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Abstract. Given a metric (V, d), a spanner is a sparse graph whose
shortest-path metric approximates the distance d to within a small mul-
tiplicative distortion. In this paper, we study the problem of spanners
with slack : e.g., can we find sparse spanners where we are allowed to
incur an arbitrarily large distortion on a small constant fraction of the
distances, but are then required to incur only a constant (independent
of n) distortion on the remaining distances? We answer this question
in the affirmative, thus complementing similar recent results on embed-
dings with slack into ℓp spaces. For instance, we show that if we ignore
an ǫ fraction of the distances, we can get spanners with O(n) edges and
O(log 1

ǫ
) distortion for the remaining distances.

We also show how to obtain sparse and low-weight spanners with slack
from existing constructions of conventional spanners, and these tech-
niques allow us to also obtain the best known results for distance oracles
and distance labelings with slack. This paper complements similar re-
sults obtained in recent research on slack embeddings into normed metric
spaces.

1 Introduction

The study of metric embeddings has been a central pursuit in algorithms research
in the past decade: an embedding is a map from a metric space into a “simpler”
metric space so that distances between points are changed by at most a small
factor. More formally, given a target class C of metrics, an embedding of a finite
metric space M = (V, d) into the class C is a new metric space M ′ = (V, d′)
such that M ′ ∈ C. Most of the work on embeddings has used distortion as the
fundamental measure of quality; the distortion of an embedding is the worst
multiplicative factor by which distances are increased by the embedding1. Given
the metric M = (V, d) and the class C, one natural goal is to find an embedding
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1 Formally, for an embedding ϕ : (V, d) → (V, d′), the distortion is the smallest D so

that ∃α, β ≥ 1 with α ·β ≤ D such that 1

α
d(x, y) ≤ d′(ϕ(x), ϕ(y)) ≤ β d(x, y) for all

pairs x, y ∈ V ×V . Note that this definition of distortion is no longer invariant under
arbitrary scaling, since α, β ≥ 1; however, this is merely for notational convenience,
and all our results can be cast in the usual definitions of distortion.



ϕ((V, d)) = (V, d′) ∈ C such that the distortion of the map ϕ is minimized. Note
that this notion of embedding is slightly non-standard but very natural, as it not
only captures embeddings of metric spaces into geometric spaces (e.g., when C is
the class of all Euclidean metrics, or the class of all ℓ1 metrics), but also concepts
such as sparse spanners, where the class C is the class of metrics generated by
sparse graphs. In the rest of the paper, we will talk about metric embeddings
in this general sense, thus including within its purview the results on spanners
as well as those on embeddings into normed spaces, or for that matter, into
distributions over tree metrics [5, 15]. (As an aside, let us note that the concept
of distortion is often called “stretch” in the spanners literature, and we use the
two terms interchangeably.)

In the theoretical community, the popularity of the notion of distortion/stretch
has been driven by its applicability to approximation algorithms: if the embed-
ding ϕ : (V, d) → (V, d′) has a distortion of D, then the cost of solutions to some
optimization problems on (V, d) and on (V, d′) can only differ by some function of
D; this idea has led to numerous approximation algorithms [20]. Seminal results
in embeddings include the O(log n) distortion embeddings of arbitrary metrics
into ℓp spaces [9], the fact that any metric admits an O(log n) stretch spanner
with O(n) edges [3], and that any metric can be embedded into a distribution
of trees with distortion O(log n) [15]. (All the above three results are known to
be tight.)

In parallel to this theoretical work, more applied communities have had much
recent interest in embeddings (and more generally, but also somewhat vaguely, on
problems of finding “simpler representations” of distance spaces). One example
is the networking community, where there is much interest in taking the point-
to-point latencies between nodes in a network, treating it as a metric space M =
(V, d) satisfying the triangle inequality,2 and finding some simpler representation
M ′ = (V, d′) of this resulting metric so that distances between nodes can be
quickly and accurately computed in this “simpler” metric M ′. (E.g., one may
want to assign each node a short label so that the distance between two nodes
can be inferred approximately by merely looking at their labels.)

Despite this similarity of interest, many of the theoretical results mentioned
above have not been used widely in these applications; the logarithmic guarantees
on the distortion are often deemed unacceptable. Indeed, the notion of distortion
turns out to be a demanding and inflexible objective function, and the empirical
works are often happy with guarantees of the following form: they allow some
small fraction of the distances to be distorted by arbitrary amounts, but then
seek very strong guarantees on the distortion incurred by the remaining large
fraction of the distances. E.g., in the networking application above, we would
be happy if most inter-node distances were correct and only a small fraction of
distances would be estimated poorly. (This corresponds to some notion of being
“good on average”; we will revisit this idea in Section 4.)

2 While the triangle inequality can be violated by network latencies, empirical evidence
suggests that these violations are small and/or infrequent enough to make metric
methods a useful approach.



