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Abstract. This paper reports details of a versatile implementation of the TraderBots 
approach: A market-based approach to multirobot coordination.  The architectural 
layout, implementation details, and variety of features are described.  Experimental 
results are presented using a team of Pioneer II DX robots engaged in exploration 
and distributed sensing tasks.  Different features and strengths of the approach and 
the implementation are highlighted in the experimental results. 

1. Introduction 
The past decade has witnessed a growing emphasis in research topics highlighting 
coordination of multirobot systems.  This emphasis is generated by the increasing demand 
for automation in application domains where a single robot is no longer capable of 
performing the necessary tasks, and/or multiple robots can accomplish the same tasks more 
efficiently.  Thus, coordinating multiple robots to cooperatively complete a task is a 
difficult problem that has attracted much attention from the robotics research community in 
recent years.  This paper details a versatile implementation of the TraderBots coordination 
approach, specifically geared towards coordinating multiple robots for cooperative tasks in 
dynamic environments.  The TraderBots approach capitalizes on the strengths of market 
economies that enable many agents to collectively execute complex tasks with access to 
incomplete information under dynamic conditions.   

Recently, negotiation-based and economy/market-based multirobot coordination has 
gained popularity.  This work in multirobot coordination draws from the software agents 
literature that began with Smith’s Contract Net Protocol [15], its extension by Sandholm 
and Lesser [14], and the general concepts of market-aware agents developed by Wellman 
and Wurman [19].  These concepts have since been extended to control a variety of 
multiagent (and more recently multirobot) systems.  Golfarelli, Maio, and Rizzi [10] 
designed a swap-based negotiation protocol for multirobot coordination that restricted 
negotiations to task-swaps, and Botelho and Alami [2] produced an auction-based 
mechanism for task allocation in multirobot coordination applications.  Stentz and Dias [16] 
proposed a more generally capable market-based approach for multirobot coordination 
which aims to opportunistically introduce pockets of centralized optimal planning into a 
distributed system, thereby exploiting the desirable properties of both distributed and 
centralized approaches.  Thayer et al. [18], Gerkey and Mataric [9], and Zlot et al. [21] have 
since produced market-based multirobot coordination results. Zlot and Stentz [20], and Dias 
and Stentz [6] report a more complete review of multirobot coordination approaches.  Dias 
and Stentz [6] provide a detailed description of the TraderBots approach; a brief overview 
of this approach follows:  

Consider a team of robots assembled to perform a particular set of tasks, or a 
complex mission.  Tasks such as exploration, distributed sensing, mapping, and 



reconnaissance, where subtasks can be carried out in parallel, in dynamic environments, 
where prior information about the environment is imperfect, benefit most from the 
application of the TraderBots approach. Consider further, that each robot in the team is 
modeled as a self-interested trader, and the team of robots as an economy. The goal of the 
team is to complete the tasks successfully while minimizing overall costs and maximizing 
overall revenue. Costs can be estimated in terms of metrics such as distance traveled, time 
elapsed, energy expended, resources depreciated, or robot-hours consumed, and revenue 
can be awarded in accordance with metrics such as number of tasks completed, information 
gained, or number of samples retrieved, depending on the requirements of the overall 
mission and application domain.  Each robot aims to maximize its individual profit. 
However, since all revenue is derived from satisfying team objectives, the robots’ self-
interest correlates to doing global good.  Moreover, the global cost is determined by the 
summation of individual robot costs, and hence each deal made results in global cost 
reduction. The competitive element of the robots bidding for different tasks enables the 
systems to decipher the competing local information of each robot, while the currency 
exchange provides grounding for the competing local costs in terms of the global value of 
the tasks being performed. 

The TraderBots approach has proven to be successful in efficient and robust 
multirobot coordination in previous implementations in simulation ([4], [7], [5]) and on 
physical robots ([21]).  However previous publications have not disseminated 
implementation details sufficient for reproducing an implementation of the TraderBots 
approach on a robotic platform. The contributions of this paper are first, a detailed 
description of the most current and most versatile implementation to date of the TraderBots 
approach for multirobot coordination, and second, a demonstration of many previously un-
implemented features of the TraderBots approach, including graceful handling of partial 
robot malfunctions and communication failures, accommodating new input from an 
operator during task execution, efficiently allocating tasks under dynamic conditions, 
dynamically generating tasks, incorporating new robots during execution, handling tasks 
that cannot be accomplished, and executing in unknown environments. 

