

A Versatile Implementation of the
TraderBots Approach

for Multirobot Coordination

M. Bernardine DIAS, Robert ZLOT, Marc ZINCK, Juan P. GONZALEZ, and
Anthony (Tony) STENTZ

The Robotics Institute, Carnegie Mellon University, Pittsburgh, USA
{mbdias, robz, mbz, jgonzale, axs}@ri.cmu.edu

Abstract. This paper reports details of a versatile implementation of the TraderBots
approach: A market-based approach to multirobot coordination. The architectural
layout, implementation details, and variety of features are described. Experimental
results are presented using a team of Pioneer II DX robots engaged in exploration
and distributed sensing tasks. Different features and strengths of the approach and
the implementation are highlighted in the experimental results.

1. Introduction
The past decade has witnessed a growing emphasis in research topics highlighting
coordination of multirobot systems. This emphasis is generated by the increasing demand
for automation in application domains where a single robot is no longer capable of
performing the necessary tasks, and/or multiple robots can accomplish the same tasks more
efficiently. Thus, coordinating multiple robots to cooperatively complete a task is a
difficult problem that has attracted much attention from the robotics research community in
recent years. This paper details a versatile implementation of the TraderBots coordination
approach, specifically geared towards coordinating multiple robots for cooperative tasks in
dynamic environments. The TraderBots approach capitalizes on the strengths of market
economies that enable many agents to collectively execute complex tasks with access to
incomplete information under dynamic conditions.

Recently, negotiation-based and economy/market-based multirobot coordination has
gained popularity. This work in multirobot coordination draws from the software agents
literature that began with Smith’s Contract Net Protocol [15], its extension by Sandholm
and Lesser [14], and the general concepts of market-aware agents developed by Wellman
and Wurman [19]. These concepts have since been extended to control a variety of
multiagent (and more recently multirobot) systems. Golfarelli, Maio, and Rizzi [10]
designed a swap-based negotiation protocol for multirobot coordination that restricted
negotiations to task-swaps, and Botelho and Alami [2] produced an auction-based
mechanism for task allocation in multirobot coordination applications. Stentz and Dias [16]
proposed a more generally capable market-based approach for multirobot coordination
which aims to opportunistically introduce pockets of centralized optimal planning into a
distributed system, thereby exploiting the desirable properties of both distributed and
centralized approaches. Thayer et al. [18], Gerkey and Mataric [9], and Zlot et al. [21] have
since produced market-based multirobot coordination results. Zlot and Stentz [20], and Dias
and Stentz [6] report a more complete review of multirobot coordination approaches. Dias
and Stentz [6] provide a detailed description of the TraderBots approach; a brief overview
of this approach follows:

Consider a team of robots assembled to perform a particular set of tasks, or a
complex mission. Tasks such as exploration, distributed sensing, mapping, and

reconnaissance, where subtasks can be carried out in parallel, in dynamic environments,
where prior information about the environment is imperfect, benefit most from the
application of the TraderBots approach. Consider further, that each robot in the team is
modeled as a self-interested trader, and the team of robots as an economy. The goal of the
team is to complete the tasks successfully while minimizing overall costs and maximizing
overall revenue. Costs can be estimated in terms of metrics such as distance traveled, time
elapsed, energy expended, resources depreciated, or robot-hours consumed, and revenue
can be awarded in accordance with metrics such as number of tasks completed, information
gained, or number of samples retrieved, depending on the requirements of the overall
mission and application domain. Each robot aims to maximize its individual profit.
However, since all revenue is derived from satisfying team objectives, the robots’ self-
interest correlates to doing global good. Moreover, the global cost is determined by the
summation of individual robot costs, and hence each deal made results in global cost
reduction. The competitive element of the robots bidding for different tasks enables the
systems to decipher the competing local information of each robot, while the currency
exchange provides grounding for the competing local costs in terms of the global value of
the tasks being performed.

The TraderBots approach has proven to be successful in efficient and robust
multirobot coordination in previous implementations in simulation ([4], [7], [5]) and on
physical robots ([21]). However previous publications have not disseminated
implementation details sufficient for reproducing an implementation of the TraderBots
approach on a robotic platform. The contributions of this paper are first, a detailed
description of the most current and most versatile implementation to date of the TraderBots
approach for multirobot coordination, and second, a demonstration of many previously un-
implemented features of the TraderBots approach, including graceful handling of partial
robot malfunctions and communication failures, accommodating new input from an
operator during task execution, efficiently allocating tasks under dynamic conditions,
dynamically generating tasks, incorporating new robots during execution, handling tasks
that cannot be accomplished, and executing in unknown environments.

