
Robust Multirobot Coordination

in Dynamic Environments

M. Bernardine Dias, Marc Zinck, Robert Zlot, and Anthony (Tony) Stentz

The Robotics Institute

Carnegie Mellon University

Pittsburgh, USA
{mbdias, mbz, robz, axs}@ri.cmu.edu

Abstract— Robustness is crucial for any robot team, especially
when operating in dynamic environments. The physicality of
robotic systems and their interactions with the environment
make them highly prone to malfunctions of many kinds. Three
principal categories in the possible space of robot malfunctions
are communication failures, partial failure of robot resources
necessary for task execution (or partial robot malfunction), and
complete robot failure (or robot death). This paper addresses
these three categories and explores means by which the
TraderBots approach ensures robustness and promotes graceful
degradation in team performance when faced with malfunctions.

Keywords-multirobot coordination; robustness; dynamic
environments; communication failures; partial malfunctions; robot
death; market-based.

I. INTRODUCTION

Many multirobot applications demand some level of
robustness to malfunctions. The requirement for robustness
becomes increasingly important when the application domain
requires the robots to interact within a highly dynamic
environment, and where prior information about the
environment is sparse. Applications such as urban
reconnaissance, urban search and rescue, planetary exploration,
and hazardous cleanup inherently include hazardous conditions
that will cause robotic malfunctions with high probability. Key
to the success of these applications is the team’s ability to
gracefully degrade their performance and maximize the
efficiency with which the available resources are used to
complete the task. Multirobot coordination approaches deal
with malfunctions in different ways. The three main categories
of malfunctions, and multirobot coordination approaches that
account for these malfunctions are explored next.

A. Communication Failures

Communication failures are abundant in many application
domains. These failures can vary from occasional loss of
messages to complete loss of communication. Different
approaches handle losses in communication using a variety of
strategies. As described by Balch and Arkin [1], some
approaches forego communication altogether and robots make
action decisions entirely independent of decisions made by
teammates. Other approaches forego explicit communication,

but instead, coordinate team actions by basing action selection
on observed environmental clues [1], anticipated actions of
teammates [13], socially attentive monitoring of teammates
[7], or pre-defined rules, triggered by environmental cues or
observation of specific team formations or actions [11]. None
of these coordination approaches are affected by failures in
communication. However, they are also unable to effectively
use information that can improve team performance if shared
with teammates. Vail and Veloso [13] show that teams can
perform more effectively if teammates coordinate and share
information.

If the robots explicitly communicate with each other, there
are still several methods to ensure graceful degradation in
performance with communication failures and limitations.
Stone and Veloso [11] present a set of techniques for dealing
with communication-based coordination of robot teams in
adversarial environments with unreliable, high-cost
communication. However, not all domains are adversarial.
Parker’s ALLIANCE architecture [8] does not reason about
hostile agents, but encourages fault tolerance in several ways.
A method to ensure robustness to message loss in less stringent
application domains is the use of acknowledgements, as in the
original Contract Net Protocol by Smith [9]. While this
approach adds a level of robustness to message loss, some
limitations are evident. The acknowledgement can be lost as
easily as the message, the acknowledgements add to the
communication load, and the approach does not explicitly deal
with the scenario of complete loss of communication.

B. Partial Robot Malfunction

Relatively little work has been done to investigate efficient
use of partially malfunctioning robots. When a robot
malfunctions partially, it loses the ability to effectively use
some of its resources but retains the ability to use others.
Inherent in this definition of partial malfunction is the robot’s
ability to plan for itself or the ability to communicate with a
planning agent; if the robot loses this capability, it is
considered dead. One of the difficulties in dealing with partial
robot malfunctions is detecting the malfunction. A host of
literature on fault detection and identification demonstrate
different techniques that enable robots to detect and identify
their own faults. However, relatively little work has been

done to address handling detected faults in a team.
Techniques such as socially attentive monitoring [7] and
regular monitoring of the task/environment state and adapting
to it [6] allow teammates to discover faults that the robot
cannot detect itself. Once a fault is detected, fewer techniques
have been proposed to deal with them. Bererton and Khosla
([2] and [3]) analyze the merits and challenges of repairing
robots when failures are detected.