2. Implementation Details 
An implementation of the TraderBots approach on a team of Pioneer robots enables the 
reported results.  The details of the robotic system used in this implementation are 
presented next.   

2.1 Robotic Platform 

The robot team (shown in Figure 1) consists of a homogenous set of off-the-shelf mobile 
robot platforms outfitted with additional sensing and computing.  Serving as the mobility 
platform is an ActivMedia Pioneer II DX indoor robot.  A Mobile Pentium 266 with MMX 
is the main processor.  Attached is a 1-gigabyte hard drive for program and data storage and 
802.11b wireless card for ad-hoc communication between robots. Encoder data from the 
drive wheels is collected onboard from which dead reckoning position (x, y, θ) is 

calculated. Encoders provide a relatively 
accurate measure of linear travel, but relatively 
inaccurate angle measurement, such that small 
errors in angle compound over time resulting 
in large displacement errors.  A solution to 
these pose errors is the addition of alternate 
angle measurements using a fiber optic rate 
gyroscope (KVH E-Core 1000). The 
gyroscope provides highly stable and accurate 

angle measurement (four degrees drift per hour).  Robots sense their environment using an 
180˚ scanning laser range finder (SICK LMS 200). Horizontal scan-range-data is 
incorporated with position data to create a 2D map. In addition to providing information to 
the operator, the map is used for local navigation and cost estimation during trading.  

 

Figure 1: Robot Team 
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2.2 Architecture 
Design and implementation of the system supporting the TraderBots architecture was 
focused on extensibility and scalability.  The system can be conceptualized as a 4-tier 
structure (as illustrated in Figure 2): hardware, hardware abstraction, autonomous 
navigation, and multi-robot (inter-robot) communication. The hardware layer consists of 

the motors, encoders, 
laser sensor and 
gyroscope.  A process 
called RobotCntl, which 
serves as a hardware 
abstraction to higher-level 
processes, controls all 
components of the 
hardware layer.  
RobotCntl manages the 
state of the hardware, 
collects, timestamps, and 
provides access to data, 
and interprets and 
executes hardware control 
commands from higher-
level processes.  

Two separate 
processes, TaskExec and 
DataServer, in 
conjunction with the 
hardware abstraction 

layer accomplish autonomous navigation. TaskExec executes local navigation with a map 
provided from DataServer.  DataServer aggregates position and laser range data from the 
hardware abstraction level and provides maps to other processes that require map 
information.  In addition to receiving map data from DataServer, TaskExec broadcasts its 
position to other robots and receives the position of other robots through the CommRelay.  
These positions are placed in TaskExec’s navigation map as obstacles to implement a 
collision avoidance mechanism between robots. At the highest level of control is the Trader 
process.  The Trader is responsible for coordinating with other robots through CommRelay 
and determining task allocations.  Once tasks are allocated, the Trader maintains a schedule 
for its commitments and periodically sends tasks to be executed to the TaskExec.  The 
Trader also keeps a local map for cost estimation during trading. 

2.3 Communication 
Communication between modules occurs in two ways: intra-robot (between modules on a 
single robot) and inter-robot (between modules on different robots).  These two instances 
use different techniques reflecting their unique situations. Intra- robot communication 
happens between processes on one robot such as TaskExec and RobotCntl or Trader and 
DataServer.  These links are assumed to be high-speed and reliable since the processes run 
on the same robot.  The basic assumption is that this channel is high bandwidth, low latency 
and reliable.  In this implementation we use a communication package called RTC (Real 
Time Communication) [12], which provides inter-process-communication between 
processes on the same machine or machines with reliable links.  Inter-robot communication 
differs from intra-robot communication with respect to bandwidth and reliability.  Inter-
robot communications use wireless Ethernet that is orders of magnitude less capable in 
terms of bandwidth in comparison to intra-robot communication, and suffers from 
reliability problems due to radio interference. In order to avoid re-transmission problems in 
an unreliable wireless environment, we use UDP (User Datagram Protocol), a 
connectionless datagram protocol built on IP (Internet Protocol), for transmitting data 
between robots. All RTC messages destined for another robot are sent to the CommRelay 
and packaged as UDP messages.  The UDP messages are then sent via UDP to the 

Figure 2: Architectural Layout 



destination robot and received by that robot’s CommRelay.  They are then converted back 
into RTC messages and sent to the appropriate modules using the intra-robot 
communication protocol. 

