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Abstract

Enabling multiple robots to work together as a team is a difficult problem. Robots must decide amongst
themselves who should work on which goals and at what time each goal should be achieved. Since the
team is situated in some physical environment, the robots must consider travel time in these decisions. This
is particularly challenging in time critical domains where goal rewards decrease over time and for tightly
coupled coordination where multiple robots must work together on each goal. Further complications arise
when the system is subjected to additional constraints on the ordering of the goals, the use of resources, or
the allocation of robots to goals. Optimal team behavior can only be achieved when robots simultaneously
consider path planning, task allocation, scheduling, and these additional system constraints. In dynamic
and uncertain environments, robots need to reevaluate these decisions as they discover new information.
Communication failures may mean that robots are unable to consult as a whole team while replanning. The
proposed thesis addresses these challenges with four main points.

First, we propose modeling the problem facing the robot team, a time critical tight coordination team
planning problem, using a mathematical programming model, or, more specifically, as a mixed integer
linear programming problem. We describe algorithms for combining traditional solution techniques for
mathematical programming models with domain specific heuristics resulting in a system that is declarative,
transparent to humans, efficient, progressive, and capable of providing error bounds on solution quality.

Second, we show that it is possible to reason about a variety of constraints on the goals, robots, and
resources of the system within the proposed framework. We describe a general first order logic constraint
language for multirobot coordination which we incorporate into our system.

Third, the proposed thesis provides a framework for interleaving planning and execution in a dynamic
environment. By adopting a novel model for communication failure in robot teams, robots can explicitly
reason about the effects on team performance of changes in the team plan when some of the team is out of
communication and unaware of these changes. The tradeoff between adapting the plan to optimally respond
to new information and preserving the original plan for consistency can be incorporated into our proposed
mixed integer linear programming model in a principled manner, thus improving team performance.

Similarly, a number of various tradeoffs can be represented in the declarative mathematical programming
model. We propose addressing one more such tradeoff and reasoning about the robustness of team plans to
certain types of failure or new information.

Preliminary results in an abstract simulator indicate the feasibility of this approach and the benefits of some
of these extensions. The proposed thesis will further investigate the effects of reasoning about constraints,
communication failures, and plan robustness on a variety of benchmarks and on realistic robots in a high
fidelity simulator.
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1 Introduction

Multirobot teams are useful in environments in which it is dangerous, expensive, or impractical to send
humans. A number of such target application domains have been identified including reconnaissance [22],
gallery monitoring and security sweeps [45], space exploration [67], and the inspiration domain for this work,
urban search and rescue (USAR) [58]. The robots must work together to accomplish a set of goals shared
by the team. The allocation and scheduling of robots to goals is a team planning problem. We are interested
in a number of challenges which arise in USAR and other complex domains when solving the team planning
problem.

Complex domains may require multiple robots to collaborate on a single joint goal if no individual robot
is capable of performing the goal independently or when team performance may be improved by this collab-
oration. A simple example from the USAR domain involves one robot with a spotlight and a second robot
with a high resolution camera working together to check a dark ceiling for structural stability.

Time critical domains such as search and rescue, where lives are at stake, require careful consideration
of plan efficiency. For teams of robots operating in physical environments, coordination inefficiencies may
by magnified by the spatial constraints inherent to the problem. The time needed for robots to traverse
the environment often dominates team performance. Consequently, it is beneficial to dedicate some time to
generating an optimal or near optimal plan rather than executing a highly suboptimal plan. Since planning
itself delays execution, it is important that this planning be efficient.

Search and rescue and other rich domains include a wide variety of additional constraints on the goals,
robots, and resources. A coordination architecture for these domains must be able to accommodate these
constraints. Some constraints arise naturally from the problem, for example, a robot may not travel further
than its battery capacity allows. Other system constraints facilitate human robot team interaction by allowing
human responders more direct control over system performance than if the only input is goal rewards as
illustrated by the simple but important example of turn off the circuit breakers before completing any other
goals. Finally, system constraints may improve efficiency through more expressive modeling.

Even when robots are able to start with an optimal plan, few domains are so benign that this original plan
can be successfully executed. As robots fail, new robots join the team, the environmental model changes,
goals are added and removed, etc., the team must react appropriately, interleaving planning and execution.
Due to the physical nature of the environment, robots may not be in full communication at any given time.
This communication failure necessitates distributed replanning.

1.1 Objective

The proposed thesis seeks to answer the question,

Can agents improve team performance in time critical domains with tight coordination

by reasoning about the heterogeneous capabilities of team members, system constraints,
communication failures and expected replanning catalysts?

A team consists of a set of members that share a set of goals. The team composition may change over
time as members are added and removed from the team. Similarly, the goals of the team may change over
time as new goals are added and old goals are met or discarded. We limit our research to teams in which
individual team members have no selfish goals so that all actions are for the good of the team.

In time critical domains, team performance is not only dependent on which goals are accomplished but
when these goals are accomplished. Goal rewards are functions of time. Search and rescue is a natural
example of a time critical domain since victims are more likely to die as time passes.
Tight coordination between robots is required when a subset of the team goals are best achieved by

multiple robots working together on an individual goal. This is in contrast to loosely coupled coordination
in which all goals may be independently accomplished by individual robots [24] [18].

We use agent to refer to the members of the team. In general, an agent is a computational entity with
some degree of autonomy and intelligence capable of interacting with other agents. We comprehend both
software and physical agents (robots) in the term. As a software agent may be considered a robot with no
physical capabilities, we will use the terms robot and agent interchangeably.

The central question stated leads to several subsidiary questions:
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• Can we create an efficient planning system with optimality guarantees for time critical tightly coupled
team planning problems?

Before improving team performance through intelligent reasoning, we need a planning system. This
system should have the following properties.

Efficiency The system must be able to generate feasible plans quickly (in a few seconds).

Optimality The coordination framework should converge to the optimal solution.

Progressive Given additional time, the planner should improve the solution quality.

Error bounds The planner should be able to generate a solution that is guaranteed to be within some
margin of the optimal solution or, alternatively, specify the maximum distance from optimality
of a generated solution.

Transparency The coordination framework should be transparent to humans interacting with the
system. Robots should be able to explain their actions in terms of the specified goals of the
system. Although we consider transparency in our design criteria, the topic of human-robot
interaction is an interesting problem but outside the scope of the proposed thesis.

• How should robots reason about heterogeneity in time critical tight coordination team planning problems?

Robot teams in challenging environments such as a disaster site will necessarily have heterogeneous

capabilities as cost limitations, power consumption, and size constraints require tradeoffs between
mobility and capabilities. The environment may require robots with diverse modalities (e.g. ground,
air, water) to successfully navigate the environment. When certain resources are scarce (i.e. only one
robot has a particular sensor demanded by many goals), explicitly reasoning about team heterogeneity
may improve performance.

• What system constraints should be supported by the planning system and how can they be incorporated
in a principled manner?

System constraints most generally include any restrictions on the solution space. In the context of
this research, system constraints may include goals, robots, or system resources. These constraints may
arise naturally from the environment such as constraints on how far a robot may travel. Alternatively,
they may arise from complex goal models as commonly found in the planning literature where the goals
can be accomplished in a number of different possibilities. System constraints may also arise from the
arbitrary preferences of the user specifying the goals. For example, in the search and rescue domain, a
rescue worker may restrict aerial robots from working on goals in some sector due to security concerns.
These system constraints should be explicitly considered during planning to guarantee that they are
all met and to maximize system performance.

• How should robots react to communication failures in order to maximize expected team performance?

Communication failures complicate coordination efforts when agents are unable to share information
which may affect team performance. A centralized approach to coordination is infeasible if some
subset of the team is unable to communicate with a master planner. The inconsistencies in team
beliefs introduced by these communication failures may negatively affect team performance unless
these inconsistencies are considered while replanning.

• Can robots use models for robot failure, communication failure, etc. to create plans that are robust to
these failures and so increase team performance?

Replanning catalysts are events that necessitate replanning. Examples include the failure of a robot,
the addition of a new goal, or the discovery that it will take twice as long to travel to a goal as expected.
As each event is discovered, the previous plan must be refined to accommodate the new information.
In extreme cases, this may result in system thrashing. To avoid this behavior, the system can prefer
plans with robustness to the detection of certain expected replanning catalysts. For example, if robots
frequently fail, it may be best to initially send two robots to accomplish one goal.
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1.2 Approach

This thesis proposal addresses these problems in the context of constraint optimization. Our approach is
to build a mathematical programming model of the time critical tight coordination team planning problem.
More specifically, we model the problem as a mixed integer linear programming problem. This approach has
a number of advantages. The declarative representation of the mathematical model preserves the original
semantics of the problem and thus the transparency. The heterogeneous capabilities of the robots, spatial and
temporal constraints inherent to the problem, and additional system constraints can be represented in this
model. This approach also allows the flexibility to combine multiple objective functions in a principled way
which facilitates advanced reasoning on communication failures and expected replanning catalysts. We are
also able to leverage the extensive work of the operations research community in efficient solution techniques.

We have developed a Constraint Optimization Coordination Architecture, COCoA, which maps the
team planning problem to a mixed integer linear programming problem and then combines domain specific
heuristics and standard integer programming algorithms to efficiently generate optimal or near optimal plans.

As previously discussed, since the robots are operating in a dynamic, uncertain environment, planning
and execution must be interleaved. The communication failures common to robot systems depending on a
wireless network may negatively affect team performance during replanning. Although this communication
failure is a common phenomenon in multirobot coordination, models for these communication breakdowns
are relatively primitive. Multirobot coordination architectures that address the problem assume any given
message is lost with some uniform probability. However, this is unrealistic since robot communication is
frequently based on TCP which is a reliable protocol. For robots using wireless Ethernet for communication,
there is a finite range for communication that is determined by the properties of the environment and
the power of the wireless signal. We propose modeling these limited ranges of reliable communication which
result in subsets of the team with good local communication but little or no communication between subsets.
In this thesis proposal, we use the term fractured subteam to refer to subsets of robots in the original team
that are able to communicate with each other, directly or indirectly, but not with the rest of the team.

While the nature of tight coordination problems does not easily allow robots to take advantage of distributed
planning [24], the fractures in the team make centralized planning infeasible forcing distributed replanning.
We propose a hybrid approach for coordination in which robots within a fractured subteam replan centrally
in order to efficiently generate near optimal plans but each individual robot is capable of independently
responding to deviations in the plan. Coordination within a fractured team is challenging because the
fractured subteams introduce a new dynamic variable into the system which must be considered while
replanning. Since other subteams are unaware of disturbances within the system, care must be taken to
minimize disruption to the schedules of these other robots.

The final point in our approach is to plan for the eventuality of replanning catalysts by biasing the system
towards plans that are robust to these events. This has not yet been implemented. We hope that by
incorporating models of these events into the objective function of the mixed integer linear programming
problem team performance will be improved, provided the models for the replanning catalysts match the
actual occurrence of these events.

1.3 Contributions

The proposed thesis would provide the following contributions to the robotics community:

Multirobot coordination through constraint optimization The mathematical programming model
of the coordination problem described in this thesis proposal is a novel approach to multirobot co-
ordination. We also describe an algorithm for combining traditional constraint optimization solution
techniques with domain specific approaches such as market based coordination.

Time critical tight coordination team planning problem This thesis proposal formalizes and ana-
lyzes the time critical tight coordination team planning problem. We present a set of benchmarks that
illustrate the complexities of the problem space. We empirically compare various algorithms on these
benchmarks.

System constraints The first order logic constraint language described in this thesis proposal captures the
important aspects of many multirobot coordination domains. We provide an implementation for this
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constraint language. The proposed thesis will also analyze the effect of various system constraints on
team performance.

Communication failure In this thesis proposal we describe a new model for communication failure in
spatially distributed robot teams. These communication failures result in fractured subteams and
necessitate a distributed approach to coordination. We describe a hybrid system with distributed
replanning with opportunistic centralization. We present an empirical analysis of communication
failures on team performance.

Selective disruption minimization This thesis proposal describes selective disruption minimization as a
method for improving team performance by attempting to avoid changes to schedules of certain robots
on the team in order to reduce the cognitive load of humans interacting with those robots or to avoid
inconsistent plans due to communication failures. We show that selective disruption minimization can
be incorporated in the mathematical programming model of the team planning problem in a principled
manner.

Robust plan selection The proposed thesis will describe a method for selecting plans that are robust
to certain expected types of failure by, for example, allowing robots extra time to travel to goals or
allocating surplus robots to a goal in case one robot fails. We will analyze the effect of robust plan
selection on team performance both when the actual failures match the model of expected failures and
when the expected failures do not occur.

1.4 Organization of proposal

The remainder of this document is organized as follows. In the next section, we summarize and evaluate
related work in the fields of multirobot and multiagent systems. In Section 3, we describe COCoA and
the already completed steps towards addressing the questions posed by the proposed thesis. We outline our
proposed path to answering the rest of the questions in Section 4 and the expected schedule for this work in
Section 5. The contributions of the proposed thesis are summarized in Section 6.

2 Related Work

Our work draws on research in a number of fields but particularly from the multirobot and multiagent
research communities. Although many of the goals of these two communities are identical at a high level,
there are a number of issues in designing a coordination architecture for physical robots that may be ignored
with software agents. For example, robots must reason about both spatial and temporal constraints when
coordinating which are not generally relevant in coordinating software agents. Consequently the two groups
have developed different ideologies and methodologies.

2.1 Multirobot coordination

A wide range of application domains for multirobot coordination coupled with recent advances in single
robot control have motivated much research in robot teamwork in recent years, a trend that is likely to
continue. We distinguish between implicit coordination in which complex collective behavior emerges from
the interactions of the set of agents following simple yet carefully crafted rules or behaviors and explicit
coordination in which robots coordinate their actions intentionally.

Implicit Coordination

One approach to coordinating the actions of many robots is to allow the robots to self organize, such
as animals in a swarm. By having each robot follow simple rules, macroscopic behavior emerges. The
swarm approach seeks to have a set of simple agents with completely distributed control. The individual
agent behavior is designed such that global behavior emerges from local interactions among agents and the
environment. Appropriately, this approach is often termed emergent coordination.
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This biologically inspired approach requires the system designer to determine exactly what each robot
should do and hard code this behavior into the robot intelligence. One advantage is that the robots then
need relatively little of their own intelligence. Furthermore, this tactic works well in biology where simple
creature such as termites have evolved to accomplish complex feats such as building termite mounds following
simple rules. Several researchers have successfully demonstrated this technique for collective intelligence in
domains such as foraging, flocking, and predator-prey relationships [54] [5] and carrying a box between
multiple robots [13].