Many reactive and behavioral approaches ([1] and [8]) are
resilient to partial robot malfunctions because robots execute
tasks independently of what other team members do, and hence
all tasks with no specific time deadlines are accomplished as
long as at least one capable robot remains active. Gerkey [6]
demonstrates a fault-tolerant auction scheme that decomposes a
cooperative box-pushing task into short-duration pusher and
watcher/coordinator tasks. Since the tasks span only a short
duration, the team re-evaluates the progress of the task
frequently and thus recovers from faults by reassigning short
duration tasks designed to adapt to the most current state.
However, these approaches do not reason about efficient
utilization of remaining active resources of the partially
malfunctioning robots.

C. Robot Death

Robot death is similar to the case of partial robot
malfunction, except that the affected robot cannot aid in the
recovery from the malfunction in any way. Most of the
research in fault tolerance ([6] and [8]) deals with robot death.
As with partial robot malfunctions, many reactive and
behavioral approaches are resilient to robot death.

The detection problem is more difficult for robot death
since the dead robot cannot detect its own death and reallocate
its tasks. A common method of detecting robot death is to
monitor a heartbeat (a periodic signal) from robots and assume
the robot is dead if the heartbeat is not detected. Other
methods of monitoring, such as socially attentive monitoring
[7], can also be used to detect the death of teammates. Once a
dead robot is discovered, any tasks assigned to that robot must
be reassigned to other capable robots or the dead robot must be
repaired. Bererton’s and Khosla’s work on robot repair ([2]
and [3]) can be applicable to some cases of robot death. Note
that in the cases where malfunctioning robots or dead robots
can be repaired and return to the team, the coordination
approach needs to be fluid in order to accommodate both the
exit of the dead robots and the entrance of the repaired robots.

D. Contribution

The contribution of this paper is two-fold. First, this paper
identifies three principal categories of robotic failures:
communication failures, partial robot malfunctions, and robot
death, and presents the most comprehensive study of
robustness of robot teams executing cooperative tasks in
dynamic environments. Second, this paper details an
implementation of the TraderBots approach, capable of
gracefully handling all three identified categories of robot
malfunctions.

II. THE TRADERBOTS APPROACH

Dias and Stentz [4] report a detailed overview of the
TraderBots approach; a market-based approach for multirobot
coordination inspired by the contract net protocol by Smith [9].
A brief overview of the TraderBots philosophy is presented
here. Consider a team of robots assembled to perform a
particular set of tasks. Consider further, that each robot in the
team is modeled as a self-interested agent, and the team of
robots as an economy. The goal of the team is to complete the
tasks successfully while minimizing overall costs. Each robot
aims to maximize its individual profit; however, since all
revenue is derived from satisfying team objectives, the robots’
self-interest equates to doing global good. Moreover, all robots
can increase their profit by eliminating unnecessary waste (i.e.
excess cost). Hence, if the global cost is determined by the
summation of individual robot costs, each deal made by a robot
(note that robots will only make profitable deals) will result in
global cost reduction. Furthermore, the individual aim to
maximize profit (rather than to minimize cost) allows added
flexibility in the approach to prioritize tasks that are of high
cost but also high priority over tasks that incur low cost to
execute but also provide lower value to the operation. The
competitive element of the robots bidding for different tasks
enables the systems to decipher the competing local
information of each robot, while the currency exchange
provides grounding for the competing local costs in terms of
the global value of the tasks being performed. A detailed
description of the current implementation of the TraderBots
approach is published in the proceedings of the 2004
conference on Intelligent Autonomous Systems [5].

A. Handling Communication Failures

The TraderBots approach does not depend on
communication to complete tasks. Communication mainly
plays the role of enabling improved efficiency in the generated
solutions. Zlot et al. [15] investigate the performance
degradation of the team, in the TraderBots approach, given the
absence of communication. Newer implementations of the
TraderBots approach are made more robust to communication
failures. Message loss is expected and often witnessed
resulting in only minor degradations in solution efficiency.
Strategies used to improve robustness are: frequent auctioning
and bidding which help reallocate tasks among robots more
efficiently, the absence of assumptions that all robots will
participate in any auction, monitoring of communication
connectivity to robots that have subcontracted tasks, and
continuous scheduling of assigned tasks for execution as tasks
are completed.