2. Implementation Details
An implementation of the TraderBots approach on a team of Pioneer robots enables the
reported results. The details of the robotic system used in this implementation are
presented next.

2.1 Robotic Platform

The robot team (shown in Figure 1) consists of a homogenous set of off-the-shelf mobile
robot platforms outfitted with additional sensing and computing. Serving as the mobility
platform is an ActivMedia Pioneer II DX indoor robot. A Mobile Pentium 266 with MMX
is the main processor. Attached is a 1-gigabyte hard drive for program and data storage and
802.11b wireless card for ad-hoc communication between robots. Encoder data from the
drive wheels is collected onboard from which dead reckoning position (x, y, θ) is

calculated. Encoders provide a relatively
accurate measure of linear travel, but relatively
inaccurate angle measurement, such that small
errors in angle compound over time resulting
in large displacement errors. A solution to
these pose errors is the addition of alternate
angle measurements using a fiber optic rate
gyroscope (KVH E-Core 1000). The
gyroscope provides highly stable and accurate

angle measurement (four degrees drift per hour). Robots sense their environment using an
180˚ scanning laser range finder (SICK LMS 200). Horizontal scan-range-data is
incorporated with position data to create a 2D map. In addition to providing information to
the operator, the map is used for local navigation and cost estimation during trading.

Figure 1: Robot Team

Hardware

Trader

TaskExec

robotCntl

Data
Server

map/position

request

request

map

wheel
velocity

command

 Tasks Status

request

(x,y,θ, time, range)

Laser Motor Encoder Gyro

Multi-robot
Communication

Autonomous
Navigation

Hardware
Abstraction

Comm.
Relay

position

other robots' position

 position

Other Robots

2.2 Architecture
Design and implementation of the system supporting the TraderBots architecture was
focused on extensibility and scalability. The system can be conceptualized as a 4-tier
structure (as illustrated in Figure 2): hardware, hardware abstraction, autonomous
navigation, and multi-robot (inter-robot) communication. The hardware layer consists of

the motors, encoders,
laser sensor and
gyroscope. A process
called RobotCntl, which
serves as a hardware
abstraction to higher-level
processes, controls all
components of the
hardware layer.
RobotCntl manages the
state of the hardware,
collects, timestamps, and
provides access to data,
and interprets and
executes hardware control
commands from higher-
level processes.

Two separate
processes, TaskExec and
DataServer, in
conjunction with the
hardware abstraction

layer accomplish autonomous navigation. TaskExec executes local navigation with a map
provided from DataServer. DataServer aggregates position and laser range data from the
hardware abstraction level and provides maps to other processes that require map
information. In addition to receiving map data from DataServer, TaskExec broadcasts its
position to other robots and receives the position of other robots through the CommRelay.
These positions are placed in TaskExec’s navigation map as obstacles to implement a
collision avoidance mechanism between robots. At the highest level of control is the Trader
process. The Trader is responsible for coordinating with other robots through CommRelay
and determining task allocations. Once tasks are allocated, the Trader maintains a schedule
for its commitments and periodically sends tasks to be executed to the TaskExec. The
Trader also keeps a local map for cost estimation during trading.

2.3 Communication
Communication between modules occurs in two ways: intra-robot (between modules on a
single robot) and inter-robot (between modules on different robots). These two instances
use different techniques reflecting their unique situations. Intra- robot communication
happens between processes on one robot such as TaskExec and RobotCntl or Trader and
DataServer. These links are assumed to be high-speed and reliable since the processes run
on the same robot. The basic assumption is that this channel is high bandwidth, low latency
and reliable. In this implementation we use a communication package called RTC (Real
Time Communication) [12], which provides inter-process-communication between
processes on the same machine or machines with reliable links. Inter-robot communication
differs from intra-robot communication with respect to bandwidth and reliability. Inter-
robot communications use wireless Ethernet that is orders of magnitude less capable in
terms of bandwidth in comparison to intra-robot communication, and suffers from
reliability problems due to radio interference. In order to avoid re-transmission problems in
an unreliable wireless environment, we use UDP (User Datagram Protocol), a
connectionless datagram protocol built on IP (Internet Protocol), for transmitting data
between robots. All RTC messages destined for another robot are sent to the CommRelay
and packaged as UDP messages. The UDP messages are then sent via UDP to the

Figure 2: Architectural Layout

destination robot and received by that robot’s CommRelay. They are then converted back
into RTC messages and sent to the appropriate modules using the intra-robot
communication protocol.