Although self organizing approaches to coordination are in many ways an elegant solution to multirobot
coordination, there are a number of drawbacks that make it inappropriate for the time critical tight coordi-
nation team planning problem. First, it is difficult and, in some domains, impossible to design distributed
agents and their actions such that local reactions result in goal achievement. Second, these systems lack any
explicit notion of teamwork which is a drawback when the system must interact with humans. Finally, since
complex behaviors are not explicitly programmed in but rather emerge from the complex interactions of
robots, guaranteeing system performance in emergent systems is usually not possible. Mathematically, the
macroscopic behavior of the system may be analyzed by modeling the individual agents as stochastic and
Markovian, as shown by Lerman and Galstyan, [47]. This method requires every relevant state of the system
and the transitions between these states to be modeled by a variable and a rate equation that describes how
that variable changes over time. This is impractical for complex tasks or controllers and cannot take into
account memory, learning, or decision making by agents. While emergent behavior can be robust to certain
types of environmental dynamics if the controllers are properly designed, it is difficult to infuse knowledge
about a specific environment into the system (i.e. avoid a specific corridor because it is blocked off).

Explicit Coordination

In contrast to implicit coordination, under explicit coordination robots can intentionally cooperate to achieve
a goal. The popularity this approach and diversity of proposed solutions has led several researchers to propose
taxonomies to characterize the various approaches [28], [4], [35], [87]. The taxonomy described by Gerkey and
Matarić [35], though incomplete since it only addresses the multirobot task allocation problem, is helpful in
understanding the problem space and roughly characterizing several approaches. This taxonomy focuses on
the problems addressed rather than the particular solution. The taxonomy analyzes coordination approaches
based on whether the robots are capable of performing one (ST) or more (MT) tasks at a time, whether goals
require exactly one (SR) or more (MR) robots to be achieved, and whether task allocations are instantaneous
(IA) or include time-extended scheduling (TA). The first axis in the taxonomy is relatively uninteresting
since few robots are capable of performing multiple tasks simultaneously and the solutions for single task
robots extend trivially to multitask robots. However, we examine work in multirobot coordination in terms
of the other two axes of the taxonomy. The time critical tight coordination team planning problem addressed
by the proposed thesis falls into the single task, multirobot, time extended category ST-MR-TA.

A number of systems address the ST-SR-IA problem. Werger and Matarić’s BLE system uses a greedy
algorithm and behavior based paradigm for coordination [83]. In Parker’s ALLIANCE system [59], robots
maintain levels of impatience and acquiescence concerning all available tasks. The computational load of
individual robots is increased since they must model all other robots. Correct tuning of the parameters
(L-ALLIANCE) can increase system performance. MURDOCH [33], GOFER [14], and M+ [9] also address
ST-SR-IA problems using an extension of the contract net protocol [69].

In the robot soccer domain, a number of approaches have been developed for the closely related problem
of role allocation. A unique approach to coordination is through the generation of artificial potential fields.
Potential fields are well known for obstacle avoidance since they can be precomputed and then are relatively
inexpensive to use and repair, even when the environment changes. Potential fields have the general drawback
that they may guide the robots to local extrema. As demonstrated in the robot soccer domain by Vail and
Veloso [80][79] and Tews and Wyeth [77], potential fields can also be used to determine the actions of the
individual robots. Defining the potential field may be difficult for complex domains.

Gerkey and Matarić show that MT-MR-IA problems are instances of the set covering problem [35] which
is NP hard. Tang and Parker present ASyMTRe [75] (and a distributed version ASyMTRe-D [76]) with an
anytime algorithm for solving this class of problems. This class of problems is also related to the coalition
formation problem in multiagent systems, though coalition formation has an additional set of problems as
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discussed in section 2.2. This class of problems does not deal with scheduling or the time critical nature
of the problem addressed by the proposed thesis. The Hoplites framework [45] may also be classified in
the class of MT-MR-IA problems though the Hoplites framework was developed for a more specific class
of tight coordination problems than addressed by ASyMTRe or the proposed thesis which abstracts away
the tight coordination of robots actually working together on a goal. Gerkey, Thrun, and Gordon recently
proposed Parallel Stochastic Hill Climbing or Parish [32] which combines stochastic action selection with
simple heuristics to solve the multi-robot pursuit evasion problem, an instance of ST-MR-IA class of problems.

The gaining popularity of market based approaches within the robotics community warrants a closer look at
this method for coordination. Market frameworks are based on the contract net protocol [69] in which rational
agents submit bids based on the cost of completing a task and receive some reward for successfully completing
a task. This is an efficient method for coordinating teams of robots and has been demonstrated effectively
in a number of systems [25][34][18][33][14][9]. TraderBots [22], is one of the most successful of these systems
and supports some complex tasks [89], limited opportunistic centralization [25], heterogeneous robots and
time varying rewards [67]. Despite these successes, market based approaches have some limitations. Dias
et. al. write in [24] Perhaps the biggest drawbacks of market-based approaches currently are the lack of
performance guarantees and the lack of formalization in designing appropriate cost and revenue functions to
capture domain requirements. This lack of performance guarantees is unacceptable in certain time critical
domains. Designing appropriate cost and revenue function can be a challenging problem as noted above.
The opaqueness of these functions make it difficult for humans to understand the system. Furthermore,
market systems typically address only the task allocation problem and not when tasks should be scheduled.

Summary of multirobot coordination

The set of problems requiring multiple robots on goals and time extended assignment is not adequately
addressed in the multirobot literature. This thesis proposal addresses this class of problems. Not included in
the taxonomy is the ability of a system to meet various constraints on goals and resources which this proposal
also addresses. We classified work in the multirobot community into implicit and explicit coordination. In
reality, however, most of the systems mentioned under explicit coordination represent hybrid approaches to
coordination. For example, in a market framework, robots do not have an explicit team model. Instead,
the system designers carefully craft local cost and reward functions and coordination emerges from the
interactions of the robots through auctions.

2.2 Multiagent coordination

Work in the multiagent systems community spans a broad range of application domains. The breadth of
the research is perhaps due to the definition of an agent as any computational entity with some degree of
autonomy and intelligence capable of interacting with other agents. We limit our investigation of the field
primarily to cooperative agents. Tambe et. al. [74] identify four competing approaches to teamwork within
the multiagent community: belief-desire-intention (BDI), distributed constraint optimization (DCOP), dis-
tributed POMDPs, and auctions or game theoretic approaches.

Belief-desire-intention

The multiagent system community has addressed a number of problems that are fundamental to this research
including what it means to be a team and the roles of commitments, conventions, and accountability in
teams. Bratman proposed the belief-desire-intention (BDI) model in 1987 [12]. Beliefs represent the agent’s
information about the current state of the world. Desires represent the agent’s ideal state of the world.
Intentions represent desires that the agent plans to realize. The BDI model is founded on theories of rational
action in humans and so may enable better transparency for humans.

There are a number of formal models for teamwork. Bratman provides three requirements for teamwork
or shared cooperative activity including mutual responsiveness, mutual commitment to a joint activity,
and mutual support [11]. These characteristics of teamwork motivate the approach adopted in this thesis
proposal specifically the selective disruption minimization. A number of teamwork theories have captured
these characteristics including SharedPlans [38], joint intentions [19], and joint responsibility [42]. These
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teamwork theories have been implemented in a number of systems including STEAM (joint intentions and
SharedPlans) [73], GRATE (joint responsibility) [44], and SPIRE (SharedPlans) [71].

Partial Global Planning (PGP) [29] and Generalized Partial Global Planning (GPGP) and the related
TÆMS framework [48] use approximation algorithms to optimize team performance in a distributed soft
real-time fashion. Goals are represented in an extended AND/OR tree. Agents communicate their high
level goals and update their models of other agents and then seek to optimize their own local activities with
some consideration of the activities of other agents using a hill climbing procedure. These frameworks do
not address the task allocation problem though they provide good solutions to coordinating the schedules of
agents sharing resources.

Jennings and Campos proposed the idea of socially responsible agents in 1997 [43]. They define a Social
Level of abstraction which sits immediately above Allen Newell’s Knowledge Level. Socially responsible
agents retain their local autonomy but interact with, and are inherently linked to, the larger community.
This approach differs from purely selfless agents who only consider helping their fellows ([15], [1]). Socially
responsible agents demonstrate mathematically and empirically that having an agent reason about the global
cost and reward of its actions as well as individual cost and reward results in improved system performance.
This work is very abstract, however, and does not provide for situations where the robot may have a set of
choices or a continuum of choices. Although it has been somewhat expanded upon([70], [26], [27]), it has
not been used on real robots or in complex domains.

Distributed constraint optimization

Distributed constraint reasoning concerns itself with problems in which knowledge about the variables and
constraints in the problem is distributed among many agents. There are a number of reasons why the
distributed problem may not be trivially reduced to a centralized problem.

Privacy One of the most compelling reasons for distributed algorithms is that security or privacy concerns
may make the sharing of private information undesirable.

Communication costs Sometimes the costs of translating an agent’s representation of the problem into
an exchangeable format and communicating this information is prohibitively high.

Efficiency Finally, the structure of some problems allows a more efficient solution through the exploitation
of distributed computing resources.

The class of constraint satisfaction problems (CSPs) deals with finding legal values for a set of variables.
Each variable Vi has has a set of possible values or domain, Di. In general, a domain may be discrete or
continuous. Unary constraints restrict the allowable values in the domain of a single variable while binary
constraints relate pairs of variables [64].

The field of distributed constraint satisfaction concerns itself with CSPs in which the variables and con-
straints are distributed among a set of autonomous agents. Yokoo et. al. present a formulation for the
problem in which domains are finite and discrete, each agent has exactly one variable, all constraints are
binary, and each agent knows all the constraints relevant to its variable [88]. They present an asynchronous
backtracking algorithm for this problem formulation which can be extended to allow each agent to have an
arbitrary number of variables.

Problems in which the emphasis is in finding optimal rather than feasible solutions may require distributed
constraint optimization (DCOP). Like CSPs, constraint optimization problems consist of a set of variables,
each with a domain Di. However, binary constraints now represent the cost of an allocation between pairs
of variables. Constraint optimization algorithms seek to minimize the overall system cost. Like work in
distributed constraint satisfaction, distributed constraint optimization problem formulations assume that
domains are finite and discrete, each agent has exactly one variable, all constraints are binary, and each
agent knows the constraints relevant to its variable. The number of DCOP algorithms developed over the
years attests to the difficulty and popularity of DCOP problems which are NP -complete [56].

Hirayama and Yokoo developed Synchronous Branch and Bound [39] which has the drawback that exe-
cution must be synchronized and sequential. ADOPT was developed by Modi et. al. [56] to address the
synchronization problem. OptAPO by Mailler and Lesser [53] uses partial centralization or cooperative me-
diation. An agent is dynamically appointed as the mediator for some subset of the problem but the agents
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try to minimize the number of centralized constraints. Petcu and Faltings have developed DPOP which uses
dynamic programming to improve performance [61].

These algorithms have been successfully demonstrated in several applications including meeting scheduling
[55], distributed sensor networks [57], and to the multiagent plan coordination problem (MPCP) [21]. There
are a number of obstacles in extending the work to the time critical tight coordination team planning
problem of interest in this thesis proposal, however. Existing work in DCOP lacks support for real valued
variables which is a problem for robots which operate in an environment that is continuous in both space
and time. Discretization can lead to inefficiencies and intractably large problem sizes. More importantly,
the much of the motivation for distributed constraint reasoning is lacking in multirobot coordination. There
is no need for privacy in a team of robots only working towards the common good. The time critical tight
coordination team planning problem can be represented and communicated compactly. In fact, since robots
may lose communication with their teammates and need to reason about their commitments, it is desirable
to share all the constraints and the team plan initially. Finally, argument for efficiency does not apply to this
problem. DCOP is well suited for loosely coupled problems (such as MPCPs) but not for tight coordination.
Even small time critical tight coordination team planning problems required hours to find a feasible solution
in tests using ADOPT. Centralization becomes more advantageous as degree of interagent dependencies
increases. By first centralizing the problem, we are able to take advantage of more sophisticated algorithms
than branch and bound search. In particular, we use both the linear programming algorithms and integer
linear programming algorithms in the commercially available solver, CPLEX [40] which significantly improves
efficiency in team plan generation.

In addition to optimal solution techniques, several heuristic techniques for solving DCOP problems have
been proposed. Token-based algorithms have been demonstrated in complex domains including search and
rescue [66] and UAV coordination [85]. LA-DCOP [66] is a task allocation algorithm for large scale teams that
attempts to maximize the team’s expected utility given probabilistic information by computing a minimum
capability threshold for each task. The problem formulation proposed by LA-DCOP interleaves schedul-
ing and task allocation and does not explicitly consider path planning during task allocation but instead
incorporates travel time considerations with other fitness criteria into a single axis for robot heterogeneity.
Furthermore, the assumptions underlying the probabilistic representation of team capabilities may break
down in domains with fewer robots decreasing team performance. Token-based algorithms also fail to pro-
vide the performance guarantees necessary for time critical domains as they do not consider path planning
and separate planning and scheduling, leading to inefficiencies.

Distributed POMDPs

Markov Decision Problems (MDPs) describe the problem of choosing an optimal policy in a stochastic
environment where the agent has enough knowledge to determine its state and all transition models at all
times. MDPs assume that the world has the Markov property meaning that the transition models from any
given state depend only on the state and not the previous history [64]. If the agent is unable to directly
observe the world state and must instead rely on noisy observations of the environment to estimate the
current world state, the resulting problem is a Partially Observable Markov Decision Problem (POMDP)
[17]. Both MDPs and POMDPs deal with finding optimal policies for a single agent. These frameworks
can be extended to multiple agents with full observability using the Multi-Agent Markov Decision Problem
(MMDP) framework [10], multiple agents with collectively full observability using the Decentralized Markov
Decision Problem (DEC-MDP) framework [8], and multiple agents with collective partial observability with
the Decentralized Partially Observable Markov Decision Problem (DEC-POMDP) framework [8], Markov
Team Decision Problem (MTDP) framework [62], or the Partially Observable Identical Payoff Stochastic
Game (POIPSG) framework [60]. Pynadath and Tambe provide the COM-MTDP model for reasoning
about the cost of communication [62] but do not explicitly model communication failure.

While the problem of planning in uncertainty is highly relevant to robotic systems, the additional complexity
of these approaches (DEC-POMDPs are NEXP-complete [8]) make them unsuitable for many domains
particularly when accurate models for the uncertainty are unavailable. Our approach is more analogous to
the human method for planning where the agents form a plan using the expected state of the world and
then react to dynamic events rather than computing a policy for all possible world states. Furthermore, the
assumptions that the world has the Markov property and a finite number of states do not easily apply to
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the problem of interest since robots operate in a continuous time domain with time varying reward functions
and rewards depend on the order that the goals are accomplished.