However, in a case where only the OpTrader (an interface
agent responsible for trading on behalf of the operator) is aware
of all tasks, and the tasks are divided among the robots, a
scenario such as a combination of communication failure
between the OpTrader and all robots, plus the death of a robot
with assigned tasks can result in the task assigned to the dead
robot remaining incomplete. Thus, domains where completion
of the global task (i.e. all tasks assigned to the team) must be
guaranteed (if resources are available) require a different
strategy. A possible strategy for these domains is to
disseminate knowledge of all tasks to all robots, as would be

the case in many reactive approaches. Note that this strategy is
only required if specific tasks are assigned to the team. In the
case where robots dynamically generate tasks (i.e. where the
same tasks can be generated by other robots given sufficient
time), as in work published by Zlot et al.[14], this strategy is
unnecessary.

In the current implementation, it is possible for more than
one robot to believe it is responsible for executing the same
task if communications are imperfect. For example, when
robot A awards a task to another (robot B), an acknowledgment
is sent from B to A. If the acknowledgment is lost, then robot
A does not know if B has accepted the task. In that case both A
and B will maintain responsibility for completing the task. It is
also possible that this duplication of tasks can be repaired: one
of the robots may subsequently try to auction the task, in which
case the other will be likely to win it as its marginal cost for the
task is 0.

B. Handling Partial Robot Malfunctions

Detecting partial robot malfunctions in the TraderBots
approach is achieved by monitoring the resources available to
the robots. While specific algorithms for fault detection and
identification are beyond the scope of this paper, in general, the
TaskExec’s (the module responsible for task execution) loss of
access to a particular resource, the Trader’s loss of access to its
TaskExec, the discovery of an unforeseen depletion of a
resource, or the discovery that the accrued cost in attempting to
complete a task surpasses the estimated cost for that task, can
indicate a partial robot malfunction. Once a Trader discovers a
partial robot malfunction, it attempts to sell all tasks it cannot
complete to other robots even if it has to take a loss for some of
the trades. (The trader still attempts to maximize profit, so any
losses will be minimized). If however trading becomes
impossible due to a coupling with loss of communication, then
the relevant strategy described in the previous section needs to
be used for the case where a static set of tasks, all of which
must be completed, is assigned to the team. Thus, graceful
degradation with malfunctions of team performance is
achieved. If the malfunction occurs with the Trader, then it
falls into the category of robot death. In this implementation,
robots were able to detect malfunctions caused by
disconnection of the on-board SICK laser used for obstacle
detection and mapping, and gyro errors caused by sudden
drastic rotations of the robot due to a wheel getting stuck.
Ongoing implementation efforts also include detection and
appropriate handling of low battery conditions that require the
robot to head back to a re-charging station.

C. Handling Robot Death

Once a robot is incapable of trading, it is considered dead.
In this case, the robot cannot aid in the detection or recovery
process. Several methods can be employed to allow
teammates to discover robot death as discussed above in
section I.C. The TraderBots approach can deal with detected
robot deaths by attempting to discover all trades that affected
the dead robot. Each trader can keep track of awards it makes
and receives. Thus, if a robot death is detected, each trader
checks to see if it has awarded any tasks to the dead robot, or
if it has won any tasks from the dead robot.

If a robot has awarded a task to the dead robot, it makes an
announcement to the remaining robots to find out if they
subcontracted that task from the dead robot. If such a trade is
discovered, the two robots re-negotiate their deal with respect
to that task. If a robot cannot discover any robot that is
currently committed to executing that task, the task is added
back to its commitment list. Note that this can result in the task
being repeated due to communication limitations. The premise
of such an implementation would be that it is better to repeat
the execution of a task rather than leave any task incomplete, if
available resources permit. Ongoing implementation efforts
include enabling the TraderBots approach to gracefully and
robustly accommodate robot death. Results in detecting and
handling robot death will be added in final submission of this
paper if it is accepted for publication. Finally, note that the
TraderBots approach easily accommodates fluidity by allowing
repaired robots or new robots to enter the team since any
available robot can participate in the frequently conducted
auctions. Initial experiments demonstrating this capability are
reported in results submitted for publication to the 2004
conference on Intelligent Autonomous Systems [5]. A
limitation in the current implementation is that detection of a
robot death is indistinguishable from a severe communications
failure since the only way robots detect one another is via
communication. It would be possible to improve this if the
robots additionally had some other mode of
detecting/monitoring each other (for example, by using a
camera or some other sensor).