As described above, communication between processes on different robots is
realized through a point-to-point UDP-based message-passing scheme. Thus, each
RoboTrader is not instantly able to determine which other RoboTraders it is connected to at

any given time. In order to keep
track of which other traders are
reachable, each RoboTrader sends
out a periodic hunt signal to all
existing robots whether they are
known to be alive or not. All traders
that receive the hunt signal record the
sender as connected, and send an
acknowledgement (ACK). The
original sender waits a predetermined
amount of time (10 seconds) for
ACKs. The senders of any ACKs
that arrive within the time interval
are recorded as being connected, and
at the end of the time interval all
other traders are marked as
disconnected. Additionally, the
senders of any other signals (e.g.
auction calls, bids) can
opportunistically be marked as
connected by the recipients of these
messages.

It is possible for a connected RoboTrader F to become perceived as disconnected at
a later time if a trader T who had detected that robot previously ceases to communicate with
it. This can happen both in the case of a communication problem (out of range or a
malfunction) or a robot death. When the disconnection occurs, T waits for a specified
interval (1 minute) to attempt to reconnect to F either through the hunt-acknowledge
protocol, or by receiving any other message from F. If no such message arrives, then T
assumes that there is a problem with F. To handle the possible fault, T first asks the other
connected traders if they can connect to F. This may be possible if F is out of
communications range of T, but is within range of some other robot R that is also reachable
by T. If any other traders are connected to F, then T reverts to believing that F is alive and
begins the 1-minute disconnection timer once again (in case F suffers a fault before
reconnecting to T). Otherwise, T assumes F has suffered a robot death and thus is out of
commission until it receives a message from F again. The handling of robot death and other
robustness issues in the TraderBots approach is reported in detail in a recent publication
submission to the International Conference on Robotics and Automation [8].

2.4 Execution
The TaskExec module performs the execution level of the architecture. This module is in
charge of monitoring and arbitration of tasks, allowing for sequential and/or parallel
execution. The TaskExec module combines the virtues of SAUSAGES [11] and DAMN
[13] to create a task network in which simultaneous tasks can have their outputs combined
through an arbiter. The basic building blocks for the task network are tasks. Tasks share a
common structure that allows them to be transparently called by the TaskExec independent
of the specific function that the task performs. Thanks to this common structure, tasks can
be dynamically added and removed from the task network.

The most important member functions of a task are:

! startTask(): this function is called once by the TaskExec before the task is executed
for the first time.

 Comm
Relay

 Comm
Relay

 Comm
Relay

robot 2

robot 3

robot 1

Figure 3: Inter-robot and Intra-robot Communication

! runOnce(): this function is called once each execution cycle, for as long as the task
is active

! endTask(): this function should be called by the task itself, when its termination
criterion has been met. The TaskExec will also call it if the task executes beyond its
assigned termination time.

The TaskExec is the executor of the task network. It starts, executes, monitors and
terminates tasks as required. It also allows for dynamic changes in the task network and
operates as follows:

Process inputs from sensors, and put them in maps and data structures that are
accessible to all tasks

Check start-conditions of all tasks. If the start conditions of one or more tasks are
satisfied, start the tasks by calling the startTask() member of the tasks. Tasks will be
considered active from this moment until their termination. There are two kinds of
start conditions for a task: (1) at a specified time, and (2) after completion of its
predecessor: It is also possible to condition the start on the successful termination of
the task, and specify a different task to be executed if the predecessor fails.

Call runOnce() for all the tasks that are active. Each task processes the changes in
the world and generates an output, or a vote. If a task has complete control of a
resource, the output can be a direct command to the resource. If the task has shared
control of a resource, the output of the task will be a vote on the desired behavior of
the controlled resource. If a task has finished, it calls endTask(), to indicate its
termination.

Check termination conditions for all active tasks. If a task remains active beyond its
scheduled execution time, the TaskExec will terminate the task.