Auctions and game theoretic approaches

The research of the multirobot and multiagent communities has mingled in developing market based systems
as an efficient means for coordination. Though there is considerable overlap between the problems addressed
by each group, robots and agents each present a unique set of challenges which guide the design of market
based systems. Robots interact with a physical environment where performance is often dominated by
locomotion challenges. Spatial constraints, more limited communication, and uncertainty are some of the
challenges that drive multirobot research. Agents are often self interested, come from different designers,
interact in an open system, and have privacy, truthfulness, and security concerns. Since our problem is
a subset of the multirobot coordination problem, we focus our attention on this line of research which we
addressed under Explicit Coordination in Section 2.1. Here we discuss a very limited subset of the research
in the multiagent community in this area.

The field of coalition formation in the multiagent systems domain is related to the ST/MT-MR-IA class
of problems. Shehory and Kraus ([68]) present distributed anytime algorithms with error bounds in the
multiagent domain. The coalition formation problem does not address reasoning about spatial constraints
or time varying reward, though it must address another set of difficult problems such as trust, fairness, etc.
Since multiagent systems are concerned with rational agents, they do not explicitly maximize team utility
but instead use market mechanisms to promote stability and efficiency [50]. In contrast the approach in this
thesis proposal has no model of individual robot utility but explicitly maximizes team utility.

Combinatorial auctions allow buyers to express the value of winning a set of items which may be greater
than the sum of the individual items in which case the auction goods are called complementary. This is
frequently illustrated in the multirobot field where it is cheaper to accept goals that are located close to one
another. When agents are permitted to bid on bundles of goods in an auction, deciding who wins what,
known as the clearing problem for combinatorial auctions, is NP-complete an inapproximable [65]. One
solution is to allow goods to be reauctioned such as in the TRACONET system developed by Sandholm
[65]. Systems that allow both combinatorial auctions and coalition formation have been demonstrated in the
multiagent community [86][49].

3 Completed Work

The motivation for the proposed thesis is illustrated in the following example. When disaster strikes an
urban area, rescue workers have 48 hours to find trapped victims before the probability of survival becomes
essentially zero. This high pressure situation is further complicated by the risk to the rescue workers of
entering a collapsed and possibly unstable structure. Employing robots to search parts of the structure has
the potential to save both rescue workers’ and victims’ lives. Since robots are “disposable,” they can explore
areas too risky for humans, mitigating the risk to rescuers and decreasing the search time. They can also be
designed to fit through spaces too small for humans or dogs. Let us suppose we have a set of robots at an
urban search and rescue (USAR) disaster site.

Although with feelings running high, different people may have different opinions of how to deploy the
robots, let us assume that a chief operator provides the robot team with a blueprint of the building with
certain areas marked as higher probability for survivor locations. He would like the robots to construct a
map of the structure as it is now with any hazardous features labeled, establish the presence or absence of
victims in each area, and, most importantly, find any victims as soon as possible.

The robots are deployed and fan out, heading to the most promising locations first. The robots are many
different sizes and shapes, equipped with different sensors. They cooperate to use their heterogeneity to
their advantage.

One of the robots discovers a victim with its camera. There is no motion and the robot is unable to tell
whether or not the victim is alive. It alerts its teammates of its discovery and several other robots explore
the surrounding area in greater details, hoping to find other victims. It also requests help from a robot
with capabilities to sense whether or not the victim is still alive since this will greatly affect the decision of
whether or not to deploy human rescue workers to the location immediately.
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(a) USARsim NIST Yellow arena with overlayed abstract representation

Robot Capabilities
1 1
2 2
3 1,3
4 2
5 1,2

(b) Robots in example

Figure 1: The environment (a) is discretized (yellow lines) and represented as a graph where the costs of the
edges signify the distance between the centers of adjacent nodes if there is no wall (green) between them.
The example has 10 tasks (white) and 5 robots (b) that all enter at the node marked by the arrow.

When one robot detects sound from a duct, it requests help from its teammates with thermal imaging
capabilities. One such robot has a very accurate thermal imaging device, an infrared camera, but is currently
committed to investigating the previously identified victim. This robot offers to check quickly for signs of
heat as it drives by the entrance to the corridor with the duct. Even at this distance, the infrared camera
shows that there heat coming from inside the duct.

Since the robot who discovered the sound is too bulky to enter the confined area, it solicits the help of
another, smaller robot to explore the duct. The small robot was mapping a crawl space, but quickly switches
tasks.

Investigation of the duct reveals a four foot drop down to the probably victim location. This drop would
make it impossible to retrieve the small robot. Although robots are valuable, the possibility of finding a
trapped victim outweighs the cost and the decision is made to sacrifice the small robot. The small robot
travels down the duct and discovers no victim but only a cat.

The rest of the robots explore the space as quickly as possible, looking for victims. Initially, they pass
through the space as quickly as possible, looking for obvious signs of life. Next, they make a second, much
more careful pass to see if they missed anyone.

The potential benefits with this team of robots is enormous, particularly if they could make the sorts of
decisions described above autonomously, since they may not be within easy communication with their human
team members. It must also be easy to change the goals of the search. For example, after 48 hours and
finding all the victims, the rescue coordinator may decide to explore the stability of the structure with the
robots so they can decide how to best clean up the mess.

This motivational example illustrates a number of complexities of the domain. As the first step towards
finding a solution, we formally describe the problem.

3.1 Problem Formalization

Given a map of the environment with tasks to be accomplished and a set of robots with heterogeneous
capabilities, we need an approach to formalize the problem and characterize the solution. Figure 1(a) shows
a sample environment overlayed with an abstraction of the environment the robots can use for planning. We
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define the resulting time critical tight coordination team planning problem as follows:

Definition 3.1. A time critical tight coordination team planning problem is denoted by ρ and
consists of a five-tuple, 〈R,G, E, C, Tmax〉 where R = {R1, R2, ..., RN} is the set of robots on the team,
G = {G1, G2, ..., GM} is the set of goals to be accomplished, E is the robots’ representation of the physical
environment, C is the set of additional constraints on the system as described in section 3.5, and Tmax is the
time limit for achieving the goals.

Internal to this representation is the assumption that there exists a set of K capabilities relevant to the
completion of the set of goals. Each robot is characterized by its current position and a set of binary
capabilities it possesses, Sn where Sn is a vector whose length is equal to the cardinality, K, of the set of
capabilities relevant to this environment.

Each goal is similarly characterized by its location in the environment, the capabilities required to achieve
the goal, the expected time required to achieve the goal, and the reward. We can then characterize the m-th
goal as a tuple Gm := (Nm, dm, Qm(t), Cm) where Cm, the capabilities required to achieve goal m, is a
vector whose length is equal to K and Cmk = 1 if capability k is required to achieve task m and 0 otherwise.
The duration requirement means that all capabilities must be satisfied by the set of robots, R, at location
Nm for the entire continuous duration, dm, in order for the goal to be achieved. Rewards, Qm, are time
varying and there exists some time limit, Tmax, after which time all rewards are 0.

The system constraints, C, may include temporal order constraints on the goals, constraints on shared
resources, or constraints on the assignments of robots to goals. We describe a first order constraint language
for combining goal, robot, and resource constraints in section 3.5.

While the problem formulation imposes no restrictions on the representation of the environment as long
as robots can perform path planning in it, we find it useful to discretize the environment and represent it
as a graph with nodes and edges which allows path planning using standard graph algorithms. Another
possibility is to use an occupancy grid representation and apply D∗ search [23].

The solution to the problem described above is called the team plan though it considers not only the
allocation of robots to goals but also the schedule of when each goal is to be accomplished. In order to
preserve the semantics of the original problem while maintaining a level of abstraction suitable for a robot
with a typical three-tiered architecture, for example [58], we define a team plan as a set of tightly coupled
schedules containing one schedule for each robot. We preserve the original problem semantics through the
goal oriented representation shown in figure 2.

Definition 3.2. A tightly coupled schedule represents the commitments of an individual robot, Rn to
the team and consists of a set of steps, SRn = {S1, S2, ...Sω}. Each step is defined as

Si = 〈Gi, P, Tstart, Ttravel, Twait, Twork,D〉

where Gi is the goal that the robot works on during step i, P is the path the robot plans to take to get to
the goal, Tstart is the time at which it begins the step, Ttravel is the time allocated to traverse path P , Twait

is the time spent waiting for the other robots working on the joint goal to arrive, Twork is the amount of
time allocated to achieving the goal, and D contains the coordination commitments for this step.

Coordination commitments explicitly represent the requirements of the robot for this goal. An example
coordination commitment might be to provide capability 1 in order to achieve goal i. If another robot has
the coordination commitment of providing capability 2 for goal i, an inter-robot coordination commitment
exists. Coordination commitments signify not only what the robot must do but why it is important.

The number of steps in a robot’s schedule is the planning horizon, denoted ω. It is possible for different
robots to have different planning horizons. It is also possible for robots to have no goal to work on during
the later steps in which case the goal may be the idle goal.

Definition 3.3. A team plan consists of the set of tightly coupled schedules for all robots on the team,
T = {SR1 ,SR2 , ...SRn}.

A sample team plan is illustrated in figure 2. Due to inaccuracies and uncertainties in the models of
elements in the time critical tight coordination team planning problem (e.g. incorrect path length estimates)
and dynamic events (e.g. a wall collapsing to block a path) it is improbable that the team plan will be
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Figure 2: A team plan consists of the tightly coupled schedules from all robots in the team. The tightly
coupled schedules for robots 1, 2, and n are illustrated above. All robots have three steps in their schedule
so the planning horizon, ω = 3. Each step contains 〈Gi, P, Tstart, Ttravel, Twait, Twork,D〉, where Gi is the
goal the robot will work on during this step, P is the path the robot traverses to get to the goal (not shown
here), Tstart is the time at which the step begins, Ttravel is the time traveling to the goal, Twait is the time
waiting for other robots, Twork is the time working on the goal, and D are the coordination commitments
for the step. Inter-robot coordination commitments are illustrated with arrows.

successfully executed. In Section 3.6 we discuss how robot teams can interleave planning and execution.
Despite the expectation that the plan will fail, this formalization has a number of benefits. For example,
we can choose to adopt algorithms that are optimal over a short planning horizon without devoting as
much computation to long term plans. We describe such an algorithm in Section 3.4.1. Alternatively, the
formalization allows temporally invariant reasoning. For example, it may be necessary to schedule a certain
goal far in the future. By planning the goal in advance, the team can accomplish this goal even if the robots
are unable to communicate until they rendezvous to complete the goal though the intervening steps in the
schedules of the various robots may significantly differ from the original team plan.

3.2 Mathematical Programming Model

This thesis proposes to build a mathematical programming model of the time critical team planning problem,
the solution to which is a schedule in absolute time that can be executed by the robots, is shown in figure 2.

The term program does not refer to a computer program but rather a plan or system under which action
may be taken toward a goal (Merriam-Webster Online Dictionary). A mathematical programming model
therefore is a problem that requires some sort of optimization, either minimizing or maximizing some quantity.
Mathematical programming models contain one or more decision variables for which we seek values so as to
optimize the objective function. These decision variables may be subject to certain constraints or bounds
[84] [37]. Within mathematical programming, there are a number of special classes of problems, the most
commonly used of which are listed below in increasing order of difficulty to solve [40]:

• Linear Programs (LP) are of the form

Maximize cT x objective function
Subject to Ax ≤ b constraints

l ≤ x ≤ u bounds

Linear programs are so called because all decision variable terms are linear (neither in the objective
function nor in the constraints do we find terms such as x2

1, 1/x2 or x1x2). A number of algorithms have
been developed for solving linear programs including primal simplex, dual simplex, network simplex,
and the primal and dual log barrier algorithms [40]. Linear programs can be solved in polynomial time.
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• Mixed Integer Linear Programs (MILP) are of the same form as linear programs but some of the
decision variables, x are constrained to be integer. While LPs can be solved in polynomial time, MILPs
are in NP . MILPs are sometimes denoted as Mixed Integer Programs or MIPs since historically integer
programs were assumed to be linear unless otherwise noted [37].

• Quadratic Programs (QP) are of the form

Maximize cT x + 1
2xT Qx objective function

Subject to Ax ≤ b constraints
l ≤ x ≤ u bounds

Quadratic programs can be solved using the primal and dual simplex algorithms or primal dual log
barrier algorithm [40] though the quadratic function is required to be convex if the function objective
is a minimization or concave when the objective function is maximized.

• Quadratic Constrained Programs (QCP) are of the form

Maximize cT x + 1
2xT Qx objective function

Subject to Ax ≤ b constraints
1
2xT Qkx + akx ≤ bk quadratic constraint
l ≤ x ≤ u bounds

The constraints are also permitted to be quadratic functions.

• Mixed Integer Quadratic Programs (MIQP) are of the same form as QPs except that some of the
variables are constrained to be integer.

• Mixed Integer Quadratic Constrained Programs (MIQCP) are of the same form as QCPs except
that some of the variables are constrained to be integer.

We use the simplest class of optimization problems with sufficient expressiveness for representing the
problem. By modeling goal rewards as decreasing linearly with time, the problem can be modeled as a
MILP. Although there are multiple ways to model time varying rewards, we assume that there is some
time limit, Tmax, at which time all rewards are 0. A continuous time model allows efficient modeling of
the scheduling problem. Although the problem is still NP-hard, modeling it as an MILP allows us to take
advantage of CPLEX’s advanced linear programming and mixed integer programming algorithms.

There are several challenges in building a MILP model of the time critical tight coordination team planning
problem. To illustrate this, consider our initial näıve problem formulation in which we discretize both the
environment and time and create a variable for every node in the environment for every timestep. For all
but the smallest environments, this is computationally infeasible. This is because constraint optimization
algorithms are inefficient at solving the path planning problem [7]. Likewise, discretizing time causes problem
complexity to increase inversely with the time step size and directly with Tmax. Discrete time models may
be suboptimal if the time step size is not sufficiently small.

We overcome these obstacles by introducing a goal oriented representation that is independent of environ-
ment size and uses a continuous time model. The goal oriented representation is illustrated in our definitions
of a team plan and a tightly coupled schedule (Figure 2). This representation enables us to preprocess path
planning since each robot trajectory is abstracted to a single variable, the amount of time allocated to travel
to a goal. Path planning is precomputed by building a goal map (Figure 3), a fully connected graph where
nodes represent the set of goals and each edge represents the travel time for a robot to get from the location
of one goal to another. Additionally, the goal map contains a start node and an idle node. The start node
represents the starting position of a robot and has a directed edge to each goal node. Every node has an
edge with zero cost to the idle node. Each robot’s tightly coupled schedule represents a path through the
goal map that can be mapped back onto a path through the original environment. The idle node has no
transitions out since a robot would never schedule a timeslot as idle unless there were no more available
tasks for it to work on.

If the environment is discretized and represented as a graph with n nodes, the goal map can be constructed
using the Floyd Warshall algorithm (O(n3)) [20].