III. EXPERIMENTS

An implementation of the TraderBots approach on a team
of 3 Pioneer robots enables the reported results. The robot team
(shown in Figure 1) consists of a homogenous set of off-the-
shelf mobile robot platforms outfitted with additional sensing
and computing.

Figure 1: Robot Team

Serving as the mobility platform is an ActivMedia Pioneer
II DX indoor robot. An 802.11b wireless card on each robot
allows ad-hoc communication between robots. Encoder data
from the drive wheels is collected on-board from which dead
reckoning position is calculated (x, y, θ). Alternate angle
measurements using a fiber optic rate gyroscope (KVH E-Core
1000) allow improved localization. Sensing is accomplished
using a 180˚ scanning laser range finder (SICK LMS 200).
Horizontal scan-range-data is incorporated with position data to
create a 2D map. In addition to providing information to the
operator, the map is used for local navigation and cost
estimation for trading. Further implementation details are

reported in our submission to the 2004 conference on
Intelligent Autonomous Systems [5].

The chosen application is a distributed sensing problem
where 3 robots are tasked with gathering sensory information
from a number of designated locations of interest in a large
dynamic environment. This translates into a version of the
traveling salesman problem (TSP) with the robots being
represented by multiple salesmen following paths instead of
tours (i.e. without the requirement that robots need to return to
their starting locations) and where all the robots can start from
different base locations – this is known as the multi-depot
traveling salesman path problem (MD-TSPP). The tasks can be
considered as cities to be visited where the costs are computed
as the time taken to traverse between cities. A task is
completed when a robot arrives at a city. The global task is
complete when all cities are visited by at least one robot. The
global cost is computed as the summation of the individual
robot cost, and the goal is to complete the global task while
minimizing the number of robot-hours consumed. When the
robots are not executing tasks, they remain stationary at their
current locations.

Figure 2: Photograph of test-site

Figure 3: Map of environment showing assigned goals and
robot paths (grid squares = 1mx1m)

Each robot is responsible for optimizing its own local
schedule (i.e. given a set of tasks, the robots attempt to find the
optimal TSPP solution to their local problem instance). In

general, the TSPP is NP-hard, so approximation algorithms are
often used when the problem instances encountered are large.
In the implemented TSPP scenario, all valuations are derived
from inter-point distance costs. These costs are estimated using
a D* path planner [10] with the robot’s local map as input. The
experiments performed, using this implementation, are
described in this section. The results obtained, and the relevant
analysis is presented in section IV.

A. Communication Failures

1) Experiment A1: Simulated Message Loss
Description: Communications between robots are
blocked at different percentage levels (20%, 40%, 50%,
60%, 80%, and 100%) and the corresponding
performance for 3 robots assigned 23 tasks is reported.

B. Partial Robot Failures

1) Experiment B1: Simulated Malfunctions
Description: Laser is turned off or gyro error is
introduced at a specific point during execution and the
resulting performance for 3 robots assigned 23 tasks is
reported.

C. Robot Death

1) Experiment C1: Simulated Death Before Execution
Description: A robot is turned off just prior to task
execution, simulating an unforeseen hardware error that
prevents operation, and the resulting performance for 3
robots assigned 7 tasks is measured.

2) Experiment C2: Simulated Death During Execution
Description: One or more robots are turned off at
random times during execution and the resulting
performance for 3 robots assigned 7 tasks is measured.

D. Fluidity

1) Experiment D1: Re-Entering Dead Robots
Description: One or more robots are turned off at
random times during execution and one robot is returned
to the base station, turned back on, and re-inserted into
the team at a later random time. The corresponding
effect on performance for 3 robots assigned 7 tasks is
measured.

IV. RESULTS AND DISCUSSION

Experiments A1 through D1 were completed as described
above. The corresponding results are reported in this section.
All reported results in experiments A1 and B1 are averaged
over three consecutive runs in the same environment under
nearly identical conditions.