Tasks can have control of two types of resources: exclusive and shared. Exclusive resources
(for example science instruments on a space exploration robot) are unique to a task, and can
be controlled directly from the task. Shared resources (for example motors and multi-
purpose sensors) are common to several tasks, and need to be arbitrated to perform an
action. The most common kind of arbitrated resources are steering angle and speed. In the
current implementation, all the tasks that participate in the selection of a steering angle and
speed share a set of arcs with a different curvature and speed associated to each one of
them. When the runOnce() function is called, the tasks issue votes on each one of the arcs.
After all the tasks have been called for the current execution cycle, the TaskExec combines
the votes from all the active tasks and executes the arc corresponding to the winning vote.
The RoboTrader sends sequences of tasks to the TaskExec to be executed. In the current
implementation the TaskExec maintains a single execution queue, and new tasks are added
to the end to the current execution queue. If the queue was empty before the arrival of new
tasks, the new tasks are executed immediately. The TaskExec reports success or failure of
an executed task to the RoboTrader when a task terminates.

2.5 Trading

Trading is a key component of the TraderBots approach. A RoboTrader assigned to each
robot is responsible for opportunistically optimizing the tasks the robot commits to
executing. An OpTrader serves as an interface agent between the operator and the robot
team. Each trader maintains a portfolio in which it keeps track of its commitments,
schedule, currently executing tasks, and tasks it trades to others. Two forms of contract
types are allowed during trading: subcontracts and transfers. If the contract type is a
subcontract, it implies the auctioneer is interested in monitoring the progress of the task and
will hence expect a report when the task is completed; payment is made only after the
subcontracted task is completed. Note that a subcontracted task can be traded in turn to
another robot, but only as another subcontract. Each robot only needs to keep track of the
robot it won the subcontract from and the robot it subcontracted the task to. Once the task
is executed, the completion of the task is reported along the chain of robots linked by the
subcontracts until the initial auctioneer is notified. If on the other hand, the contract type is
a transfer, payment is made as soon as the task is traded, and no further communication

concerning that task is necessary between the auctioneer and bidder. Each trader has an
internal alarm that prompts it to auction all tasks in its schedule periodically. Note that
tasks being executed are removed from the schedule and hence cannot be traded. This
implementation decision was based on the assumption that a task cannot be transferred once
it is started. For application domains where this assumption is not true, this restriction can
be removed. In contrast, in application domains where idle time for robots is highly costly,
introducing a larger execution window by sending a higher number of tasks to the
TaskExec and removing them from future auctions will be more suitable. A trader initiates
an auction by sending out a call for bids. Traders within communication range compute
and submit bids to this auction. Once the specified deadline expires, the auctioneer
resolves the call by making a profit-maximizing allocation based on the bids it received. If
a trader receives an award for a bid it submitted, it accepts or rejects that award based on its
current state. Note that an award is binding after it has been accepted. Two methods of call
resolution are used in the current implementation of TraderBots. The RoboTraders assign
at most the single most profitable bid submitted to the auction. The OpTrader, and
RoboTraders who discover they are in a fault state due to a malfunction, use a greedy
algorithm for resolving calls so that tasks are allocated more rapidly; this greedy allocation
is done because they cannot execute the tasks themselves and in the case of a malfunction,
because the robot can expect a robot death with higher probability and hence aims to
reassign tasks quickly. The greedy algorithm assigns the most profitable bid submitted by
each trader that participates in the auction while assuring that no task gets assigned more
than once and no bidder gets assigned more than one task during each auction. All bids are
limited to single-task bids in this implementation. Dias and Stentz explore the comparative
advantages of different negotiation strategies in a previous publication [7].

In order to participate in an auction, robots need to calculate the costs of tasks. A
robot announcing an auction must determine its reservation price, i.e. the highest price it is
willing to pay to subcontract or purchase a task. A robot bidding in an auction must
calculate the expected cost of the tasks being offered. These valuations are based on
marginal costs – the difference in between the cost of the current schedule with those tasks
and the cost of the schedule without those tasks. For a single task, an auctioneer’s
valuation is the savings resulting from removing that task from its schedule and reordering
the remaining tasks in the schedule in an efficient manner. A bidder’s marginal cost for a
single task is the estimated cost of efficiently inserting the task into its schedule. When a
trader initiates an auction, the call is sent to all robots marked as connected by that trader.
This allows the trader to clear the auction as soon as it receives bids from all connected
robots, rather than waiting for the auction deadline.