We will now describe our MILP mathematical model of the problem. Note that Rn and Gm correspond to
robots or goals while subscripts denote a variable that points to a robot or goal. Variables are either binary
or real valued and fall into one of three classes:
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Figure 3: A goal map contains a node for every goal in the problem plus a start node and an idle node. The
goal nodes are fully connected and each edge represents the time for a robot to travel from the location of one
goal to the location of the second goal. In general, the edge costs may differ depending on the capabilities
of a robot.

• Goal variables include binary variables Gm and RnGm that denote whether the goal is scheduled and
whether robot n works on goal m respectively. Goal variables Gm start and RnGm start are real
valued variables for the absolute time at which the goal is scheduled or the robot is scheduled to work
on the goal. RnGm do is a real valued variable denoting the amount of time robot n dedicates to
achieving goal m. All real valued variables take on the value 0 if their binary counterparts are 0.
Additionally, we define antivariables Gm start∗ and RnGm start∗ that have the same value as their
corresponding variables but take on the value of Tmax if their binary counterparts are 0.

• Schedule variables include binary variables RnOiP(g1,g2) that denote whether or not robot n travels

from goal 1 to goal 2 in its ith timeslot. The time spent traveling, waiting, and working on the goal
during a given timeslot are represented with real valued variables RnOi travel, RnOi startDo, and
RnOi do. RnOi startDo is an absolute time while RnOi travel and RnOi do represent amounts of
time.

• Linking variables RnGmOi (binary) and RnGmOi do and RnGmOi startDo (real) are used to establish
constraints between the schedule and goal variables.

We want to maximize solution utility which is the sum the reward functions from all tasks accomplished
evaluated at the time at which they were accomplished. We assume that rewards decrease linearly with time.

Utility =
∑

m s.t. Gm∈G

Tmax−Gm start∗

Tmax
Qm

We subject this objective function to the following constraints.

• Robots start at an abstract start node:

∀n s.t. Rn∈R : RnGstartO0 = 1

• Robots must work on exactly one task at a time:

∀n s.t. Rn∈R,1≤i≤ω :
∑

m s.t. Gm∈G

RnGmOi = 1

• Except the idle task, a robot may not work on a task more than once:

∀n s.t. Rn∈R,m s.t. Gm∈G :
∑

1≤i≤ω

RnGmOi ≤ 1
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• Network constraint 1: In order to take the path from g1 to g2 at this timestep, the robot must have
been at node g1 at the end of last timestep:

∀n s.t. Rn∈R,g1 s.t. Gg1∈G,1≤i≤ω :
∑

g2 s.t. Gg2∈G

RnOiP(g1,g2) = RnGg1
Oi−1

• Network constraint 2: In order to take path from g1 to g2 at this timestep, the robot must end up at
node g2:

∀n s.t. Rn∈R,g2 s.t. Gg2∈G,1≤i≤ω :
∑

g1 s.t. Gg1∈G

RnOiP(g1,g2) = RnGg2
Oi

• Network constraint 3: The time allocated for travel in this timestep for this robot must at least equal
the time necessary for this robot to traverse path (g1, g2). Since this is robot dependent, we can have
different costs for different classes of robots (e.g. large, fast wheeled machines versus small, legged,
climbing robots).

∀n s.t. Rn∈R,g1,g2 s.t. Gg1 ,Gg2∈G,1≤i≤ω : RnOiP(g1,g2)ShortestPath(g1, g2, Rn) ≤ RnOi travel

• Initial condition for time: (δ = starting time, δ ≥ 1).

∀n s.t. Rn∈R : RnO1 startDo = RnO1 travel + δ

• General time constraint based on timestep definition

∀n s.t. Rn∈R,1≤i≤ω : RnOi startDo = RnOi−1 startDo + RnOi−1 do + RnOi travel

• Robots with the appropriate capabilities must be present at a node in order for the capability to be
covered.

∀m s.t. Gm∈G,k s.t. Cmk=1 :
∑

n s.t.Rn∈R,Snk=1

RnGm ≥ Gm

• A joint task cannot start until all allocated robots are present:

∀n s.t. Rn∈R,m s.t. Gm∈G : Gm start ≥ RnGm startDo

∀m s.t. Gm∈G : Gm · Tmax ≥ Gm start

• All robots must work on the joint task for the entire duration:

∀m s.t. Gm∈G,n s.t. Rn∈R

Gm start − RnGm startDo + dm ≥ RnGm do

RnGm do ≤ RnGm · Tmax

RnGm do ≥ dmRnGm

∀m s.t. Gm∈G :
∑

n s.t. Rn∈R

RnGm do ≥ dm
∑

n

RnGm

• A robot may not work on a joint task before the scheduled start time:

∀n s.t. Rn∈R,m s.t. Gm∈G : Gm start ≤ RnGm startDo∗

• All times must be less than Tmax. All times must be non-negative as well, but this constraint is
frequently assumed by linear programming solvers.

∀n s.t. Rn∈R,m s.t. Gm∈G : RnGm start + RnGm do ≤ Tmax

∀n s.t. Rn∈R,1≤i≤ω : RnOi startDo + RnOi do ≤ Tmax

∀n s.t. Rn∈R,m s.t. Gm∈G,1≤i≤ω : RnGmOi startDo + RnGmOi do ≤ Tmax

∀m s.t. Gm∈G : Gm start + dm ≤ Tmax

• Linking constraints relate goal variables to their antivariables and goal variables to schedule variables
through linking variables. Linking constraints are necessary in order for the resulting solution to be
legal.

Relate RnGm to RnGmOi
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∀n s.t. Rn∈R,m s.t. Gm∈GRnGm =
∑

1≤i≤ω

RnGmOi

Force RnGmOi startDo to 0 if RnGmOi is false.

∀n s.t. Rn∈R,m s.t. Gm∈G,1≤i≤ω : RnGmOi · Tmax ≥ RnGmOi startDo

Force RnGmOi startDo = RnOi startDo if RnGmOi is true.

∀n s.t. Rn∈R,1≤i≤ω :
∑

m s.t. Gm∈G

RnGmOi startDo = RnOi startDo

Relate RnGm start to RnGmOi startDo (taking advantage of the property that RnGmOi startDo
is non-zero at most once).

∀n s.t. Rn∈R,m s.t. Gm∈G : RnGm start =
∑

1≤i≤ω

RnGmOi startDo

Set RnGmOi do = 0 if RnGmOi is false.

∀n s.t. Rn∈R,m s.t. Gm∈G,1≤i≤ω : RnGmOi do ≤ RnGmOi · Tmax

Set RnGm do to the corresponding value of RnGmOi do taking advantage of the property that at
most one value of RnGmOi do is non-zero.

∀n s.t. Rn∈R,m s.t. Gm∈G :
∑

1≤i≤ω

RnGmOi do = RnGm do

Relate RnOi do to RnGmOi do

∀n s.t. Rn∈R,1≤i≤ω : RnOi do =
∑

m s.t. Gm∈G

RnGmOi do

Force Gm start∗ to Tmax if Gm is false and to Gm start otherwise.

∀m s.t. Gm∈G : Gm start∗ ≥ (1 − Gm) · Tmax

∀m s.t. Gm∈G : Gm start∗ ≥ Gm start

3.3 Abstract Simulator

Before we describe how we solve these problems, we will describe our process for generating, representing,
and simulating the problems. We have developed an abstract simulator, for want of a better name, CO-

CoASim. COCoASim is implemented in Java and consists of over 11,000 lines of code including algorithm
implementation, simulator implementation, and debugging utilities. We plan on making the source code
publicly available in the near future.

We represent physical environments as collections of nodes and weighted edges where the weight represents
the time cost for a robot to travel along that edge. For simplicity, we use undirected edges though an extension
to directed edges is trivial. Nodes in the environment are laid out in a grid with four point connectivity (again
for simplicity and to avoid the challenging graph layout problem). We generate new environments by creating
a grid of rowsxcols nodes, randomly generating edges between adjacent nodes (using the nextBoolean method
of Java’s Random class to decide if an edge exists and the nextInt method bounded by max(rows, cols) to
choose the edge cost), and selecting the largest connected subgraph. Unconnected nodes are discarded.
When the capabilities and locations of robots or goals are not specified by the class of problem as described
in Section 3.4.2, these too are chosen by random. Capabilities possessed by robots and required by goals are
generated with the nextBoolean function for each capability in the problem. If a robot with no capabilities
or a goal with no requirements is generated, a capability is randomly selected so that every robot has at least
one capability and each goal has at least one requirement. If the environment has x connected nodes, robot
and goal locations are chosen by randomly drawing an integer from x which corresponds to the index of the
connected node. A simple example with a 3x5 base environment, three robots, and four goals is shown in
figure 4. The unconnected nodes are drawn in gray while the 10 nodes that make up the largest connected
subgraph are shown in blue.

In addition to generating problems, COCoASim can find a team plan using the algorithms we will describe
in Section 3.4.1 and then display the plan. There is currently no uncertainty or implicit simulation of dynamic
events in COCoASim. Robots always take the same amount of time to traverse an edge or complete a goal.
There is no spatial interaction between robots. This was a design decision made to eliminate the need for
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robots to discover dynamic events. However, COCoASim does support certain types of explicit dynamic
events. These dynamic events or replanning catalysts are discussed in detail in Section 3.6 and can be
specified by the user or randomly generated and are detected one or more robots at some time (e.g. 15
minutes into executing the team plan, robot 2 discovers that a boulder is blocking a door and the edge from
[0,2] to [1,2] no longer exists and so must find another path).

(a) COCoASim screenshot

Maxtime 1000

Capabilities 3

#Robot ID, Capabilities

Robot 1 [ 0 0 1]

Robot 2 [ 1 1 1]

Robot 3 [ 0 1 0]

#Goal ID, Location, Requirements...

#...Reward, Duration, Include

Goal 1 Node 3 [0 1 0] 15 1 1

Goal 2 Node 9 [1 1 0] 10 9 1

Goal 3 Node 3 [1 0 0] 11 8 1

Goal 4 Node 8 [1 0 0] 17 2 1

Mapsize 10

#environment 3 x 5

Node 2 Node 3 1.0

Node 3 Node 4 1.0

Node 3 Node 8 1.0

Node 4 Node 9 1.0

Node 7 Node 8 1.0

Node 7 Node 12 1.0

Node 8 Node 9 1.0

Node 9 Node 10 1.0

Node 9 Node 14 1.0

Node 12 Node 13 1.0

#Robot starting locations

Start Robot 1 Node 2

Start Robot 2 Node 3

Start Robot 3 Node 9

(b) Text file problem representation

Figure 4: Randomly generated small (3x5) world in in COCoASim with included nodes shown in blue and
excluded nodes shown in gray (a). Robots and goals were also randomly generated. This environment can
be saved as a text file (b) which is used to generate the MILP. Node IDs are by row major order and start
at 1.

3.4 Solution Techniques

By modeling the problem as an MILP, we can leverage a vast amount of work in solving these problems
including the commercially available solver, CPLEX [40]. The standard approach for solving an MILP is
to relax the constraint that certain variables be integer and solve the resulting linear program (LP) using
LP algorithms such as the simplex or dual simplex algorithm. This noninteger solution is known as the
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Algorithm 1 MILP Anytime Algorithm

1: oldSoln = {}
2: for ω = 1 to # Goals do

3: milp ⇐ CreateMILP(ω)
4: start ⇐ HeuristicScheduler(oldSoln, ω)
5: optimalSolnForPH ⇐ Optimize(milp, start)
6: oldSoln = optimalSolnForPH
7: end for

8: return optimalSolnForPH

relaxed solution and provides an upper bound on system performance. In the case that the relaxed solution
is integral, this optimal solution is returned.

Since the problem is NP-hard, generally the system must employ the branch and bound algorithm to
search for the optimal integer solution. Without additional information, the search for the integer solution
begins near the relaxed solution. Depending on the structure of the search space, finding a feasible solution
can take a long time (hours to find a feasible solution to a large search and rescue problem and days or
weeks to find the optimal solution). This is unacceptable for the search and rescue domain since planning
delays the onset of execution. Furthermore, as robots execute their plans, handle robot failures, and discover
inconsistencies in their models, they will need to replan online which requires real time algorithms.

3.4.1 Real time algorithms

Particularly for problems with few or no constraints, it is possible to use simple heuristics to find solutions
in polynomial time. In fact, the search and rescue problem has elements, specifically rewards that decrease
over time, that suggest that greedy heuristics would perform reasonably well. Conveniently, we can combine
heuristics and MILP solution techniques resulting in an algorithm superior to either individual approach.

As described in the previous section, solving an MILP involves branch and bound search. By default, this
search begins around the relaxed solution. It is possible to generate an initial solution using a heuristic and
use this as the starting point for the search. This enables the system to find a feasible solution quickly and
then improve the solution with available time. Furthermore, the bounds in the branch and bound algorithm
provide error bounds on a given solution so that it is possible to stop when the solution is within some
bounds of the optimal or estimate distance of an arbitrary solution from optimal. We exploit this symbiosis
between heuristic and optimal solver in our MILP anytime algorithm (Algorithm 1).

MILP Anytime Algorithm

The key idea in the MILP anytime algorithm is to make the interaction between the optimization algorithm
(CPLEX) and heuristic (any number of heuristics can be used–we describe two below) an iterative process by
starting with a small subproblem and expanding this until it includes the entire problem. At each iteration,
a heuristic is used to generate a solution for the subproblem. This heuristic solution is used as a starting
point for search in the optimization step. Since the resulting optimized solution to this subproblem is at
least as good as the heuristic solution to the same subproblem, the heuristic uses this optimized solution as
its starting point and only finds a solution for the expanded portion of the problem.

Once the problem has been formulated as a MILP, standard linear programming techniques can be applied
to find the optimal relaxed solution (without integer constraints) which can be computed in polynomial time
[20]. In our experiments, computing the optimal relaxed solution was very fast, requiring well under a second
for problems such as the example in figure 1(a-b) and less than 10 seconds even for a large environment with
900 nodes, 20 robots, and 20 tasks. This relaxed solution provides an upper bound on team utility. Finding
the optimal integer solution however is NP hard [20] and the standard algorithm used to search the space
of integer solutions, branch and bound, has worst case exponential time complexity. The integrality gap
between the relaxed and integer solutions frequently means that finding a feasible solution can take minutes
or even hours.