As described above, communication between processes on different robots is 
realized through a point-to-point UDP-based message-passing scheme.  Thus, each 
RoboTrader is not instantly able to determine which other RoboTraders it is connected to at 

any given time.  In order to keep 
track of which other traders are 
reachable, each RoboTrader sends 
out a periodic hunt signal to all 
existing robots whether they are 
known to be alive or not.  All traders 
that receive the hunt signal record the 
sender as connected, and send an 
acknowledgement (ACK).  The 
original sender waits a predetermined 
amount of time (10 seconds) for 
ACKs.  The senders of any ACKs 
that arrive within the time interval 
are recorded as being connected, and 
at the end of the time interval all 
other traders are marked as 
disconnected.  Additionally, the 
senders of any other signals (e.g. 
auction calls, bids) can 
opportunistically be marked as 
connected by the recipients of these 
messages. 

It is possible for a connected RoboTrader F to become perceived as disconnected at 
a later time if a trader T who had detected that robot previously ceases to communicate with 
it.  This can happen both in the case of a communication problem (out of range or a 
malfunction) or a robot death.  When the disconnection occurs, T waits for a specified 
interval (1 minute) to attempt to reconnect to F either through the hunt-acknowledge 
protocol, or by receiving any other message from F.  If no such message arrives, then T 
assumes that there is a problem with F.  To handle the possible fault, T first asks the other 
connected traders if they can connect to F.  This may be possible if F is out of 
communications range of T, but is within range of some other robot R that is also reachable 
by T.  If any other traders are connected to F, then T reverts to believing that F is alive and 
begins the 1-minute disconnection timer once again (in case F suffers a fault before 
reconnecting to T).  Otherwise, T assumes F has suffered a robot death and thus is out of 
commission until it receives a message from F again. The handling of robot death and other 
robustness issues in the TraderBots approach is reported in detail in a recent publication 
submission to the International Conference on Robotics and Automation [8]. 

2.4 Execution 
The TaskExec module performs the execution level of the architecture. This module is in 
charge of monitoring and arbitration of tasks, allowing for sequential and/or parallel 
execution. The TaskExec module combines the virtues of SAUSAGES [11] and DAMN 
[13] to create a task network in which simultaneous tasks can have their outputs combined 
through an arbiter. The basic building blocks for the task network are tasks. Tasks share a 
common structure that allows them to be transparently called by the TaskExec independent 
of the specific function that the task performs.  Thanks to this common structure, tasks can 
be dynamically added and removed from the task network.  

The most important member functions of a task are: 

! startTask(): this function is called once by the TaskExec before the task is executed 
for the first time.  
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Figure 3: Inter-robot and Intra-robot Communication 



! runOnce(): this function is called once each execution cycle, for as long as the task 
is active 

! endTask(): this function should be called by the task itself, when its termination 
criterion has been met. The TaskExec will also call it if the task executes beyond its 
assigned termination time. 

The TaskExec is the executor of the task network. It starts, executes, monitors and 
terminates tasks as required. It also allows for dynamic changes in the task network and 
operates as follows: 

# Process inputs from sensors, and put them in maps and data structures that are 
accessible to all tasks 

# Check start-conditions of all tasks. If the start conditions of one or more tasks are 
satisfied, start the tasks by calling the startTask() member of the tasks. Tasks will be 
considered active from this moment until their termination. There are two kinds of 
start conditions for a task: (1) at a specified time, and (2) after completion of its 
predecessor: It is also possible to condition the start on the successful termination of 
the task, and specify a different task to be executed if the predecessor fails. 

# Call runOnce() for all the tasks that are active. Each task processes the changes in 
the world and generates an output, or a vote. If a task has complete control of a 
resource, the output can be a direct command to the resource. If the task has shared 
control of a resource, the output of the task will be a vote on the desired behavior of 
the controlled resource. If a task has finished, it calls endTask(), to indicate its 
termination. 

# Check termination conditions for all active tasks. If a task remains active beyond its 
scheduled execution time, the TaskExec will terminate the task.  