3. Experiments, Results, and Discussion
Many application domains demand high quality performance from multirobot systems.
Dias and Stentz [6] identify several requirements for a successful multirobot coordination
approach. Some of these requirements are used to evaluate the versatility of the current
implementation of the TraderBots approach. The following characteristics are examined:
the robustness to malfunctions, the ability to execute a task with incomplete information
about the environment, the ability to deal with imperfect communication, the ability to
dynamically handle new instructions from the operator during execution, the flexibility to
execute different types of tasks, and the ability to accommodate the addition of a robot to
the team during operation. The chosen application is a distributed sensing problem where
robots are tasked with gathering sensory information from various designated locations of
interest. Figure 4a shows a graph of the 25mx45m area in which 30 cities (tasks),
illustrated as triangles, are assigned to a team of robots to visit. Figure 4b shows a
photograph of the cluttered dynamic environment, graphed in Figure 4a, where the reported
experiments were carried out. This translates into a version of the traveling salesman
problem (TSP) with the robots being represented by multiple salesmen following paths
instead of tours (i.e. without the requirement that robots need to return to their starting
locations) and where all the robots can start from different base locations – this is known as
the multi-depot traveling salesman path problem (MD-TSPP). The tasks can be considered
as cities to be visited where the costs are computed as the time taken to traverse between

cities. A task is completed when a robot arrives at a city. The global task is complete when
all cities are visited by at least one robot. The global cost is computed as the summation of
the individual robot cost, and the goal is to complete the global task while minimizing the
number of robot-hours consumed. When the robots are not executing tasks, they remain
stationary at their current locations.

Each robot is responsible for optimizing its own local schedule (i.e. given a set of
tasks, the robots attempt to find the optimal TSPP solution to their local problem instance).
In general, the TSPP is NP-hard, so approximation algorithms are often used when large
problem instances are encountered. Additionally, the problem encountered is an online
variant of the TSPP – cities are arriving whenever a robot is awarded a task in an auction
and are being removed whenever a task is traded to another robot. When adding a task to
the tour, it is inserted into the tour at the location that results in the smallest increase in
marginal cost. Insertion heuristics have been shown to have constant factor approximation
guarantees for some point orderings, but in general they have a performance guarantee of
(logn + 1) for n-city tours [1]. Tours are also optimized as a whole whenever tasks are
added or removed. If the number of tasks is at most 12, the optimal solution is computed
using a depth first search-based algorithm. If the number of tasks exceeds 12, computing
the optimal solution is too time-intensive, and hence a minimum spanning tree-based 2-
approximation algorithm is used [3] if the resulting tour has a lower cost than the current
tour. Tour optimization is also performed whenever a task is completed or failed as costs
between cities may have changed due to new map information from recent sensor readings.
In the implemented TSPP scenario, all valuations are derived from inter-point distance
costs. These costs are estimated using a D* path planner [17] with the robot’s local map as
input.

Experiment 1: This experiment measures the performance, averaged over a set of 3 runs, of
the nominal case for 4 robots engaged in a distributed sensing task.

Experiment 2: This experiment investigates how a partial robot malfunction (simulated by
killing the TaskExec process) at a random time during a run affects the nominal
performance. Reported results are averaged over a set of 3 runs for 4 robots engaged in a
distributed sensing task.

Experiment 3: This experiment investigates how communication failures (simulated by
deleting 10% of messages passed between robots) affect the nominal performance.
Reported results are averaged over a set of 3 runs for 4 robots engaged in a distributed
sensing task.

-10

-5

0

5

10

15

20

25

30

35

-5 0 5 10 15

25m

45m

Figure 4: Distributed Sensing Tasks and Experimental Environment

Experiment 4: This experiment investigates the effect of new operator input during
execution (where 4 random tasks are cancelled at random times during execution).
Reported results are averaged over a set of 3 runs for 4 robots engaged in a distributed
sensing task.

Experiment 5: This experiment investigates the performance for the 3-robot case using a
random allocation for comparison with the TraderBots allocation. Reported results are
averaged over a set of 3 runs for 3 robots engaged in a distributed sensing task.

Experiment 6: This experiment investigates the performance for the 3-robot case using a
greedy allocation for comparison with the TraderBots allocation. Reported results are
averaged over a set of 3 runs for 3 robots engaged in a distributed sensing task.

Experiment 7: This experiment investigates the nominal performance for the 3-robot case,
for comparisons in efficiency with random and greedy allocations reported in experiments 5
and 6. Reported results are averaged over a set of 3 runs for 3 robots engaged in a
distributed sensing task.