In this respect, domain specific heuristics can easily outperform an ILP solver as they can compute feasible
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Algorithm 2 Myopic heuristic

1: ω = 1
2: unsatGoals = Goals
3: currSchedule = {}
4: while (ω ≤ # Goals) && !isEmpty(unsatGoals) do

5: prob ⇐ CreateMILP(1, unsatGoals)
6: partialSoln ⇐ Optimize(prob)
7: currSchedule ⇐ Schedule(partialSoln)
8: unsatGoals ⇐ unsatGoals−satGoals(currSchedule)
9: ω = ω + 1

10: end while

11: return currSchedule

if suboptimal solutions very quickly. Furthermore, the time varying property of the original problem suggests
a greedy approach is likely to perform well. Most ILP solvers including the package we use (CPLEX) have
the ability to take an existing solution as a starting point for the search. Recall from the problem formulation
that the planning horizon, ω, is defined as the number of tasks (including the idle task) scheduled for a given
robot. We combine the benefits of domain specific heuristics with the optimality guarantees of an ILP solver
by interleaving the two approaches over an ever increasing planning horizon (Algorithm 1). The branch and
bound algorithm stores the best solution so the algorithm may be interrupted at any time and will simply
return the best solution thus far. When the planning horizon equals the number of tasks, the solution is
guaranteed to be optimal since it grants every robot the possibility of accomplishing every task. In practice
however, no single robot performs all tasks so the optimal solution may be found at a lower planning horizon.

Heuristics

Since goal rewards decrease over time, it is reasonable to expect greedy heuristics to perform well. Two
greedy heuristics arise naturally from the problem variables–robots and goals.

In the first heuristic, which we call the myopic heuristic, robots use the MILP problem formulation to find
the optimal allocation of goals for a single planning horizon. The goals allocated are fixed in the schedule
and the process is iterated on the remaining goals until all goals are allocated or unable to be allocated
as shown in algorithm 2. Empirically, this is very fast–well under a second–even for large problems. This
is because problem size grows exponentially with the length of the planning horizon so this subproblem is
much smaller than the original problem.

The second heuristic, or greedy goal heuristic, is inspired by market based task allocation algorithms which
have been shown to work well in a variety of domains [24]. Since the goals are known in advance, they are
sorted and auctioned off in decreasing order of reward. For each required capability of each goal, robots bid
their costs to provide that capability based on their current schedules. The lowest bidder is assigned to that
goal capability. The greedy goal heuristic is less sophisticated than many market based systems as it does
not allow robots to reauction their goals.

The convergence of the MILP anytime algorithm is illustrated in figure 5. We ran the MILP anytime
algorithm with the myopic heuristic on the sample problem from figure 1(a-b) with a time limit of 1000 time
units. Recall that the sample problem consisted of 5 robots entering an arena from a common location and
seeking to accomplish 10 goals spread out through the environment. The discrete jumps correspond to the
heuristic scheduler step of Algorithm 1 (line 4) since the planning horizon is extended allowing additional
tasks to be accomplished and slight improvements arise from search performed by CPLEX. The MILP
anytime algorithm with the myopic heuristic reached a maximum utility of 124.5 after about 45 seconds. We
used CPU time as the metric for this experiment and since CPLEX was set to search deterministically, these
results are deterministic to within the accuracy of the system timer. For this example, the myopic heuristic
by itself terminated with a maximum utility of 124.35 in less than 0.1 seconds. The greedy goal heuristic
alone resulted in a utility of 123.3. Without the MILP anytime algorithm, CPLEX required 8 minutes to
find a feasible solution and still had not converged to the optimal solution when stopped after an hour with a
utility of 121.4. These results confirms our hypothesis that heuristics can significantly improve performance
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Figure 5: MILP Anytime Algorithm with myopic heuristic: results over time on example from figure 1(a-b).
All times are CPLEX CPU times on a 2.8GHz Pentium 4 machine with 1GB RAM.

over standard MILP solution techniques alone. The gains for using the MILP anytime algorithm versus a
heuristic appear relatively small in this example. This is partially because the value for Tmax was large so
small time savings realized by more efficient allocations have little effect on the overall utility. Another reason
for the small gains over the heuristics is that the heuristics work relatively well on this problem as we hoped.
However, each of these heuristics has its limitations and can lead to inefficient behavior if not combined with
an optimization algorithm. We first demonstrate the strengths and weaknesses of the heuristics analytically
and then empirically.

Myopic heuristic limitations

The myopic heuristic performs poorly if it is best for one robot to assume more goals than its teammates
even though other robots also have the capability to accomplish the goals. For example, if there are two
goals with the same requirements in the same room and two identical robots, one already in the room and
one in a different building, the myopic heuristic will assign one goal to each robot although the optimal
solution is clearly to assign both goals to the close robot as shown in figure 6(a).

Greedy goal heuristic limitations

The greedy goal heuristic would correctly solve the example in figure 6(a), but may perform poorly if the
problem requires careful resource management. Consider a disaster site with two flooded rooms and a dry
room and a team of two robots. However, only robot 1 is waterproof and able to explore the flooded rooms.
If robot 1 starts slightly closer to the dry room and the goal of exploring the dry room is allocated first,
the greedy goal heuristic will assign all three goals to robot 1 although it would be more efficient to assign
the dry room to robot 2 to explore. In the example in figure 6(b), only the blue robot has the necessary
capabilities for goals 2 and 3 but either robot could do goal 1. However, if goal 1 is allocated first, the blue
robot will win all three goals while the red robot remains idle.

In order to compare the performance of the various algorithms and heuristics in a more systematic manner,
a large number of test cases that capture some of the challenges of the problem space are needed.

3.4.2 Benchmarks

The lack of benchmarks for heterogeneous multirobot coordination with joint goals is an obstacle to rigorously
comparing algorithms and heuristics. We have developed a collection of benchmarks designed to illustrate
some of the challenges of a complex domain such as search and rescue including the limitations of the
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(a) Myopic heuristic limitations (b) Greedy heuristic limitations

Figure 6: (a) Both the red and green robots have the necessary capabilities for either task. The myopic
heuristic allocates goal 1 to the red robot and goal 2 to the green robot in the first iteration. The myopic
heuristic performs poorly when it is best for one robot to assume more goals than its teammates over some
subproblem. (b) The red robot is only capable of performing goal 1 while the blue robot is capable of
performing all three goals. If goal 1 is scheduled first, all three goals are allocated to the blue robot which is
clearly suboptimal. The greedy heuristic leads to inefficiencies when capabilities must be careful managed.

heuristics as described. As a service to the research community, we have set up a repository to allow
researchers to access our benchmarks and contribute their own.

As described in Section 3.3, we created an abstract simulator, COCoASim, capable of generating random
problems to certain specifications. We propose six interesting classes of benchmarks:

• Homogeneous: all robots and goals are homogeneous; all goals have a uniform duration, but varying
rewards, and are distributed at random through the environment.

• Tight coordination: each robot has only a single capability while every task requires all three capabil-
ities forcing three robots to work together on every task. The reward, duration, and location of each
goal is chosen at random.

• Easy clustering: goals are clustered in one or two locations in the environment, but may be accomplished
by any individual robot since each robot possesses all capabilities.

• Difficult clustering: goals are clustered in one or two locations in the environment, and require tight
coordination as each robot only possesses a single capability.

• Precious resources: goals in this benchmark class are either easy or hard. The easy goals can be
accomplished by any robot while only a single robot has the necessary capabilities for the hard goals
forcing the system to use the “precious resources” (the robot with special capabilities) carefully.

• Random: everything, from robot capabilities to goal requirements, location, and duration, is randomly
chosen. These benchmarks will exhibit some qualities of each of the other benchmark classes.

For each class of benchmark, we randomly generated 5 environments with 3 and 15 robots and 5 and 15
goals for a total of 20 problems in each benchmark class and 120 different problems in all. The environments
were randomly generated as described in section 3.3 using 10 rows and 10 columns. All of the benchmarks
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generated use three relevant capabilities though the profiles of robot capabilities and goal requirements
distinguish the various benchmarks as described above.

3.4.3 Results

We compared five solution techniques on these benchmarks: the myopic heuristic (Algorithm 2), the greedy
goal heuristic, the MILP anytime algorithm (Algorithm 1) with the myopic heuristic as the heuristic solver
on line 4 of Algorithm 1, the MILP anytime algorithm with the greedy goals heuristic as the heuristic
solver, and the MILP anytime algorithm with the “best” heuristic in which the heuristic solver compares
the myopic and greedy heuristics and returns the solution with the highest utility. The optimization step
(line 5 of Algorithm 1) was limited to 90 seconds. We compared the results for three different levels of time
pressure, Tmax = 100, 1000, and 2000. Recall that rewards decrease linearly from their starting value to
0 at time Tmax. The five algorithms tested on 120 test cases with three different values for Tmax resulted
in a total of 1800 runs. The greedy goal and myopic heuristics were relatively fast but even limiting the
optimization to 90 seconds per run, the tests took over 30 hours to complete. The results for Tmax = 100
and Tmax = 1000 are shown in figure 7.

(a) Tmax = 100

(b) Tmax = 1000

Figure 7: Benchmark results using greedy goal heuristic as baseline averaged over 3 and 15 robots and 5 and
15 goals.

In general, we observed that the greedy goal heuristic performed well on the homogeneous and clustered
benchmarks. This matches what we know about these benchmarks and the workings of the greedy goal
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heuristic. The homogeneous and easy clustered benchmarks have no joint goals so the problem reduces to
the optimal assignment problem on which greedy market task allocation has been demonstrated to perform
well [24]. The greedy goal heuristic performs the worst on the precious resource benchmarks which matches
our earlier analysis of the limitations of the greedy goal heuristic.

The myopic heuristic performed at least as well as the greedy goal heuristic on all benchmarks except the
easy clustered benchmarks on which it performed slightly worse. This matches our analysis of the limitations
of the myopic heuristic. The performance is only slightly worse because the tasks are clustered together so
that even if the tasks are allocated suboptimally for a planning horizon of 1, this is outweighed by the goals
accomplished over the remainder of the planning horizon. In this sense, the clustered goal benchmarks were
less successful than we had hoped in illustrating the limitations of the myopic heuristic.

The MILP anytime algorithm was able to significantly improve performance on a number of benchmarks
with a maximum improvement of over 50%. This indicates that the heuristics benefit significantly from the
relatively small amount of time spent in optimization. Without using the heuristic starting solution, CPLEX
is often unable to find a feasible solution in 90 seconds which illustrates the benefits of the heuristic starting
solution to the MILP solver.

We found that the results from the other values of Tmax are nearly identical to figure 7 (and so are not
included here) except in scale. The utility gains when Tmax = 2000 are half the utility gains for Tmax = 1000.
Since utility is defined as a linear function of Tmax, we would expect a linear relationship between Tmax and
utility gain. However, the utility gains when Tmax = 100 are 15 times the utility gains of Tmax = 1000. If
the average utility gain for Tmax = x is denoted as Ux, U100 = 15U1000 = 30U2000. Since utility is defined
as a linear function of Tmax, we would expect a linear relationship between Tmax and Ux which is true on
the interval Tmax = [1000, 2000] but not on the interval Tmax = [100, 1000]. The reason for this is that as
Tmax decreases, suboptimal solutions are not able to accomplish as many goals which magnifies differences
in solution quality. This illustrates the importance of optimality in the search and rescue domain where
there is often significant time pressure.

3.5 System Constraints

The expressiveness of the constraint language for the system constraints determines the scope of problems
that can be solved. Goal, robot, and resource constraints form the building blocks for this constraint
language.

There is the potential for confusion when discussing constraints in the MILP problem formulation. System
constraints refer to semantically meaningful constraints. Problem constraints refer to constraints in the MILP
problem formulation that implement system constraints or make the problem formulation legal.

3.5.1 Goal constraints

Temporal goal constraints enable more efficient modeling. For example, the complex goal of rescuing an
identified victim may require a beam to be lifted, the victim to be helped out, and first aid to be administered
(figure 8). It is more efficient to model the problem as three separate but related goals, Glift, Gextract, and
Gaid with the goal constraints Gextract finishes Glift and Gextract meets Gaid where finishes and meets are
some of Allen’s 13 temporal relationships [2]. This model allows the robots with the first aid and extraction
capabilities an extra hour to work on other goals while the lifting robot finishes 20 minutes sooner.

Although we have not conducted experiments to verify this, we believe that the temporal goal constraints
will improve human-robot interaction since it is more intuitive to achieve certain behaviors using constraints
(e.g. look under the stairs and then in the elevator shaft) than by specifying rewards.

The seven temporal goal constraints below and their inverses implement Allen’s 13 temporal relationships
[2]. With the exceptions noted below, goal constraints are defined to hold if and only if both goals are
scheduled, allowing for a trivial solution of not scheduling one goal.

• Gxbefore Gy : Goal Gx must be completed before Gy begins. This is the only goal constraint defined
such that Gx may be scheduled without scheduling Gy. We also allow Gy to be replaced with an
absolute time for the goal constraint Gx before 4:00.

• Gx equal Gy : Goals Gx and Gy must start at the same time and finish at the same time.
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Figure 8: Three different robot capabilities are needed for the complex task of rescuing a victim. The goal
can either be modeled as a single goal, Grescue or as three separate goals Glift, Gextract, and Gaid with the
goal constraints Gextract finishes Glift and Gextract meets Gaid.

• Gxmeets Gy: The ending time of Gx equals the time at which Gy starts. We also allow Gy to be
replaced with an absolute time; e.g. Gx meets 4:00 would mean that Gx ends at 4:00 (and so starts at
4:00 - dx).

• Gxoverlaps Gy: Goal Gx starts before Gy starts; Gx ends before Gy ends; Gx ends after Gy starts.

• Gxduring Gy: Goal Gx starts after Gy starts, and Gx ends before Gy ends. We also allow Gx to be
replaced with an absolute time; e.g. 4:00 during Gy would mean that goal y must be in progress at
4:00.

• Gxstarts Gy: Goal Gx starts at the same time Gy starts but ends before Gy ends.

• Gxfinishes Gy: Goal Gx ends at the same time Gy ends; Gx starts after Gy starts.

The problem formulation does not force any goal to be scheduled. There are many cases in the search
and rescue domain where one or more goals must be met. One more goal constraint is therefore needed in
addition to the temporal goal constraints, in order to specify that a goal must be accomplished: do Gm. The
do constraint forces the goal to be scheduled at some time but does not restrict when it is scheduled.

3.5.2 Robot constraints

It is frequently convenient to specify additional constraints on the actions of individual robots. Rescue
workers may wish to specify which robots should work on a goal or exclude a certain set of robots from high
risk goals. This can all be effected with the participantIn constraint which operates on a robot and a goal.
The robot constraint Rn participantIn Gm forces robot n to participate in goal m if the goal is scheduled.

Another important constraint is that a robot should return to base when finished with other goals. This
is particularly important to consider at planning time if fuel is an issue. We model this with the endAt
constraint: Rn endAt L means that robot n must return to location L at the end of its mission.

3.5.3 Resource constraints

Consumable resources are an important part of the search and rescue domain. Therefore, resource constraints
are a necessary part of the problem formulation. We do not consider renewable resources for this domain.
In general, we assume that resource constraints apply to some subteam of robots, Rs ⊆ R and that the
resource consumption for each robot is independent.