Tasks can have control of two types of resources: exclusive and shared. Exclusive resources 
(for example science instruments on a space exploration robot) are unique to a task, and can 
be controlled directly from the task. Shared resources (for example motors and multi-
purpose sensors) are common to several tasks, and need to be arbitrated to perform an 
action. The most common kind of arbitrated resources are steering angle and speed. In the 
current implementation, all the tasks that participate in the selection of a steering angle and 
speed share a set of arcs with a different curvature and speed associated to each one of 
them. When the runOnce() function is called, the tasks issue votes on each one of the arcs. 
After all the tasks have been called for the current execution cycle, the TaskExec combines 
the votes from all the active tasks and executes the arc corresponding to the winning vote. 
The RoboTrader sends sequences of tasks to the TaskExec to be executed. In the current 
implementation the TaskExec maintains a single execution queue, and new tasks are added 
to the end to the current execution queue. If the queue was empty before the arrival of new 
tasks, the new tasks are executed immediately. The TaskExec reports success or failure of 
an executed task to the RoboTrader when a task terminates. 

2.5 Trading 

Trading is a key component of the TraderBots approach.  A RoboTrader assigned to each 
robot is responsible for opportunistically optimizing the tasks the robot commits to 
executing.  An OpTrader serves as an interface agent between the operator and the robot 
team. Each trader maintains a portfolio in which it keeps track of its commitments, 
schedule, currently executing tasks, and tasks it trades to others.  Two forms of contract 
types are allowed during trading: subcontracts and transfers. If the contract type is a 
subcontract, it implies the auctioneer is interested in monitoring the progress of the task and 
will hence expect a report when the task is completed; payment is made only after the 
subcontracted task is completed.  Note that a subcontracted task can be traded in turn to 
another robot, but only as another subcontract.  Each robot only needs to keep track of the 
robot it won the subcontract from and the robot it subcontracted the task to.  Once the task 
is executed, the completion of the task is reported along the chain of robots linked by the 
subcontracts until the initial auctioneer is notified.  If on the other hand, the contract type is 
a transfer, payment is made as soon as the task is traded, and no further communication 



concerning that task is necessary between the auctioneer and bidder. Each trader has an 
internal alarm that prompts it to auction all tasks in its schedule periodically.  Note that 
tasks being executed are removed from the schedule and hence cannot be traded.  This 
implementation decision was based on the assumption that a task cannot be transferred once 
it is started.  For application domains where this assumption is not true, this restriction can 
be removed.  In contrast, in application domains where idle time for robots is highly costly, 
introducing a larger execution window by sending a higher number of tasks to the 
TaskExec and removing them from future auctions will be more suitable.  A trader initiates 
an auction by sending out a call for bids.  Traders within communication range compute 
and submit bids to this auction.  Once the specified deadline expires, the auctioneer 
resolves the call by making a profit-maximizing allocation based on the bids it received.  If 
a trader receives an award for a bid it submitted, it accepts or rejects that award based on its 
current state.  Note that an award is binding after it has been accepted.  Two methods of call 
resolution are used in the current implementation of TraderBots.  The RoboTraders assign 
at most the single most profitable bid submitted to the auction.  The OpTrader, and 
RoboTraders who discover they are in a fault state due to a malfunction, use a greedy 
algorithm for resolving calls so that tasks are allocated more rapidly; this greedy allocation 
is done because they cannot execute the tasks themselves and in the case of a malfunction, 
because the robot can expect a robot death with higher probability and hence aims to 
reassign tasks quickly.  The greedy algorithm assigns the most profitable bid submitted by 
each trader that participates in the auction while assuring that no task gets assigned more 
than once and no bidder gets assigned more than one task during each auction.  All bids are 
limited to single-task bids in this implementation.  Dias and Stentz explore the comparative 
advantages of different negotiation strategies in a previous publication [7]. 

In order to participate in an auction, robots need to calculate the costs of tasks.  A 
robot announcing an auction must determine its reservation price, i.e. the highest price it is 
willing to pay to subcontract or purchase a task.  A robot bidding in an auction must 
calculate the expected cost of the tasks being offered.  These valuations are based on 
marginal costs – the difference in between the cost of the current schedule with those tasks 
and the cost of the schedule without those tasks.  For a single task, an auctioneer’s 
valuation is the savings resulting from removing that task from its schedule and reordering 
the remaining tasks in the schedule in an efficient manner.  A bidder’s marginal cost for a 
single task is the estimated cost of efficiently inserting the task into its schedule. When a 
trader initiates an auction, the call is sent to all robots marked as connected by that trader.  
This allows the trader to clear the auction as soon as it receives bids from all connected 
robots, rather than waiting for the auction deadline.  