Experiment 8: This experiment investigates the effect of adding a new robot to the team at
a random time during execution. Reported results are averaged over a set of 3 runs for a
distributed sensing task.

Experiment 9: This experiment investigates the flexibility of the implemented TraderBots
approach by applying it to an exploration task where a set of 4 robots dynamically generate
locations to be visited in order to cooperatively build a map of a previously unknown
world. Reported results are averaged over a set of 3 runs, each of 5-minute duration.

Table 1: Experimental Results

Table 1 reports the results of experiments 1-9. Experiment 1 shows a team of robots
able to accomplish the 30 assigned tasks with a cumulative cost of ~150 robot-seconds
nominally. Experiment 2 shows that an induced malfunction in one of the robots is handled
gracefully without loss to solution efficiency. Experiment 3 shows that a 10% loss in
communication raises the solution cost to ~190 robot-seconds, mainly due to repeated tasks
because of lost acknowledgements, but does not prevent the handling of any of the tasks.
Experiment 4 results in a drop in the solution cost due to the cancellation of 4 tasks during
the experiments – note that on average only 3 of the tasks were cancelled before execution
since tasks were chosen at random to be cancelled and a task chosen for cancellation was
on average completed prior to the time of cancellation. Experiment 8 shows that the
TraderBots approach can accommodate the addition of a robot during operations.
However, the new robot was started in a different start position from the previous
experiments and hence the resulting costs cannot be compared. Experiment 9 shows the
results when the robots are tasked with generating suitable observation points in order to

 # Robots Tasks
Assigned

Tasks
Handled

Team Cost

Experiment 1 4 30 30 154.4

Experiment 2 4 30 30 150.3

Experiment 3 4 30 30 190.0

Experiment 4 4 30-4 27 140.9

Experiment 5 3 30 30 232.1

Experiment 6 3 30 30 162.0

Experiment 7 3 30 30 139.0

Experiment 8 3+1 30 30 139.1

Experiment 9 4 22 22 154.8

collectively build a map of the environment. Figure 5a shows an example of a map
collaboratively generated by the robots. Figures 5b, 5c, and 5d show a graphical
comparison of allocations made using random, greedy, and TraderBots approaches in
experiments 5-7. Note that the robot paths overlap the least in the TraderBots allocation
and they overlap the most in the random allocation as expected. This result is reflected in
the corresponding costs shown in Table 1. In previous publications Dias and Stentz report
comparisons, in simulation, of the efficiency of the TraderBots allocation to the optimal
allocation [7], to a centralized allocation [5], and to a fully distributed allocation [5].

Figure 6 shows an analysis of communication traffic sent by one trader using the
TraderBots approach. Figure 6a illustrates the evolution of the data rate, in
kilobytes/second, over time, in seconds, and Figure 6b shows the cumulative data
transmitted, in kilobytes, over the same time period. Message types are auctions, bids,
hunts, awards, and acknowledgments. When the robot is first deployed, communication
peaks as a result of the initial auction. As tasks are executed and knowledge is gathered,
tasks continue being traded at a lower rate. The steady state communication rate is due to
the continuing trading mechanism (auctions, bids, awards) and messages to maintain
knowledge of trader state (hunts, acknowledgments).

4. Future Work
Work in progress and future extensions to this implementation of the TraderBots approach
include task abstraction using trees, escaping local minima using clustered bids, graceful
handling of robot death, efficient handling of heterogeneity, enhancing scalability, and
developing a more systematic comparative analysis of different multirobot coordination
approaches.

TraderBots Greedy Random

Figure 5: Generated Map From Exploration Task and Comparison of Allocations

Figure 6: Trading-Related Communication Traffic

5. Acknowledgments
This document describes a multirobot architecture, implementation, and test bed used for
conducting research on two active projects. This work was sponsored in part by the U.S.
Army Research Laboratory, under contract "Robotics Collaborative Technology Alliance"
(contract number DAAD19-01-2-0012) and in part by NASA, under contract
"Heterogeneous Multi-Rover Coordination for Planetary Exploration" (contract number
NCC2-1243). The views and conclusions contained in this document are those of the
authors and should not be interpreted as representing the official policies, either expressed
or implied, of the Army Research Laboratory, NASA, or the U.S. Government.

The authors wish to acknowledge the contributions of the other members of the CTA
Multirobot research group, Bart Nabbe, Nidhi Kalra, Dave Ferguson, and Andres S. Perez-
Bergquist, which enabled this implementation.