• Rs limitFuelTo F indicates that the robots in Rs may collectively travel no farther than F which is the
amount of fuel that they possess. By setting Rs = Rn, we can limit the amount of fuel an individual
robot consumes.
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• Rs limitResourcesOf 〈f(Rn, Gm), ρ〉 indicates that the robots in Rs may collectively consume no more
than ρ of a particular resource. The limitResourcesOf constraint applies to resources that are only
consumed when a robot works on a goal. The function, f(Rn, Gm), represents the amount of the
resource robot, Rn, would consume working on goal, Gm. It must be defined for all goals in the
problem, Gm ∈ G, and for all robots in the subteam, Rn ∈ Rs. Again, by setting the subteam to be
an single robot, Rs = Rn, we can limit the amount of resource that individual robot consumes. Thus
we can have resource constraints such as Robot 3 can only test for chemicals in one large or two small
rooms since it only carries two indicator kits.

3.5.4 Expressive constraint language

In order to cover the full range of possible system constraints needed for search and rescue, we must be able
to combine goal, robot, and resource constraints. We establish a constraint language that implements first
order logic for the system constraints in C.

Definition 3.4. A system constraint is an element in C and is denoted as ci. A system constraint may
either be a simple constraint or a complex constraint.

Definition 3.5. A simple constraint is either a goal constraint (before, equal, meets, overlaps, during,
starts, finishes, do), robot constraint (participantIn, endAt), or resource constraint (limitFuelTo, limitRe-
sourcesOf).

Definition 3.6. A complex constraint consists of the composition of simple and complex constraints
according to the operators listed below.

Before defining the logical operators and quantifiers, we first need to explain how constraints, which we are
generally defined to always be true, can be terms in boolean logic. At the top level, the general definition
of a constraint still holds; the outer most clause of a complex constraint expression must always be true.
However, each nested constraint is conditional upon the value of the clause above it. If this clause is true,
the nested constraint must be satisfied. If this clause is false, the nested constraint must be false. The
exceptions to this are resource constraints and the endAt constraint which we define such that if the clause
is false, the nested constraint is not required to be true.

• Logical not: ¬c1

Example: Robot 1 may not work on goal 2: ¬(R1participantIn G2)

• Conditional statement: c1 → c2

Example: Unless a room is checked for chemicals (Gc1) before looking for victims in that room (Gs1 ),
robot 1 cannot participate in the search goal since it cannot be decontaminated:

¬(Gc1 before Gs1) → ¬(R1participantIn Gs1)

• If and only if: c1 ↔ c2

• Or expression: c1 ∨ c2

Example: Exploring the roof (Groof ) can either be achieved by sending a robot up the stairs (Gstairs)
or having a helicopter fly over (Gfly).

do Groof ↔ do Gstairs ∨ do Gfly

• And expression:c1 ∧ c2

Example: Only explore the shaft (Ges) if communication is relayed from the entrance (Grc) when the
robot reaches the bottom (the end of goal Ges).

(do Ges) ↔ (do Grc) ∧ (Grcfinishes Ges)

• xor expression: c1 ⊕ c2

Example: Since exploring a shaft is dangerous and we want to avoid losing all of our capable robots,
robot 1 may not both work on that goal.

(R2participantIn Gm) ⊕ (R1participantIn Gm)
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Goal Constraints

Gxbefore Gy Gx start + dxGx < Gy start∗

Gx start∗ ≤ Gy start∗

Gx equal Gy Gx start = Gy start
Gxdx = Gydy

Gxmeets Gy Gx start + dxGx = Gy start
Gxoverlaps Gy Gx start < Gy start∗

Gx start + dxGx < Gy start∗ + dyGy

Gx start∗ + dx > Gy start
Gx = Gy

Gxduring Gy Gx start∗ > Gy start
Gx start + dxGx < Gy start∗ + dyGy

Gx = Gy

Gxstarts Gy Gx start = Gy start
Gx start + dxGx < Gy start∗ + dyGy

Gxfinishes Gy Gx start + dxGx = Gy start + dyGy

Gx start∗ > Gy start
Gx = Gy

do Gx Gx = 1

Robot Constraints

Rn participantIn Gm RnGm = Gm

Rn endAt L We create a new goal GendL

RnGendi
= 1

Resource Constraints

Rs limitFuelTo F
∑

n s.t. Rn∈Rs

∑

i<ω

RnOi travel ≤ F

Rs limitResourcesOf
〈f(Rn, Gm), ρ〉

∑

Rn∈Rs

∑

Gm∈G

f(Rn, Gm)RnGm ≤ ρ

Table 1: COCoA implementation of simple constraints

• Forall quantifier: This quantifier operates with robots as variables, ∀Rn ∈ R, c1, or goals as variables,
∀Gm ∈ G, c1.

• Exists quantifier: This quantifier also operates with robots as variables, ∃Rn ∈ Rs, c1, or with goals
as variables, ∃Gn ∈ Gs, c1.

3.5.5 Modeling constraints in COCoA

In general, goal constraints are defined to hold only if the goals are scheduled, allowing a trivial solution
of not scheduling either goal. This is achieved by carefully combining goal variables and antivariables in
the goal constraints. With the exception of the begin constraint, goal constraints are also defined so that
scheduling one of the constrained goals forces the other constrained goal to be likewise scheduled. We assume
that the duration, dm, of goal Gm is greater than 0 and less than Tmax for all goals. The simple constraints
can be directly translated into problem shown in table 1.

While simple constraints can be modeled with variables in the problem formulation, complex constraints
require the addition of new binary constraint variables, denoted Cx.

Complex constraints can be modeled by applying the following process beginning with the outer most
expression and continuing in to the nested expressions.

1. If the constraint is a complex constraint introduce new binary constraint variables, denoted Cx, and
constraints according to the rules for each complex expression listed below. The validity of each logical
expression can be checked using truth tables:
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Logical not ¬c1:

Cnot = 1 − C1

C1 Cnot

0 Cnot = 1

1 Cnot = 0

Conditional statement c1 → c2:

Cif ≤ C2 − C1 + 1

Cif ≥ C2−C1+1
2

C1 C2 Cif

0 0 Cif ≤ 1
Cif ≥ 1

2
Cif = 1

0 1 Cif ≤ 2
Cif ≥ 1
Cif = 1

1 0 Cif ≤ 0
Cif ≥ 0
Cif = 0

1 1 Cif ≤ 1
Cif ≥ 1

2
Cif = 1

If and only if : c1 ↔ c2:

Ciff ≤ C2 − C1 + 1

Ciff ≤ C1 − C2 + 1

Ciff ≥ C1+C2−1
2

Ciff ≥ 1−C1−C2

2

C1 C2 Ciff

0 0 Ciff ≤ 1
Ciff ≤ 1

Ciff ≥ − 1
2

Ciff ≥ 1
2

Ciff = 1

0 1 Ciff ≤ 2
Ciff ≤ 0
Ciff ≥ 0
Ciff ≥ 0
Ciff = 0

1 0 Ciff ≤ 0
Ciff ≤ 2
Ciff ≥ 0
Ciff ≥ 0
Ciff = 0

1 1 Ciff ≤ 1
Ciff ≤ 1
Ciff ≥ 1

2
Ciff ≥ − 1

2
Ciff = 1

Or expression: c1 ∨ c2

Cor ≤ C1 + C2

Cor ≥ C1

Cor ≥ C2
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C1 C2 Cor

0 0 Cor ≤ 0
Cor ≥ 0
Cor ≥ 0
Cor = 0

0 1 Cor ≤ 1
Cor ≥ 0
Cor ≥ 1
Cor = 1

1 0 Cor ≤ 1
Cor ≥ 1
Cor ≥ 0
Cor = 1

1 1 Cor ≤ 1
Cor ≥ 1
Cor ≥ 1
Cor = 1

And expression:c1 ∧ c2

Cand ≥ C1+C2−1
2

Cand ≤ C1

Cand ≤ C2

C1 C2 Cand

0 0 Cand ≥ − 1
2

Cand ≤ 0
Cand ≤ 0
Cand = 0

0 1 Cand ≥ 0
Cand ≤ 0
Cand ≤ 1
Cand = 0

1 0 Cand ≥ 0
Cand ≤ 1
Cand ≤ 0
Cand = 0

1 1 Cand ≥ 1
2

Cand ≤ 1
Cand ≤ 1
Cand = 1

xor expression: c1 ⊕ c2

Cxor ≥ C1 − C2

Cxor ≥ C2 − C1

Cxor ≤ C1 + C2

Cxor ≤ 2 − C1 − C2
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C1 C2 Cxor

0 0 Cxor ≥ 0
Cxor ≥ 0
Cxor ≤ 0
Cxor ≤ 2
Cxor = 0

0 1 Cxor ≥ −1
Cxor ≥ 1
Cxor ≤ 1
Cxor ≤ 1
Cxor = 1

0 1 Cxor ≥ 1
Cxor ≥ −1
Cxor ≤ 1
Cxor ≤ 1
Cxor = 1

1 1 Cxor ≥ 0
Cxor ≥ 0
Cxor ≤ 2
Cxor ≤ 0
Cxor = 0

Forall quantifier: This quantifier operates with robots or goals as variables.

We create a binary constraint variable, C∀i
, for each system constraint, cRn or cGm . These system

constraints must be formulated using this process like any other complex constraint. Additionally,
we have the following problem constraints where n is the number of robots or goals:

C∀ ≥ 1 − n +
∑

i

C∀i

C∀ ≤

P

i

C∀i

n∑

i

C∀i
C∀

[0, n − 1] C∀ ≥ 0
C∀ < 1
C∀ = 0

n C∀ ≥ 1
C∀ ≤ 1
C∀ = 1

Exists quantifier: This quantifier also operates with robots as variables.

We create a binary constraint variable, C∃i
, for each system constraint, cRn or cGm . These system

constraints must be formulated using this process like any other complex constraint. Each of these
system constraints also results in a problem constraint, C∃ ≥ C∃i

, so that the exists constraint
evaluates as true if any of the individual system constraints are true. Additionally, we add the
following problem constraints so that the exists constraint does not evaluate to true unless one or
more of the individual constraints is true:

C∃ ≤
∑

i

C∃i
.

∀i : C∃ ≥ C∃i∑

i

C∃i
C∃

0 C∃ ≤ 0
C∃ ≥ 0
C∃ = 0

[1,n] C∃ ≤ 1
for some i: C∃ ≥ 1

C∃ = 1
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Algorithm 3 Generate problem constraints for Cx → ci

Use the constraints from table 1 that correspond to ci.
Turn all equalities, x = y, into inequalities: x ≤ y and x ≥ y.
Rearrange each inequality so that the RHS = 0
if LHS ≤ 0 or LHS < 0 then

RHS = (1 − Cx)Tmax

else

RHS = (Cx − 1)Tmax

end if

Algorithm 4 Generate problem constraints for ¬Cx → ¬ci

Use the constraints from table 1 that correspond to ci.
Turn all equalities, x = y, into inequalities: x ≤ y and x ≥ y.
Rearrange each inequality so that the RHS = 0
for all resulting inequality problem constraints do

Create a new binary variable Cxi
.

if LHS < 0 then

LHS ≥ (Cxi
− 1)Tmax

else if LHS ≤ 0 then

LHS > (Cxi
− 1)Tmax

else if LHS > 0 then

LHS ≤ (1 − Cxi
)Tmax

else

LHS < (1 − Cxi
)Tmax

end if

end for

Add problem constraint:
∑

i

Cxi
+

∑

Gm∈ci

(1 − Gm) ≥ (1 − Cx)

2. For each constraint clause, ci, continue to apply the rules for modeling complex expressions.

3. Simple constraints that are nested inside a complex constraint cannot be directly incorporated into
the MILP as non-nested simple constraints but must be formulated as dependent upon the constraint
variable, Cx, of the expression in which they are nested. Algorithm 3 describes how to generate the
problem constraints so that Cx → ci. Note that LHS and RHS refer to the Left (or Right) Hand Side
of the inequality.

4. Recall from the definition of a complex constraint that resource constraints and the endAt constraint
are defined such that ¬ci means that the constraint is not required while all other simple constraints
are defined such that ¬ci means that the constraint is not permitted. These other simple constraint
need to be correctly modeled such that ¬Cx → ¬ci. This is accomplished by applying DeMorgan’s law
(¬(A ∧ B) = ¬A ∨ ¬B) and following algorithm 4. The final problem constraint forces at least one of
the constraints to be false if Cx = 0 unless one or more of the goals are not scheduled in which case ci

is trivially false.

5. Set the top level constraint variable Cx = 1.

We can quickly verify that the process for establishing Cx → ci is valid (Algorithm 3): if Cx = 0, we have
the left hand side of the expression, LHS {>,≥} − Tmax or LHS {<,≤}Tmax. Since all times are bounded
by Tmax, this is a trivial constraint. On the other hand, if Cx = 1, the right hand side is 0 which is simply
a restatement of the original constraint.

Similarly, we can validate ¬Cx → ¬ci (Algorithm 4). If Cx = 1, the final problem constraint is trivially
satisfied since the addition of binary variables will always be greater than or equal to 0 and there are no
constraints on any of Cxi

or Gm. We have defined Cxi
to represent whether constraint clause i is false. If
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Cx = 0, one or more constraint clauses must be false (Cxi
= 1 for some i) causing the entire constraint to be

false by DeMorgan’s law (or as we have defined our constraints, one or more of the goals in the constraint may
be unscheduled). We can verify that if Cxi

= 1 then the constraint is false. Each true constraint is put into
the form, LHS {<,≤, >,≥}0. This means that, in order for the constraint to be false, LHS {≥, >,≤, <}0.
If Cxi

= 1, these conditions hold. However, if Cxi
= 0, the constraints stand as LHS {≥, >}− Tmax or LHS

{≤, <}Tmax which is trivially true. Therefore, Cxi
= 1 indicates that one element of the constraint is false

which indicates by DeMorgan’s law that the entire constraint is false so ¬Cx → ¬ci.

3.6 Distributed Replanning

Figure 9: Abstract simulator with small example problem. Robots are illustrated as triangles and fractured
subteams are illustrated by bounding boxes.

The necessity of graceful degradation of performance in the face of communication failures is acknowledged
by the multirobot community [24]. However, many coordination systems assume perfect communication
between team members. Those systems that do analyze communication failure assume that an arbitrary
message will fail with a uniform probability. This model fails to capture the true nature of communication
breakdowns in multirobot teams.

Robots generally depend on peer to peer or ad hoc wireless RF networks for communication. Work in
the networking community [3], [63] indicates that the signal strength between two robots varies according
to 1

dn where d is the distance between the robots and n is the path loss exponent that is dependent on the
environment. Therefore, the ability of two robots to communicate varies depending on their proximity and
environmental factors and so is systematic. Since robot communication is frequently based on TCP which
is a reliable protocol, dropped packets are relatively unimportant. If robots are sufficiently close, they will
be able to communicate reliably and otherwise they will be unable to communicate at all.