3. Experiments, Results, and Discussion 
Many application domains demand high quality performance from multirobot systems.  
Dias and Stentz [6] identify several requirements for a successful multirobot coordination 
approach.  Some of these requirements are used to evaluate the versatility of the current 
implementation of the TraderBots approach.  The following characteristics are examined: 
the robustness to malfunctions, the ability to execute a task with incomplete information 
about the environment, the ability to deal with imperfect communication, the ability to 
dynamically handle new instructions from the operator during execution, the flexibility to 
execute different types of tasks, and the ability to accommodate the addition of a robot to 
the team during operation. The chosen application is a distributed sensing problem where 
robots are tasked with gathering sensory information from various designated locations of 
interest.  Figure 4a shows a graph of the 25mx45m area in which 30 cities (tasks), 
illustrated as triangles, are assigned to a team of robots to visit. Figure 4b shows a 
photograph of the cluttered dynamic environment, graphed in Figure 4a, where the reported 
experiments were carried out. This translates into a version of the traveling salesman 
problem (TSP) with the robots being represented by multiple salesmen following paths 
instead of tours (i.e. without the requirement that robots need to return to their starting 
locations) and where all the robots can start from different base locations – this is known as 
the multi-depot traveling salesman path problem (MD-TSPP). The tasks can be considered 
as cities to be visited where the costs are computed as the time taken to traverse between 



cities.  A task is completed when a robot arrives at a city.  The global task is complete when 
all cities are visited by at least one robot.  The global cost is computed as the summation of 
the individual robot cost, and the goal is to complete the global task while minimizing the 
number of robot-hours consumed.  When the robots are not executing tasks, they remain 
stationary at their current locations.  

 

Each robot is responsible for optimizing its own local schedule (i.e. given a set of 
tasks, the robots attempt to find the optimal TSPP solution to their local problem instance).  
In general, the TSPP is NP-hard, so approximation algorithms are often used when large 
problem instances are encountered. Additionally, the problem encountered is an online 
variant of the TSPP – cities are arriving whenever a robot is awarded a task in an auction 
and are being removed whenever a task is traded to another robot.  When adding a task to 
the tour, it is inserted into the tour at the location that results in the smallest increase in 
marginal cost.  Insertion heuristics have been shown to have constant factor approximation 
guarantees for some point orderings, but in general they have a performance guarantee of 
(logn + 1) for n-city tours [1].  Tours are also optimized as a whole whenever tasks are 
added or removed.  If the number of tasks is at most 12, the optimal solution is computed 
using a depth first search-based algorithm.  If the number of tasks exceeds 12, computing 
the optimal solution is too time-intensive, and hence a minimum spanning tree-based 2-
approximation algorithm is used [3] if the resulting tour has a lower cost than the current 
tour.  Tour optimization is also performed whenever a task is completed or failed as costs 
between cities may have changed due to new map information from recent sensor readings.  
In the implemented TSPP scenario, all valuations are derived from inter-point distance 
costs.  These costs are estimated using a D* path planner [17] with the robot’s local map as 
input.  

 
Experiment 1:  This experiment measures the performance, averaged over a set of 3 runs, of 
the nominal case for 4 robots engaged in a distributed sensing task. 

Experiment 2:  This experiment investigates how a partial robot malfunction (simulated by 
killing the TaskExec process) at a random time during a run affects the nominal 
performance.  Reported results are averaged over a set of 3 runs for 4 robots engaged in a 
distributed sensing task. 

Experiment 3:  This experiment investigates how communication failures (simulated by 
deleting 10% of messages passed between robots) affect the nominal performance.  
Reported results are averaged over a set of 3 runs for 4 robots engaged in a distributed 
sensing task. 
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Figure 4: Distributed Sensing Tasks and Experimental Environment 



Experiment 4: This experiment investigates the effect of new operator input during 
execution (where 4 random tasks are cancelled at random times during execution). 
Reported results are averaged over a set of 3 runs for 4 robots engaged in a distributed 
sensing task. 

Experiment 5:  This experiment investigates the performance for the 3-robot case using a 
random allocation for comparison with the TraderBots allocation. Reported results are 
averaged over a set of 3 runs for 3 robots engaged in a distributed sensing task. 