6. References
[1] Bafna, V., Kulyanasundaram, B., and Pruhs, K., “Not All Insertion Methods Yield Constant Approximate Tours in

the Euclidean Plane”, Theoretical Computer Science, 125(2), pp.345-353, 1994.

[2] Botelho, S. S. C., and Alami, R., “M+: A scheme for multi-robot cooperation through negotiated task allocation and
achievement”, Proceedings of the International Conference on Robotics and Automation, 1999.

[3] Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein, C., “Introduction to Algorithms (Second Edition)”, MIT-
Press, 2001.

[4] Dias, M. B. and Stentz, A., “A Free Market Architecture for Distributed Control of a Multirobot System”,
proceedings of the 6th International Conference on Intelligent Autonomous Systems (IAS-6), 2000.

[5] Dias, M. B., and Stentz, A., “A Comparative Study between Centralized, Market-Based, and Behavioral Multirobot
Coordination Approaches”, Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems,
2003.

[6] Dias, M. B., and Stentz, A., “A Market Approach to Multirobot Coordination”, Technical Report, CMU-RI -TR-01-
26, Robotics Institute, Carnegie Mellon University, 2001.

[7] Dias, M. B., and Stentz, A., “Opportunistic Optimization for Market-Based Multirobot Control”, Proceedings
of IEEE/RSJ International Conference on Intelligent Robots and Systems, 2002.

[8] Dias, M. B., Zlot, R., M., Zinck, M., and Stentz, A., “Robust Multirobot Coordination in Dynamic Environments”,
IEEE International Conference on Robotics and Automation (ICRA) 2004, Submitted 2003.

[9] Gerkey, B. P. and Matarić, M. J., “Sold! Market methods for multi-robot control”, IEEE Transactions on Robotics
and Automation Special Issue on Multi-Robot Systems, Submitted 2001.

[10] Golfarelli, M., Maio, and D., Rizzi, S., “A Task-Swap Negotiation Protocol Based on the Contract Net Paradigm”,
Technical Report, 005-97, CSITE (Research Centre For Informatics And Telecommunication Systems), University of
Bologna, 1997.

[11] Gowdy, J., “SAUSAGES: Between Planning and Action”, Technical Report CMU-RI-TR-94-32, Robotics Institute,
Carnegie Mellon University, 1994.

[12] Real-Time Communications (RTC), http://www.resquared.com/RTC.html.

[13] Rosenblatt, J., “DAMN: A Distributed Architecture for Mobile Navigation”, Doctoral Dissertation, Technical Report
CMU-RI-TR-97-01, Robotics Institute, Carnegie Mellon University, January, 1997.

[14] Sandholm, T., and Lesser, V., “Issues in Automated Negotiation and Electronic Commerce: Extending the Contract
Net Framework”, Proceedings of the first International Conference on Multiagent Systems (ICMAS-95), 1995.

[15] Smith, R., “The Contract Net Protocol: High-Level Communication and Control in a Distributed Problem Solver”,
IEEE Transactions on Computers, Vol. C-29, No. 12, 1980.

[16] Stentz, A. and Dias, M. B., “A Free Market Architecture for Coordinating Multiple Robots”, Technical Report,
CMU-RI-TR-99-42, Robotics Institute, Carnegie Mellon University, 1999.

[17] Stentz, A., “Optimal and Efficient Path Planning for Partially-Known Environments”, Proceedings of the IEEE
International Conference on Robotics and Automation (ICRA), 1994.

[18] Thayer, S. M., Dias, M. B., Digney, B. L., Stentz, A., Nabbe, B., and Hebert, M., “Distributed robotic mapping of
extreme environments”, Proceedings of SPIE: Vol. 4195: Mobile Robots XV and Telemanipulator and Telepresence
Technologies VII, 2000.

[19] Wellman, M. P., and Wurman, P. R., “Market-Aware Agents for a Multiagent World”, Robotics and Autonomous
Systems, Volume 24, 1998.

[20] Zlot, R., and Stentz, A., “Efficient Market-based Multirobot Coordination for Complex Tasks”, The International
Journal or Robotics Research (IJRR), Submitted 2003.

[21] Zlot, R., Stentz, A., Dias, M. B., and Thayer, S., “Multi-Robot Exploration Controlled By A Market Economy”,
Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), 2002.