The networking community has extensively analyzed communication through message relays in connected
and disconnected ad hoc networks [51], [63]. However, these models have not yet been applied to commu-
nication in the multirobot coordination domain. We introduce the formalism of fractured subteams which
captures the elements important for multirobot planning while abstracting away the mechanics of the ad
hoc network:

Definition 3.7. A fractured subteam consists of a set of robots RF ⊆ R that

1. Jointly believe in a common problem,
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ρF = 〈R,G, E, C, Tmax〉

2. Share a team plan TF = {SR1 ,SR2 , ...SRn}

3. Share a belief evolution model, B, defined in definition 4.2

4. Are able to communicate with each other through transitive closure

5. Are unable to communicate with any robot not in RF

Definition 3.8. A belief evolution model, denoted B, consists of the set of tuples each containing a
time critical tight coordination team planning problem, a team plan, and the set of robots known to have
shared this model: B = {〈ρ0, T0,R〉, 〈ρ1, T2,RFi

〉, ...〈ρn, Tn,RFj
〉} Since we assume that all robots start with

a common problem and team plan, all robots’ belief evolution models contain a common element.

It follows from this definition that a robot always belongs to exactly one fractured subteam. A simple
example of how a team may be partitioned into fractured subteams based on the topology of the environment
is shown in figure 9 where robots 1 and 2 belong to one fractured subteam and robots 3, 4 and 5 belong to a
second fractured subteam. If robot 2 crossed into node [1, 3], it would become part of the second fractured
subteam and would have to merge its problem and team plan with robots 3, 4 and 5. The beliefs and plan of
robot 1 would remain unchanged. Fractured subteams are themselves another variable in the system which
must be considered while replanning. At the same time, fractured subteams force distributed replanning.

3.6.1 Distributed coordination across fractured subteams

As robots seek to execute their team plan in dangerous and uncertain environments, they may discover that
the problem and environment which they encounter does not match the problem for which they planned.
If this occurs, they must refine their model of the problem and replan. There are two main challenges in
replanning. First, since robots are operating in time sensitive domains, the replanning must be performed
quickly since planning itself delays execution. The second problem arises when failures in communication
prevent the refined problem and solution from being disseminated to all team members resulting in incon-
sistencies. Before addressing our solution to these challenges, we identify the set of replanning catalysts or
discoveries that necessitate replanning based as shown in table 2.

The discovery of replanning catalysts is beyond the scope of this paper but is covered in part in other work
[24].
COCoA is capable of efficiently generating optimal or near optimal team plans for a given time critical

tight coordination team planning problem. We extend COCoA from a purely centralized solver to a hybrid
architecture. This hybrid architecture employs opportunistic centralization but is fundamentally distributed
in that each fractured subteam is unable to communicate with other fractured subteams requiring distributed
replanning. Each fractured subteam maintains its own knowledge from all previous subteams encountered
which it uses for this replanning.

This extension to COCoA has three main components. First, we have extended the architecture itself
beyond the master-slave model embedded in the centralized architecture. Next, we provide mechanisms
for distributed fractured subteams with independent beliefs and plans to split and merge. The final key to
our successful hybrid architecture is that we explicitly reason about communication failure and fractured
subteam composition during the opportunistically centralized replanning.

3.6.2 Robustness through redundancy

Since COCoA was designed to be a centralized planner, only a single robot was required to possess the
planning capabilities and complete problem and team plan. Other than this centralized planning robot,
robots required only their individual tightly coupled schedule. In the distributed version of COCoA, each
robot possesses full planning capabilities and a copy of the complete problem and team plan. The increase
in communication cost is marginal if information is broadcast. When a replanning catalyst is discovered, the
architecture leverages the nature of a fractured subteam for opportunistic centralization. A robot from that
fractured subteam is elected to replan and broadcast the results to the subteam.
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R: Robot added
removed
incapacitated
capability added
capability removed

G: Goal added
removed
requirement added
requirement removed
reward increased
reward decreased
duration increased
duration decreased

E: Environment path cost shortened
lengthened

C: System constraint added
removed

Tmax: Time limit shortened
extended

Table 2: Replanning catalysts are divided into categories based on on our definition of a time critical tight
coordination team planning problem (Definition 3.1)

3.6.3 Dynamic fractured subteam formation

Although the replanning is locally centralized, COCoA is distributed with respect to the individual fractured
subteams. Each fractured subteam maintains its own problem and team plan. Each robot carries with it the
complete knowledge of the fractured subteam to which it belongs. When robots from two fractured subteams
are merged into a single fractured subteam, their problems and team plans must likewise be merged. Merging
different beliefs is a deep research problem that we intend to address in more detail in future work. Presently,
we use a simple approach for merging two fractured subteams, F1 and F2 described below:

1. If the currently held problem and team plan of F1 match the currently held problem and team plan of
F2, no changes need to be made. The membership of the new fractured subteam is set to the union of
the membership of F1 and F2.

2. If the currently held problem and team plan of F1 match a state in the belief evolution model of F2 and
the team plan of F2 is valid given the current status of the members of F1 and F2, all members of the
merged fractured subteam adopt the problem, team plan, and belief evolution model of F2 (timestep
C in figure 10).

3. By symmetry, the previous rule applies if the currently held problem and team plan of F2 match a
state in the belief evolution model of F1.

4. If none of the above hold, create a new problem by merging the last common state in the belief
evolution models of F1 and F2 with the differences between the common state and the problem of F1,
the differences between the common state and the problem of F2, and the current status of the members
of the merged fractured subteam. Generate a new team plan to the resulting problem. Update the
belief evolution model of the merged fractured subteam to include the union of the belief evolution
models for F1 and F2.

The merge process is illustrated on a sample problem in figure 10. The process of splitting a single fractured
subteam into multiple fractured subteams is likewise illustrated in figure 10 and is much simpler than the
merge process. Each new fractured subteam maintains its problem, team plan, and belief evolution model.
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A: Communication failures result in 3 fractured subteams
B: Robot 4 in fractured subteam 3 is disabled resulting in replanning.
C: Robot 3 moves from fractured subteam 3 to 2 resulting in a merge and the

dissemination of robot 4’s failure.
D: Fractured subteam 1 is informed of a new goal and replans.
E: Robot 2 moves from fractured subteam 2 to 1; the merge requires replanning.

Figure 10: Example splitting and merging of fractured subteams. Rounded boxes indicate fractured subteams
while triangles indicate robots. The belief evolution models for each subteam are shown with the robots for
that model indicated as a range (i.e. 〈ρ0, T0, 1−5〉 indicates robots 1-5 (R1, R2, R3, R4, R5) shared the initial
problem ρ0 and team plan T0).

3.6.4 Replanning with Selective Disruption Minimization

While full replanning works well in perfect communication, it tends to perform poorly with fractured sub-
teams. To illustrate this problem, consider a simple example with three robots. Robots 1 and 2 form one
fractured subteam while robot 3 is in a second fractured subteam. In the original plan, robot 2 was to per-
form a certain goal. Before robot 2 was able to complete the goal, it suffers a breakdown. Robot 1 observes
this and replans. If robot 3 is closer to the goal than robot 1, the goal will be allocated to robot 3 while
robot 1 remains idle. The problem arises because robot 3 is out of communication and unaware of its new
commitment. If robot 1 had considered the communication failure while replanning, system performance
would have been significantly better even though allocating robot 1 to the goal is suboptimal by our original
objective function.

We explicitly reason about communication failure and fractured subteam composition during replanning
and prefer solutions that only change the commitments of robots in the fractured subteam. The changes in
coordination commitments are known as disruption [6]. Our approach is inspired by Bartold and Durfee’s
work for disruption minimization for a specific class of multiagent coordination problems based on weighting
changes to blocking and synchronization commitments. Since the commitments in the time critical tight
coordination team planning problem are significantly different than the multiagent coordination problem in
[6], we have developed our own metrics for measuring disruption. Our work also differs from previous work
in that only the disruption of robots external to the replanning fractured subteam is minimized.

Before quantifying change, we must first establish coordination commitments. In general, every goal
assigned to a robot represents a commitment to the team. However, not all changes to commitments are
undesirable. If a robot is in the fractured subteam and aware of the replanning catalyst, some changes in
the robot’s schedule are advantageous as they increase system performance. Since the problem is tightly
coupled, distinguishing between commitments that should be preserved and those that may be modified
is challenging. We use commitment graphs described in Algorithm 5 and shown in figure 11 to determine
where disruption should be minimized. Note that at this time we only consider disruption of temporal goal
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Figure 11: Sample commitment graph. Robot coordination commitments are omitted on the edges for
clarity.

constraints (based on Allen’s 13 temporal relationships [2]) and do not model disruption of resource or robot
constraints.

One of the advantages of the MILP problem formulation in COCoA is the relative ease in combining
multiple objective functions. We selectively minimize disruption by adding a cost function. There are
several possible cost functions. We penalize near term changes more than long term changes since there is a
higher probability that changes in the plan will be discovered in time for the robots to respond if the change
is sufficiently far in the future. We then define our disruption minimization objective function as follows:

Minimize :
∑

m s.t. Gm∈G

(Cost(Gm) +
∑

n s.t. Rn∈R

Cost(Rn, Gm))

The cost function for each goal Cost(Gm) is dependent upon the robots allocated to the goal represented
by the commitment graph, the original time at which the goal was scheduled, oldT ime, the new time at
which the goal is to be scheduled (a variable in the MILP), newT ime, and the system time when replanning,
replanT ime. The cost function for the goal can be constructed based on the following rules:

Algorithm 5 Build commitment graph (figure 11)

1: for all Goals Gm ∈ G such that isScheduled(Gm) do

2: Add goal node to graph
3: end for

4: for all Robots Rn ∈ R do

5: Add robot node to graph
6: SRn = last known schedule for Rn in belief evolution model
7: for all Steps in this robot’s schedule, Si ∈ SRn do

8: Add edge with robot coordination commitments, D, of Si from robot node to goal Gi

9: end for

10: end for

11: for all Temporal goal constraints Cj ∈ C do

12: Add edge Cj between constrained goal nodes
13: end for
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1. If Gm contains no edges between it and robots not in the subteam and the set of goal nodes reachable
from goal node Gm contain no edges between them and robots not in the subteam, the cost is 0 (Goal
1 in figure 11).

2. If Gm is not scheduled and so has no node in the commitment graph, the cost is 0.

3. If Gm contains no edges between it and robots not in the subteam but is reachable from goal nodes
with these links, the cost must be formulated to match the temporal goal constraints. We leave the
description of these cost functions for future work. Intuitively, however, the cost must match the nature
of the constraint. In the example in figure 11, scheduling goal 2 earlier than 5:00 would have no penalty
while scheduling it later would incur a penalty of

α
G2 start − 5 : 00

Tmax

4. If Gm has edges linking it to nodes of robots not in the fractured subteam (goals 3 and 4 in figure 11)
then if the old start time equals the new start time, the cost is 0. If the goal is cancelled, the cost is a
constant:

αcancel(1 −
oldT ime − replanT ime

Tmax − replanT ime
)

Otherwise the cost equals

αinsert(1 −
newT ime− replanT ime

Tmax − replanT ime
)

The cost function for each robot Cost(Rn, Gm) can similarly be constructed by following simple rules:

1. If Rn is a member of the fractured subteam the cost is 0.

2. If Rn is not a member of the fractured subteam and is not currently allocated to Gm (independent of
whether or not Gm is allocated), the cost is depends on whether the task is scheduled in the near term
or long term:

βinsert(1 −
newT ime− replanT ime

Tmax − replanT ime
)

3. If Rn is not a member of the fractured subteam but is currently allocated to Gm, the cost is 0 if the
new time is the same as the previous time and Rn is still assigned to the goal. If Rn is not assigned to
Gm in the new plan, the cost is a constant:

βcancel(1 −
oldT ime − replanT ime

Tmax − replanT ime
)

Otherwise the cost is determined by:

βcancel(1 − oldT ime−replanTime
Tmax−replanTime

)+

βinsert(1 − newTime−replanTime

Tmax−replanTime
)

The constants α and β may be tuned depending on the desired emphasis.
The new objective function can be combined with the existing objective function:

Maximize :
∑

m s.t. Gm∈G

Tmax−Gm start∗

Tmax
Qm−

∑

m s.t. Gm∈G

(Cost(Gm) +
∑

n s.t. Rn∈R

Cost(Rn, Gm))
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Figure 12: Comparison of no replanning, full replanning, and replanning with selective disruption minimiza-
tion on a sample environment with 5 robots and 10 goals. One robot was disabled at an early randomly
selected time. Strategies for replanning include no replanning, full replanning, and selective disruption min-
imization (SDM).

3.6.5 Evaluation

We conducted experiments to analyze the effect of fractured subteams on system performance. We used an
abstract simulator (figure 9) with a randomly generated environment, 5 robots, and 10 goals. The environ-
ments are randomly partitioned into various blackout zones which impose the communication limitations,
resulting in a set of fractured subteams. The number of fractured subteams is dependent on the topology
of the environment and the composition of these subteams changes as robots traverse the environment.As
an starting point for understanding the effect of communication breakdown on performance, we conducted a
simple set of experiments in which one robot in the team was randomly disabled at some random time early
in the plan.

We compared three different replanning strategies. In the first strategy, no replanning, robots attempt to
execute their original tightly coupled schedules despite knowledge that the problem is out of date. A second
possible strategy is full replanning in which robots replan without consideration of communication failure
or fractured subteam composition. Inefficiencies may arise since some robots on the team are unaware of
the new team plan. The final strategy we consider is replanning with selective disruption minimization as
described in Section 3.6.4. The results vary depending on the topology of the environment. The results for a
single typical environment are shown in figure 12. As expected, no replanning performs relatively poorly since
the tasks assigned to the disabled robot are never accomplished. If the communication failures are minimal,
full replanning outperforms the no replanning strategy, but as violations of the implicit assumption of full
communication in the full replanning strategy increase, full replanning actually decreases team performance.
Finally, by applying selective disruption minimization, we see that the degradation of performance with
communication failure is significantly improved.

