16-350
Planning Techniques for Robotics

Search Algorithms:
Planning on Symbolic Representations

Maxim Likhachev

Robotics Institute

Carnegie Mellon University

We are given a problem; need to compute a plan

« STRIPS representation of the problem

A
B C

>)|

Start state:
On(A,B)"On(B,Table)~On(C,1able)"Block(A)"Block(B)"Block(C)"Clear(A)"Clear(C)
Goal state:

On(B,C)"On(C,4)"On(A,Table)

Actions:

MoveToTlable(b.x)

Precond: On(b,x)"Clear(b)"Block(b)

Effect: On(b,1able)"Clear(x)"~On(b,x)
Move(b,x,y)

Precond: On(b,x)"Clear(b)"Clear(y)"Block(b)"Block(v)"(b~=y)
Effect: On(b,y)"Clear(x)"~On(b,x)"~Clear(y)

Carnegie Mellon University

Planning via Graph Search

« STRIPS representation of the problem

A

B

C

> O

On(A,B)"On(B,Table)
"On(C,Table)"Block(A)"Block(B)
“Block(C)"Clear(4)"Clear(C)

move(4,B,C) moveToTable(4,B)

On(A,Table)"On(B, Table)
“On(C,Table)"Block(A)"Block(B)
“Block(C)"Clear(A4)"Clear(C)

On(A,C)"On(B, Table)
“On(C,Table)"Block(A)"Block(B)
“Block(C)"Clear(4)"Clear(B)

Carnegie Mellon University

Planning via Graph Search

« STRIPS representation of the problem

A
B

B
C
A

On(A,B)"On(B,Table)
“On(C, Table)"Block(4)"Block(B)
“Block(C)"Clear(4)"Clear(C)

move(A,B,C)] moveToTable(A,B)

On(A4,C)"On(B,Table)
“On(C,Table)"Block(4)"Block(B)
"Block(C)"Clear(4)"Clear(B)

On(A,Table)"On(B,Table)
“On(C,Table)"Block(A)"Block(B)
"“Block(C)"Clear(4)"Clear(C)

Carnegie Mellon University

Planning via Graph Search

Assign edgecosts and
search with A* for a least-cost

C
A

| >

(or with weighted A* for a suboptimal)

path to the goal state

On(A,B)"On(B,Table)
"On(C,Table)"Block(A)"Block(B)
“Block(C)"Clear(4)"Clear(C)

move(A,B,C)] moveToTable(4,B)

On(A,Table)"On(B,Table)
“On(C, Table)"Block(A4)"Block(B)
“Block(C)"Clear(A4)"Clear(C)

On(A4,C)"On(B,Table)
“On(C,Table)"Block(A)"Block(B)
“Block(C)"Clear(4)"Clear(B)

Carnegie Mellon University

Planning via Graph Search

e Computing heuristics

literalINliteral 5Nliteral 7

S

literal2Nliteral3"literal 5

Goal

Carnegie Mellon University

Planning via Graph Search

« Computing heuristics

literalINliteral 5Nliteral 7

S

literal2Nliteral3Nliteral 5

Goal

Carnegie Mellon University

Planning via Graph Search

e Computing heuristics

literalINliteral 5Nliteral 7

S

literal2Nliteral3Niteral 5

Goal

Option 1: h(s) = # of literals that are NOT yet satisfied
i.e., h(s) = # of literals I, such that l.(s)=false and l.(goal) = true

Planning via Graph Search

« Computing heuristics

literalINliteral 5Nliteral 7

S

literal2Nliteral3Nliteral 5

Goal

Carnegie Mellon University

Planning via Graph Search

« Computing heuristics

literalINliteral 5Nliteral 7

S

literal2Nliteral3Nliteral 5

Goal

Planning via Graph Search

* Challenges in graph search formulation

D

B

A

C

C

A

|

move(V

On(A4,Table)"On(B, Table)
~On(C,Table)"On(D, Table)
“Block(A)"Block(B)"Block(C)
“Block(D)"Clear(A)"Clear(B)
~Clear(C)"Clear(D)

moveToTable(4,B)

Carnegie Mellon University

11

Planning via Graph Search

* Challenges in graph search formulation

D

B

A

C

C

A

| C

)

On(A,Table)"On(B, Table)
~On(C,Table)~On(D,Table)
Block(A)"Block(B)"Block(C)

“Block(D)"Clear(A)"Clear(B)
~Clear(C)*Clear(D)

moveToTable(A,B)

