $\rho(b,a)$

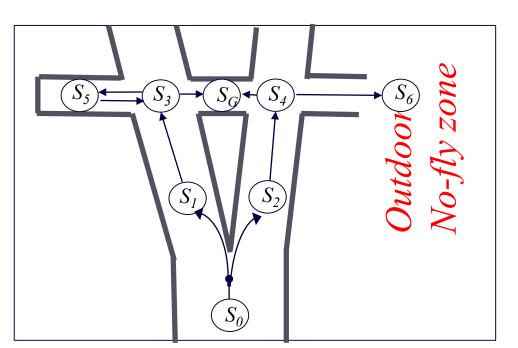
Belief State Space (for K actions, M possible observations)



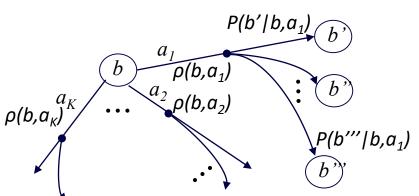


• **Belief state** *b*: Probability distribution over the states the robot believes it is currently in

$$\tau(b,a,b') = P(b'|b,a) = \sum_{o \ leading \ to \ b'} P(o|b,a) = \sum_{o \ leading \ to \ b'} \sum_{s'} P(o|s',a) \sum_{s} P(s'|s,a)b(s)$$



Belief State Space (for K actions, M possible observations)



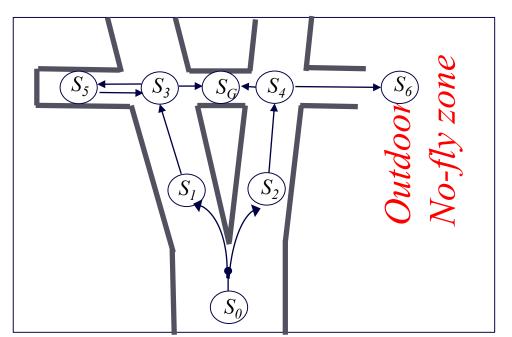
POMDP: $\{S, A, T, R, \Omega, O\}$, where T(s,a,s') = P(s'|s,a), R(s,a), O(s',a,o) = Prob(o|s',a)

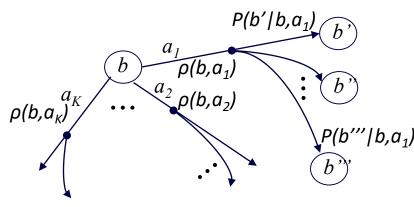
• **Belief state** *b*: Probability distribution over the states the robot believes it is currently in

$$\tau(b,a,b') = P(b'|b,a) = \sum_{o \ leading \ to \ b'} P(o|b,a) = \sum_{o \ leading \ to \ b'} \sum_{s'} P(o|s',a) \sum_{s} P(s'|s,a)b(s)$$

$$\rho(b,a) = \sum_{s} R(s,a)b(s)$$

Belief State Space (for K actions, M possible observations)



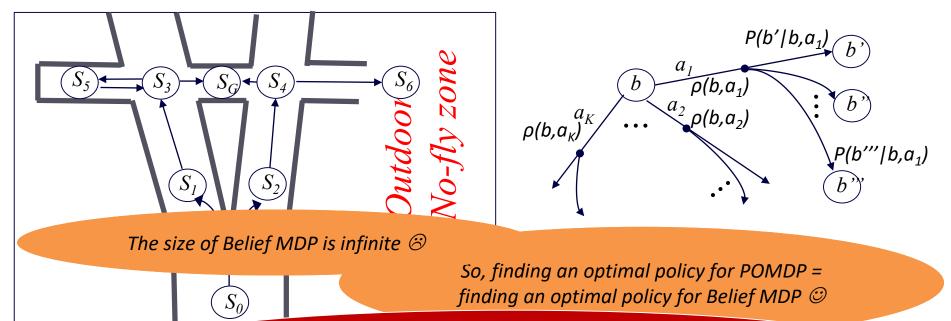


• **Belief state** *b*: Probability distribution over the states the robot believes it is currently in

$$\tau(b,a,b') = P(b'|b,a) = \sum_{o \ leading \ to \ b'} P(o|b,a) = \sum_{o \ leading \ to \ b'} \sum_{s'} P(o|s',a) \sum_{s} P(s'|s,a)b(s)$$

$$\rho(b,a) = \sum_{s} R(s,a)b(s)$$

Belief State Space (for K actions, M possible observations)

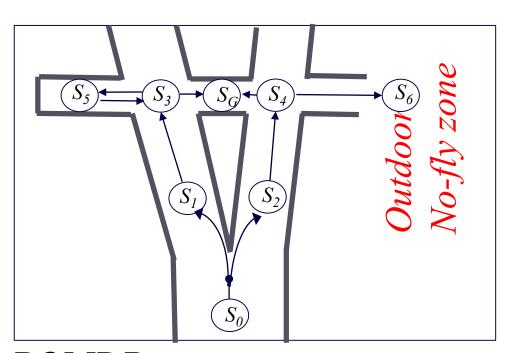


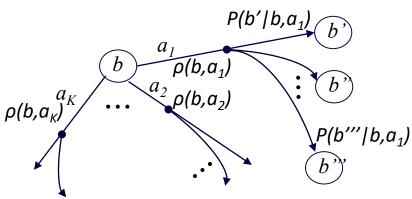
We can even use Value Iteration you studied, can't we?

- **Belief state** *b*: Probability distribution over the states the robot believes it is currently in
- Popular techniques for solving POMDPs
 - by discretizing belief statespace into a finite # of states [Lovejoy, '91]
 - by taking advantage of the geometric nature of value function [Kaelbing, Littman & Cassandra, '98]
 - by sampling-based approximations [Pineau, Gordon & Thrun, '03]

Belief State Space

(for K actions, M possible observations)





What You Should Know...

• What problems should be modeled as planning on Graphs vs. MDPs vs. POMDPs

How POMDPs can be transformed into a Belief MDP

How can one plan in a Belief MDP