3.7 Limitations

Our approach of using a mathematical programming model for coordination has a number of limitations. One
of the strengths of modeling the problem as a MILP is that we can leverage a vast amount of work in solving
these problems including the commercially available solver, CPLEX [40]. This strength is also a weakness
since CPLEX is expensive. The cost of putting it on a number of robots may be prohibitive. We experimented
with some free ILP solvers including GLPK (GNU Linear Programming Kit) [36] and lp solve [52] though
neither package performed nearly as well as CPLEX on mixed integer problems. The dependency on a linear
programming package as well as the increased computational complexity make COCoA inappropriate for
domains without optimality demands or without joint goals allowing task allocation and scheduling to be
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Figure 13: To determine how the MILP problem formulation scales we randomly generated over 10,000
environments. Problem size is characterized by the number of variables and constraints in the MILP model.
We fit a line to each set of data points in log-log space using least squares best fit. (a) Model size grows
linearly with the number of robots in the problem. (b) Model size grows superlinearly with the number of
goals in the problem. (c) Model size is independent of the number of capabilities relevant to the domain.
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more easily decomposed.
This thesis proposal only addresses the team planning problem. We do not model agents as having in-

dividual rewards. This means that COCoA is not applicable to adversarial domains or even multiagent
domains with self interested agents. Our assumption that agents do not have hidden preferences allows us
to ignore the issue of privacy.

The goal oriented problem representation allows us to preprocess path planning since each robot trajectory
is abstracted to a single variable, the amount of time allocated to travel to a goal. This abstraction allows us
to precompute path planning but limits the system’s ability to reason about or maintain spatial relationships
between robots as in the Hoplites framework [45].

There are a number of limitations to the problem description that do not represent fundamental limitations
of the mathematical programming model but rather design decisions. For example, we assume that goal
rewards decrease linearly with time. Instead, rewards could be modeled as piecewise linear or quadratic
functions. We chose our representation of goal rewards to speed up the MIP solver. Similarly, we assume
that all robot capabilities are binary. This is a reasonable assumption for robot teams where robots either
have a sensor or not but would not accurately model humans, for example, where some people are more skilled
at accomplishing a task that others. Presumably as robotic technology advances, this discretization of robot
capability will become less appropriate. Fortunately, it is possible to incorporate real valued capabilities into
the objective function so that reward depends on the level of capability of the robot working on the goal.
The reward for each goal would then be

Tmax − Gm start∗

Tmax

QmSbot

where Sbot is the skill of the robot performing the task. We decided not to include this in our model since
the resulting problem is a quadratic rather than a linear programming problem. The same applies to goal
duration; currently we require the requirements for the goal be satisfied for the entire duration. It is possible
to weight reward according to the amount of time or energy dedicated to the goal.

In order to guarantee optimality, COCoA plans over all team members and all goals. While the problem
formulation is invariant to changes in the environment size and the time limit, Tmax, we want to characterize
the dependence on the number of robots, goals, and capabilities in the system. It is challenging to analyze the
complexity of a MILP problem since performance is very dependent on the formulation. Adding additional
constraints can sometimes improve system performance. In general, however, problems with more variables
and constraints are more challenging to solve. Therefore, we analyze the problem space in terms of the
number of variables and constraints in the MILP problem. Analytically, we would expect the problem size
to grow linearly with the number of robots in the problem since the problem formulation has a constant
number of variables per robot given some fixed number of goals and capabilities. We expect the problem size
to grow cubically (worst case) with the number of goals in the system since our problem definition includes a
binary variable RnOiP(g1,g2) for every plan step (which is limited by the number of goals in the system) and
for every possible pairing of goals. Since there are no variables relating to the capabilities in the problem,
we would expect the problem size to be independent of the number of relevant capabilities.

We randomly generated over 10,000 benchmarks with variable numbers of robots, goals, and capabilities
and tallied the number of variables and constraints. Since we expected the results to be polynomial, we
created log-log plots and used the least squares metric to find the best fit of a line to the data as shown in
figure 13. The slope of the line in log-log space represents the degree of the polynomial. The data in figure
13(a) confirms our hypothesis that problem size grows linearly with the number of robots in the problem
since the slope of the lines is approximately 1. Figure 13(b) indicates that although problem size doe not
grow as rapidly with the number of goals in the problem as feared, the relationship is still superlinear.
Adding more goals to the problem has a greater effect on problem complexity that adding more goals. The
reason that the number of variables and constraints do not grow cubically with the number of goals in
the problem is that we prune combinations of robots and goals that would never be allocated which also
frequently allows us to lower the maximum number of plan steps for any robot. Finally, figure 13(c) matches
our analysis of the effect of the number of relevant capabilities in the problem. The number of variables
and constraints in the problem remain essentially constant as the number of capabilities increases (there is
actually a slight decrease in both the number of constraints and variables due to more aggressive pruning of
infeasible allocations between robots and goals).
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4 Proposed Work

4.1 Intelligent plan merging

As described in section 3.6, one component of a distributed implementation of COCoA is merging fractured
subteams. We described a simple approach for merging fractured subteams in section 3.6.1. This naive
approach may result in inefficiencies as frequent replanning is necessary. It may be possible to resolve the
plans without this full replanning (step 4) by intelligently merging the beliefs together. The old plans may be
useful in generating the new plan when full replanning is necessary. In either case, efficient plan merging is
a necessary component of a fully functional coordination architecture and will be addressed by the proposed
thesis.

4.2 Temporal constraint reasoning

While the myopic and greedy goals heuristics are useful in the absence of the system constraints described
in section 3.5, these heuristics are inadequate for tightly constrained systems. If the heuristics are unable to
provide a feasible solution, the coordination architecture must rely entirely on domain independent integer
linear programming solution techniques. In order to improve performance on problems with goal, resource,
and robot constraints, we plan to develop heuristics based on temporal constraint reasoning to efficiently
generate feasible solutions.

4.3 Robust plan selection

Thus far, this work has assumed that the environment is static for planning purposes. It handles dynamic
events by responding to the replanning catalyst. We postulate that system performance may be improved if
certain replanning catalysts are anticipated. For example, if goals are arriving randomly in some environment,
we would expect performance to improve if robots that are currently unemployed move to some central
location where they can more easily be deployed when a task arrives. As a second example, if robots in a
system frequently fail, performance may be improved if extra robots are allocated to an important goal so
that even when one robot fails, the goal can still be accomplished.

Reasoning about dynamic events to improve performance has two components. The system must obtain
models of these events. We propose to address this trivially by providing the system with these models.
Models of robot failure, goal generation, and other replanning catalysts could be learned by the system over
many runs of simulation. This topic, however, is not central to the thesis and so is left for future work.

Given these models, the system must somehow incorporate them into the planning. We propose to do this
by defining a second objective function for plan robustness. Plans with extra travel time or that allocate
extra robots to a goal would be robust to certain types of failure. Based on the models, this new objective
function would be combined with the original objective function. This approach allows the plans to be
incorporated in a principled manner. The system can explicitly tradeoff between more optimal and safer
plans.

4.4 Communication

Communication is a necessary yet presently unaddressed component to our coordination architecture. The
ad hoc approaches to communication favored by the robotics community with specially defined protocols are
generally not easily readable by humans nor are they standard which limits interoperability between teams.
Instead, we adopt a standard agent communication language (ACL). KQML [30] and FIPA-ACL [31] are two
of the most widely used ACLs in multi-agent systems. We propose adopting the RETSINA communicator
[72] which uses KQML for communication in our system. By adopting a standard language, we facilitate
interoperability and interconnection between robot teams. A standard language, however, is insufficient if
the agents do not have a shared vocabulary or ontology. The proposed thesis will provide an ontology for
coordination within a constraint optimization framework.

While agent communication languages are well suited to exchange of high level information relating to goal
allocation, replanning catalysts, or subteam composition, for example, a multirobot system interacting with
a dynamic physical environment must also send low level information (e.g. telemetry or video data). These
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low level communications often occur at high frequencies, which can clog the main line of communication.
We have extended the RETSINA architecture to allow multiple lines of communication between agents [46].
The additional lines, or backchannels, are for the transfer of low level information. The proposed thesis will
also provide a set of backchannels designed for the search and rescue domain but applicable to a range of
other multirobot applications.

Finally, the proposed thesis will address the questions of what, when, and with whom to communicate.
We will analyze the effect of eager versus hesitant communication policies where robots vary the amount of
information they share with their teammates.

4.5 Evaluation in USARsim

Figure 14: A team of heterogeneous robots explore a high fidelity model of the yellow NIST disaster arena
in the USARsim simulator.

Thus far, all experiments have been carried out in COCoASim. While sufficient to illustrate the concepts
and algorithms described in this thesis proposal, an abstract simulator may inadvertently hide issues that
prevent the coordination architecture from being applicable to real systems. Since our research is motivated
by the urban search and rescue domain, it is appropriate to demonstrate our coordination architecture in
this domain.

While the ultimate goal of providing multirobot teams capable of interacting with humans at various levels
of autonomy to search a disaster environment is still years away, NIST has developed the RoboCup Rescue
competition to advance research in this area [41] [58].

However, the scarcity and expense of robots capable of autonomously navigating a complex environment
limit coordination research on real robots. A high fidelity, extensible simulator, USARsim, has been devel-
oped to facilitate this research [81] [82] [16]. A screenshot of the simulator is shown in figure 14. Based on
Epic Games’ UnrealEngine2 [78], USARsim includes models of rescue robots used by teams competing in the
RoboCup Rescue competition including the Pioneer P2AT and P2DX, the iRobot ATRV-Jr, the Personal
Exploration Rover, a robot built by our RoboCup Rescue team called Corky, and a generic four-wheeled car.
The models were constructed using the Karma physics engine, which simulates rigid body dynamics in real
time [82]. Not only does USARsim capture physical dynamics such as slip causing robots to veer as they
attempt to drive straight, for example, but it also captures noise in sensor data. The uncertainty in sensor
and motion models have recently been validated in USARsim for the arenas used in the RoboCup Rescue
competition [82] [16]. Recent work has also been done to develop a communication model for USARsim that
accurately propagates wireless Ethernet signals according to the structure of the environment. USARsim
has been so successful that a new competition based on it (Virtual Robots competition) will be added to
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the RoboCup competition beginning in 2006. We propose to use USARsim to validate the coordination
architecture described.

This validation will have the following components:

Agent architecture We will incorporate COCoA into the planning layer of the robot-agent architecture
[58].

Evaluation We propose a two phase evaluation of our approach in USARsim. First, we will evaluate CO-

CoA on benchmarks similar to those designed for COCoASim. We will select 5-10 different physical
environments, create models of these environments that are consistent with the level of abstraction
used in COCoA, and populate these models with a number of “goals”, virtual victims. We will vary
the number of known and unknown victims (we expect to be able to accommodate up to 15 known and
unknown victims, depending on the size of the virtual environment), the number of robots (from two
robots to teams of 15-20 robots), and the capabilities of the robots (from very capable to very limited
in the sensors they carry though all robots will be chosen from the set of publicly available USARsim
robots). Additionally, we will impose certain system constraints on some portion of these benchmarks.
Uncertainty will come partly from USARsim since the amount of time to traverse the environment is
no longer deterministic and partly from the accuracy of the abstract model provided to the robots. For
example, we can simulate a landslide blocking a corridor by providing robots an initial map showing
a free corridor when there is actually a wall there. Thus the environment dynamics we will consider
include adding a robot, disabling a robot, adding a goal, removing a goal, disabling a capability on a
robot, inaccuracies in the estimate of the amount of time required to accomplish a goal or travel from
point to point, and changes in the environment. We will not consider making modifications to the
environment (e.g. clear the “landslide”) since this goes against the rules of the RoboCup Rescue com-
petition and so is not easily simulated in USARsim. We will use the communication model integrated
in USARsim to model fractured subteams and will look at the effect of the range of communication
on performance. Since the simulator is now nondeterministic, multiple runs will be required for each
algorithm or heuristic on each test case. We anticipate running thousands of simulations.

As a special case of these tests, we will evaluate our system in the rules of the RoboCup Rescue
Competition where the robots will start with no information on the environment. We will look at
the objective function used in that competition which does not discount rewards with time. While
the previous phase of testing involves creating new benchmarks for others, this phase of testing will
compare our approach to other approaches on existing benchmarks in a controlled manner.

Virtual Robots competition Although the Virtual Robots competition does not explicitly deal with the
time critical tight coordination team planning problem addressed by this thesis proposal, we plan to
enter the coordination architecture in the Virtual Robots competition to illustrate the flexibility of this
approach and to increase awareness of the problem and solution techniques.

Illustrating COCoA in USARsim provides a number of the advantages of applying the architecture to real
robots. USARsim has a lower cost than physical robots which is not only desirable for our own research but
useful for the dissemination of the algorithms to the wider research community.

5 Schedule

This section provides a rough outline of proposed work for the completion of this thesis.

January-February 2006 Implement robust plan selection in COCoA. Design and run experiments.

February 21: AAAI paper deadline

March 2006 Design communication protocol for agents in COCoA; Incorporate communicator and con-
straint optimization algorithms into planning layer of the robot agent architecture; Allocate some time
for U.S. Open RoboCup preparation

April 15-19: U.S. Open RoboCup competition
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April-July 2006 Get familiar with USARsim; Port code from abstract simulator to USARsim

July 13-16: RoboCup 2006

August 2006 Incorporate lessons learned from Virtual Robots competition; Design benchmarks in USAR-
sim; Publish code and benchmarks

September 2006 Improve performance through temporal constraint reasoning

October 2006 Improve plan merging algorithms

November 2006-May 2007 Run additional experiments; Write thesis

June 2007 Defend

6 Contributions

The proposed thesis would provide the following contributions to the robotics community:

Multirobot coordination through constraint optimization The mathematical programming model
of the coordination problem described in this thesis proposal is a novel approach to multirobot co-
ordination. We also describe an algorithm for combining traditional constraint optimization solution
techniques with domain specific approaches such as market based coordination.

Time critical tight coordination team planning problem This thesis proposal formalizes and ana-
lyzes the time critical tight coordination team planning problem. We present a set of benchmarks that
illustrate the complexities of the problem space. We empirically compare various algorithms on these
benchmarks.

System constraints The first order logic constraint language described in this thesis proposal captures the
important aspects of many multirobot coordination domains. We provide an implementation for this
constraint language. The proposed thesis will also analyze the effect of various system constraints on
team performance.

Communication failure In this thesis proposal we describe a new model for communication failure in
spatially distributed robot teams. These communication failures result in fractured subteams and
necessitate a distributed approach to coordination. We describe a hybrid system with distributed
replanning with opportunistic centralization. We present an empirical analysis of communication
failures on team performance.

Selective disruption minimization This thesis proposal describes selective disruption minimization as a
method for improving team performance by attempting to avoid changes to schedules of certain robots
on the team in order to reduce the cognitive load of humans interacting with those robots or to avoid
inconsistent plans due to communication failures. We show that selective disruption minimization can
be incorporated in the mathematical programming model of the team planning problem in a principled
manner.

Robust plan selection The proposed thesis will describe a method for selecting plans that are robust
to certain expected types of failure by, for example, allowing robots extra time to travel to goals or
allocating surplus robots to a goal in case one robot fails. We will analyze the effect of robust plan
selection on team performance both when the actual failures match the model of expected failures and
when the expected failures do not occur.
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