Figure 4: System Performance with Communication
Failures

The first set of experiments investigates the effect of
communication failures on the team performance. Inter-robot
communication is blocked at different percentages and the
resulting solution recorded. Figure 4 shows the variation of
solution cost with the percentage of message loss. While the
solution cost increases with loss of communication until
approximately 60% loss, further communication loss has little
added effect on performance. The reason for this is that when
the loss rate is significant but not too large, it is often the case
that tasks are subcontracted, but their award acceptance
acknowledgement message does not reach the seller. When
this happens, the task ends up being duplicated, thereby
increasing the global cost. When the loss rate is high, the trades
do not progress to this stage as often and this effect is not seen
as frequently (e.g. the bids or the award are already lost, so the
task is not awarded). Since our initial solution based on the
initial OpTrader auctions is reasonably good, the result is that
we sometimes can do better with 100% loss rate than with 60%
loss. We hypothesize that if we start off with a worse solution
(for example, an initial random allocation), then we would
expect that this function would be more monotonic. Also, if
we enable the robot death handling, then there would be more
duplications of tasks at the high loss rates when a death was
detected and robots try to make up for the tasks of the “dead”
robots. Note that the different failure conditions were studied
separately in these experiments and hence the death handling
was disabled during the testing of communication failures and
partial robot failures.

The results from experiments A and B are reported in Table
1. For each experiment, the mean cost, the standard deviation
in the cost over the three runs of the experiment, the number of
tasks that succeeded, and the number of tasks that failed are
shown. Note that tasks can fail for several reasons due to the
dynamic environment and conditions. Note further that tasks
are sometimes duplicated and hence the addition of succeeded
and failed tasks sometimes exceeds the number of assigned
tasks (23). Future implementations will be able to better deal
with duplicate tasks as follows. If a trader is selling task x and
another robot already has committed to task x then that robot
will bid very low for the task and win it (its marginal cost is 0).
When the robot is awarded the task, it should check if it is a
duplicate, and if so it should be discarded.

 Cost (m) Tasks (#)
Description Avg. +/- Succ Fail

Nominal 121 12 21.0 2.0
Partial Failure 140 5 22.0 1.0
20% msg. loss 140 5 24.0 0.3
40% msg. loss 153 3 24.7 2.0
50% msg. loss 149 10 24.0 0.7
60% msg. loss 162 9 25.3 0.7
80% msg. loss 151 3 22.3 0.7
100% msg. loss 159 5 21.0 2.0

Table 1: Performance Statistics

Figure 5: Nominal Performance
with 3 Robots and 23 Tasks

Figure 6: Partial Robot Malfunction

Figure 5 and Figure 6 show the variation in the number of

tasks assigned to each robot over time for a nominal run and a
partial robot failure run respectively. While the number of
tasks gradually decreases with time as tasks are executed in a
nominal run, when a partial failure occurs, that robot

100

110

120

130

140

150

160

170

0 20 40 60 80 100

Percentage of lost messages (%)

T
o

ta
l s

o
lu

ti
o

n
 c

o
st

 (
m

)

Robot 1
Robot 2
Robot 3

Robot 1
Robot 2
Robot 3

Partial Robot
Malfunction

immediately trades away all of its tasks attempting to minimize
its losses, and hence the malfunctioning robot has a sudden
loss in the number of assigned tasks. The other two robots
have a sudden gain since they are assigned the unfinished tasks
of the malfunctioning robot.

Figure 7 shows the nominal performance of a 3 robot 7 task
scenario where robot 1 executes 3 tasks, and robots 2 and 3
execute 2 tasks each. This scenario corresponds to experiments
C and D.

Figure 7: Nominal Performance
with 3 Robots and 7 Tasks

In accordance with experiment C1, when robot 3 is killed
after initial trading with the OpTrader has been completed, and
before execution has commenced, the 2 tasks assigned to robot
3 are later discovered and executed (one each) by robots 1 and
2 as shown in Figure 8.

Figure 8: Performance with 3 Robots and 7 Tasks
with one robot death prior to execution

Note that there is a delay after the completion of the initial
tasks assigned to robots 1 and 2 while the death of robot 3 is

discovered and the tasks assigned to robot 3 prior to its death
are reassigned by the OpTrader.

A similar scenario occurs in the case of Figure 9. Here
robot 1 is killed prior to execution having won 3 tasks. These 3
tasks are later executed by robot 2.

Figure 9: Performance with 3 Robots and 7 Tasks
with one robot death prior to execution

Experiment C2 investigates the robustness of the
TraderBots approach to multiple deaths at random times during
execution. Figure 10 shows the scenario where both robot 2
and 3 are killed after executing one task each. These two tasks
are later completed by robot 1.