Experiment 6:  This experiment investigates the performance for the 3-robot case using a 
greedy allocation for comparison with the TraderBots allocation. Reported results are 
averaged over a set of 3 runs for 3 robots engaged in a distributed sensing task.  

Experiment 7:  This experiment investigates the nominal performance for the 3-robot case, 
for comparisons in efficiency with random and greedy allocations reported in experiments 5 
and 6. Reported results are averaged over a set of 3 runs for 3 robots engaged in a 
distributed sensing task. 

Experiment 8:  This experiment investigates the effect of adding a new robot to the team at 
a random time during execution. Reported results are averaged over a set of 3 runs for a 
distributed sensing task. 

Experiment 9:  This experiment investigates the flexibility of the implemented TraderBots 
approach by applying it to an exploration task where a set of 4 robots dynamically generate 
locations to be visited in order to cooperatively build a map of a previously unknown 
world.  Reported results are averaged over a set of 3 runs, each of 5-minute duration. 

 

 

Table 1: Experimental Results 

 

Table 1 reports the results of experiments 1-9.  Experiment 1 shows a team of robots 
able to accomplish the 30 assigned tasks with a cumulative cost of ~150 robot-seconds 
nominally.  Experiment 2 shows that an induced malfunction in one of the robots is handled 
gracefully without loss to solution efficiency.  Experiment 3 shows that a 10% loss in 
communication raises the solution cost to ~190 robot-seconds, mainly due to repeated tasks 
because of lost acknowledgements, but does not prevent the handling of any of the tasks.  
Experiment 4 results in a drop in the solution cost due to the cancellation of 4 tasks during 
the experiments – note that on average only 3 of the tasks were cancelled before execution 
since tasks were chosen at random to be cancelled and a task chosen for cancellation was 
on average completed prior to the time of cancellation.  Experiment 8 shows that the 
TraderBots approach can accommodate the addition of a robot during operations.  
However, the new robot was started in a different start position from the previous 
experiments and hence the resulting costs cannot be compared.  Experiment 9 shows the 
results when the robots are tasked with generating suitable observation points in order to 

 # Robots Tasks 
Assigned 

Tasks 
Handled 

Team Cost 

Experiment 1 4 30 30 154.4 

Experiment 2 4 30 30 150.3 

Experiment 3 4 30 30 190.0 

Experiment 4 4 30-4 27 140.9 

Experiment 5 3 30 30 232.1 

Experiment 6 3 30 30 162.0 

Experiment 7 3 30 30 139.0 

Experiment 8 3+1 30 30 139.1 

Experiment 9 4 22 22 154.8 



collectively build a map of the environment. Figure 5a shows an example of a map 
collaboratively generated by the robots. Figures 5b, 5c, and 5d show a graphical 
comparison of allocations made using random, greedy, and TraderBots approaches in 
experiments 5-7.  Note that the robot paths overlap the least in the TraderBots allocation 
and they overlap the most in the random allocation as expected.  This result is reflected in 
the corresponding costs shown in Table 1. In previous publications Dias and Stentz report 
comparisons, in simulation, of the efficiency of the TraderBots allocation to the optimal 
allocation [7], to a centralized allocation [5], and to a fully distributed allocation [5]. 

Figure 6 shows an analysis of communication traffic sent by one trader using the 
TraderBots approach.  Figure 6a illustrates the evolution of the data rate, in 
kilobytes/second, over time, in seconds, and Figure 6b shows the cumulative data 
transmitted, in kilobytes, over the same time period.  Message types are auctions, bids, 
hunts, awards, and acknowledgments.  When the robot is first deployed, communication 
peaks as a result of the initial auction. As tasks are executed and knowledge is gathered, 
tasks continue being traded at a lower rate.  The steady state communication rate is due to 
the continuing trading mechanism (auctions, bids, awards) and messages to maintain 
knowledge of trader state (hunts, acknowledgments). 

4. Future Work 
Work in progress and future extensions to this implementation of the TraderBots approach 
include task abstraction using trees, escaping local minima using clustered bids, graceful 
handling of robot death, efficient handling of heterogeneity, enhancing scalability, and 
developing a more systematic comparative analysis of different multirobot coordination 
approaches. 
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Figure 5: Generated Map From Exploration Task and Comparison of Allocations 

Figure 6: Trading-Related Communication Traffic 
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