Carnegie Mellon University

12

Planning via Graph Search

* Challenges in graph search formulation

C
D|B||A||C A

| C

|)

On(A,Table)"On(B, Table)
~On(C,Table)~On(D,Table)
“Block(A)"Block(B)"Block(C)

“Block(D)"Clear(A)"Clear(B)
~Clear(C)*Clear(D)

moveToTable(A,B)

Carnegie Mellon University

13

Partial-Order Planning (POP)

» Total vs. partial ordering of actions

oollw

C
|DBAC A

On(A,Table)"On(B, Table)
~On(C,Table)~On(D,Table)

Block(A)"Block(B)"Block(C)
“Block(D)"Clear(A)"Clear(B)
~Clear(C)*Clear(D)

moveToTable(A,B)

Carnegie Mellon University 14

Partial-Order Planning (POP)

» Searches the space of “plans”
— State defined by:

* The currently selected set of actions

 Set of ordering constraints in the form of A<B (action A has to be executed
at some point before action B). No cycles allowed (i.e., A<B and B<A is a
cycle and makes such state invalid)

+ Set of causal links in the form of A=>B (action A achieves precondition p
required by action B)

Carnegie Mellon University 15

Partial-Order Planning (POP)

» Searches the space of “plans”
— State defined by:

* The currently selected set of actions

 Set of ordering constraints in the form of A<B (action A has to be executed
at some point before action B). No cycles allowed (i.e., A<B and B<A is a
cycle and makes such state invalid)

+ Set of causal links in the form of A=>B (action A achieves precondition p
required by action B)

Actions: Start, Finish
Order constraints: Start < Finish

Start state

Carnegie Mellon University 16

Partial-Order Planning (POP)

* Searches the space of “plans™
— State defined by:

» The currently selected set of actions

» Set of ordering constraints in the form of A<B (action A has to be executed
at some point before action B). No cycles allowed (i.e., A<B and B<A is a
cycle and makes such state invalid)

Actions: Start, Finish
Order constraints: Start < Finish

Start state

Carnegie Mellon University 17

Partial-Order Planning (POP)

Searches the space of “plans™

— Successor S’ of state S computed as follows:
* Pick any action B in S which has at least one precondition p not satisfied

» Choose any action A (either a new action or an existing action in state S) that
achieves p and
— Add 4 to S’ (if not in it already)
— Add A<B, Start<A, A<Finish orders to S’
— Add A£>B causal link to S~
— If any other action C in §” removes p, then C<4 or B<C constraint added
— If 4 removes precondition p’ used in a causal link D£>F , then A<D or F<A added

— _If any constraint cycle is introduced, then S’ is an invalid successor

Actions: Start, Finish
Order constraints: Start < Finish

Start state

Carnegie Mellon University 18

Partial-Order Planning (POP)

Searches the space of “plans™

— Successor S’ of state S computed as follows:
* Pick any action B in S which has at least one precondition p not satisfied

» Choose any action A (either a new action or an existing action in state S) that
achieves p and
— Add 4 to S’ (if not in it already)
— Add A<B, Start<A, A<Finish orders to S’
— Add A£>B causal link to §”
— If any other action C in §” removes p, then C<4 or B<C constraint added
— If 4 removes precondition p’ used in a causal link D£>F , then A<D or F<A added
— _If any constraint cycle is introduced, then S’ is an invalid successor

Actions: Start, Finish
Order constraints: Start < Finish

This gives us an implicit graph
that is typically searched by Depth-First Search
for any feasible solution to the goal state

Start state

Carnegie Mellon University 19

Partial-Order Planning (POP)

» Searches the space of “plans”

— Terminate the search as soon as a state where all actions have all
their preconditions met 1s reached (e.g., a goal state of the search)

Actions: Start, Finish
Order constraints: Start < Finish

Start state

Carnegie Mellon University

Actions: Start, Finish, A, C, ...
Order constraints: Start < Finish,
Start<A4, A<C, ...

Goal state

20

Partial-Order Planning (POP)

» Searches the space of “plans”

— Terminate the search as soon as a state where all actions have all
their preconditions met 1s reached (e.g., a goal state of the search)

C D
D|IB| A||C A B

Example on the board

Actions: Start, Finish
Order constraints: Start < Finish

Start state

Carnegie Mellon University 21

What You Should Know...

 How to compute domain-independent heuristics

« Motivation for Partial-order Planning

* The general 1dea behind how Partial-order Planning works

Carnegie Mellon University 22