Figure 10: Performance with 3 Robots and 7 Tasks
with two robot deaths during execution

Two similar scenarios are shown below in Figure 11 and
Figure 12. In the first case, robot 1 and robot 2 are killed after
executing 1 task each. The remaining 3 tasks assigned to these
two robots are later completed by robot 3. In the second case,
robot 1 and robot 3 are killed after executing 1 task each.
Robot 2 completes the 2 tasks assigned to it and also the 3 tasks
assigned to the robots that were killed. Note that in all these

Robot 1
Robot 2
Robot 3

Robot 1
Robot 2
Robot 3Death

Robot 1
Robot 2
Robot 3

2 Deaths

Robot 1
Robot 2
Robot 3

Death

scenarios, the tasks assigned to robots that are killed are
reassigned once the OpTrader discovers the death of a
particular robot. This discovery can happen because the
OpTrader loses a connection to the robot for a sufficiently long
period of time such that a death is suspected and that suspicion
is reinforced by any remaining “live” robots, or because a live
robot detects and reports the death of a robot to the OpTrader.
Note further that in general tasks will be robustly completed as
long as the generator of the task is alive and detects the death
of a robot, or if the task was assigned to one of the live robots
at some point in time.

Figure 11: Performance with 3 Robots and 7 Tasks
with two robot deaths during execution

Figure 12: Performance with 3 Robots and 7 Tasks
with two robot deaths during execution

A final experiment conducted was to demonstrate the
fluidity of the TraderBots approach. Previous work [5]
demonstrated the ability to insert a robot into the team during
execution and allow it to participate in executing the team
mission. Experiment D1 demonstrates the ability to kill a robot

during task execution, have its tasks reassigned, repair the dead
robot, re-enter it into the team, and allow it to execute any
incomplete tasks.

Figure 13: Performance with 3 Robots and 7 Tasks
with two robot deaths and one robot re-entry during

execution

Figure 13 shows robot 1 and robot 3 being killed prior to
execution. Robot 2 completes the 2 tasks assigned to it. The
remaining 5 tasks are then split between robot 2 and robot 3
who is re-entered into the team from its start location (thus
simulating a repair and re-launch from a base station).

Figure 14: Performance with 3 Robots and 7 Tasks
with two robot deaths and one robot re-entry during

execution

A similar scenario is demonstrated in Figure 14. Robot 2
and robot 3 are killed soon after initial trading is complete in
this scenario. Thus only robot 1 completes all of its 3 assigned
tasks. Robot 2 completes 1 task before being killed, and robot
3 is killed before it can complete any of its tasks. Robot 3 is

Robot 1
Robot 2
Robot 3

2 Deaths

Robot 1
Robot 2
Robot 3

2 Deaths

Robot 1
Robot 2
Robot 3

2 Deaths

Re-entry

Robot 1
Robot 2
Robot 3

2 Deaths

Re-entry

later repaired and re-entered into the team. Thus, robot 1 and
robot 3 complete the remaining 3 tasks, and thus, the team
mission.

One final observation worthy of discussion is the delay in
detecting and responding to the death of a robot. This delay is
evident in Figures 8-14. Note that there is a tradeoff between
the response time to a suspected death and the number of false
positives that might be detected. For example, a perceived
death could simply be the result of a temporary
communications failure. If this perceived death is immediately
treated as a death, several tasks could be repeated
unnecessarily. In the current implementation of TraderBots,
the robot team experiences a delay on the order of ~100s before
re-assigning the tasks of a dead robot. This delay could be
made smaller or larger depending on the requirements of the
application domain.

V. CONCLUSION AND FUTURE WORK

This paper presents a comprehensive study of how the
TraderBots approach is robust to failures. Three categories of
failure are identified and explored in this study: communication
failures, partial robot malfunctions, and robot death. All three
categories of failure are studied for a team of 3 Pioneer robots
assigned a distributed sensing task. Some robots are also re-
introduced into the team following a simulated revival from
death.

Ongoing work introduces random combination of failures at
random times during the experiment, to gauge the effect on the
overall performance. Introduced failures include
communication failures, partial robot malfunctions, and robot
deaths.

Disallowing robots to recover from malfunctions and not
investigating cooperative means of robot repair thus far limits
this study. Adversarial domains are not addressed either.
Future work includes developing techniques for more efficient
use of partially malfunctioning robots, examining strategies for
cooperative recovery from failures, and more rigorous testing
of the robustness of TraderBots in different scenarios.

ACKNOWLEDGMENT

This paper presents results based on a multirobot
architecture, implementation, and test bed used for conducting
research on two active projects. This work was sponsored in
part by the U.S. Army Research Laboratory, under contract
"Robotics Collaborative Technology Alliance" (contract
number DAAD19-01-2-0012) and in part by NASA, under
contract "Heterogeneous Multi-Rover Coordination for
Planetary Exploration" (contract number NCC2-1243). The
views and conclusions contained in this document are those of
the authors and should not be interpreted as representing the
official policies, either expressed or implied, of the Army
Research Laboratory, NASA, or the U.S. Government. The
authors wish to acknowledge the contributions of the members
of the Multirobot research group: Juan P. Gonzalez, Bart

Nabbe, Nidhi Kalra, Dave Ferguson, and Andres S. Perez-
Bergquist, which enabled this implementation.

REFERENCES
[1] Balch, T. and Arkin, R.C., “Communication in reactive multiagent

robotic systems”, Autonomous Robots, 1(1): pp.27-52, 1995.

[2] Bererton, C., and Khosla, P., “An Analysis of Cooperative Repair
Capabilities in a Team of Robots”, Proceedings of the IEEE
International Conference on Robotics and Automation (ICRA), 2002.

[3] Bereton, C., “Repairable Robot Teams: Modeling, Planning, and
Construction”, Thesis Proposal, Carnegie Mellon University,
http://www-2.cs.cmu.edu/~curt/Thesis_Proposal/Thesis_Proposal.pdf,
2003.

[4] Dias, M. B., and Stentz, A., “A Market Approach to Multirobot
Coordination”, Technical Report, CMU-RI -TR-01-26, Robotics
Institute, Carnegie Mellon University, August 2001.

[5] Dias, M. B., Zlot, R., Zinck, M., Gonzalez, J. P., and Stentz, A., “A
Versatile Implementation of the TraderBots Approach
for Multirobot Coordination”, Proceedings of the 8th Conference on
Intelligent Autonomous Systems IAS 2004.

[6] Gerkey, B. P., “On Multi-Robot Task Allocation”, Ph. D. Thesis,
University of Southern California, 2003.

[7] Kaminka, G. and Tambe, M., “Robust agent teams via socially attentive
monitoring”, Journal of Artificial Intelligence Research (JAIR), (to
appear, submitted in 2000).

[8] Parker, L. E., “ALLIANCE: An Architecture for Fault Tolerant Multi-
Robot Cooperation”, IEEE Transactions on Robotics and Automation,
Vol. 14, No.2, pp. 220-240, 1998.

[9] Smith, R., “The Contract Net Protocol: High-Level Communication and
Control in a Distributed Problem Solver”, IEEE Transactions on
Computers, Vol. C-29, No. 12, 1980.

[10] Stentz, A., “Optimal and Efficient Path Planning for Partially-Known
Environments”, Proceedings of the IEEE International Conference on
Robotics and Automation (ICRA), 1994.

[11] Stone, P., and Veloso, M., “Communication in Domains with Unreliable,
Single-Channel, Low-Bandwidth Communication”, Collective Robotics,
pp. 85–97, Springer Verlag, 1998.

[12] Stone, P., and Veloso, M., “Task decomposition, dynamic role
assignment, and low-bandwidth communication for real-time strategic
teamwork”, Artificial Intelligence, 110(2), pp.241-273, 1999.

[13] Vail, D., and Veloso, M., “Dynamic multi-robot coordination”, Multi-
Robot Systems: From Swarms to Intelligent Automata, Volume II,
pp.87-100, 2003.

[14] Veloso, M., Stone, P., and Bowling, M., “Anticipation as a key for
collaboration in a team of agents: A case study in robotic soccer”,
Proceedings of SPIE Sensor Fusion and Decentralized Control in
Robotic Systems II, volume 3839, 1999.

[15] Zlot, R., Stentz, A., Dias, M. B., and Thayer, S., “Multi-Robot
Exploration Controlled By A Market Economy”, Proceedings of the
IEEE International Conference on Robotics and Automation (ICRA),
2002.