To remedy the situation, Kleinberg et. al. [21] defined the notion of embed-

dings with slack : in addition to the metric M = (V, d) and the class C in the
initial formulation above, we are also given a slack parameter ǫ. We now want
to find a map ϕ(M) = (V, d′) ∈ C whose distortion is bounded by some quantity
D(ǫ) on all but an ǫ fraction of the pairs of points in V ×V . Note that we allow the
distortion on the remaining ǫn2 pairs of points to be arbitrarily large. The line
of work starting with their paper, and furthered by Abraham et. al. [2] and [1]
showed that very strong results were indeed possible: in fact, when allowed con-
stant slack, one could get constant-distortion constant-dimensional embeddings!

Given these results for embeddings into normed spaces, it is natural to ask
whether one can obtain similar results for spanners (and related constructs such
as distance oracles and distance labelings). This paper studies spanners with
slack, and gives strong guarantees that answer the question in the affirmative
and complement the above results for embeddings into normed metric spaces.

1.1 Our Results

In this paper, we look at results on finding spanners when we are allowed to incur
an arbitrary amount of distortion on an ǫ fraction of the distances. We say that
H = (V,EH) is an ǫ-slack spanner of a metric (V, d) with distortion D if for each
vertex v ∈ V , the furthest (1−ǫ)n vertices w from v satisfy d(v, w) ≤ dH(v, w) ≤
D d(v, w), i.e., the graph H maintains distances from each vertex to all but the
closest ǫn vertices. Our first result is a general transformation procedure to
convert standard constructions of spanners into spanners with slack.

Theorem 1 (General Conversion Theorem). Suppose any metric admits

an α(n)-distortion spanner with T (n) edges. Then given any metric (V, d) and

any ǫ, we can find an ǫ-slack spanner Hǫ for it with O(α( 1
ǫ ))-distortion and

n + T ( 1
ǫ ) edges.

Using this, it immediately follows that there are constant-slack spanners with
linear number of edges and constant distortion!

Moreover, if we were given a graph G = (V,E) whose shortest path metric
is (V, d), we show in Section 3.1 how to extend the above theorem to output a
subgraph of G that has slightly more edges. We can also extend Theorem 1 in
another direction and find a spanner that has a small weight in addition to a
small number of edges (see Section 3.2).

Note that in the above results, we are given an ǫ, and then output a spanner
Hǫ. We can do better, and output a single graph H such that it is an ǫ-slack
spanner for all ǫ simultaneously. Two general conversion procedures are given in
Section 4, which can be used to prove corollaries like:

Theorem 2 (“One Spanner for All Epsilons”). Given any metric of size

n, we can find a graph H with O(n) edges that is an O(log 1
ǫ )-distortion ǫ-slack

spanner for each ǫ. Moreover, if the metric is generated by a graph G, then H
can be made a subgraph of G.



The spanner H from the previous theorem preserves distances well on aver-
age. We consider two natural notions of average, which are defined in Section 2.

Theorem 3 (“Good on Average”). The spanner H from Theorem 2 has

O(1) average distortion and O(1) distortion-of-the-average, and moreover has

O(log n) distortion in the worst case.

We then turn our attention to the questions of constructing distance label-
ings and distance oracles, which are useful for resource-location applications
mentioned in the introduction. Detailed results that appear in Section 5 include
results like:

Theorem 4 (Labelings and Oracles). Given any integer k, every metric ad-

mits ǫ-slack distance oracles where the query time and stretch are O(k), and the

space requirement is O(n + k( 1
ǫ )1+1/k) words. Moreover, there are ǫ-slack dis-

tance labeling schemes that uses O(( 1
ǫ )1/k log1−1/k 1

ǫ ) space and suffer distortion

O(k).

1.2 Previous Work

This work builds on a large body of work on spanners dating back to the late
1980’s [24, 3, 11, 4, 27] and still going strong [14, 8, 7, 6, 28]; see, e.g., [23] for many
of the results. Spanners were initially studied for applications in network syn-
chronization, but since then they have found myriad uses in network design and
routing, as well as in many places where it is advisable to compactly store a
graph without changing the distances much, such as in speeding up shortest
path computations. Apart from the literature on finding spanners of general
graphs, there has also been a large body of work on Euclidean spanners (see,
e.g., [11, 4]), as well as work on spanners for doubling metrics [10, 19].

The study of distance labelings of graphs [22, 16, 25] requires assigning “short”
labels to vertices so that the distance between two vertices can be inferred from
their labels alone, without any additional information about the graph. It is
known that if one wants to infer distances exactly, then one may require as
many as n bits for each vertex; however, one can do with far less space if one
just wants to estimate the distances approximately. A closely related concept is
that of a distance oracle, which is a data structure that can be used to estimate
distances between nodes using small space and fast query time. Exact distance
oracles require one to store lots of information (e.g., the entire distance matrix)
or large query time (to run a shortest-path computation), but fast and compact
distance oracles for general graphs were given by Thorup and Zwick [27]; work
on special classes of graphs appears in [26, 12, 18, 17].

As mentioned in the introduction, the work on embeddings with slack was
initiated by Kleinberg et. al. [21], and many of the subsequent results were
improved in Abraham et. al. [2] and [1]. Our techniques and results complement
those in the two aforementioned papers. The notion of slack distance oracles has
been studied in [1] and we extend some of the results marginally in Section 5.1.



Our work is closely related to the work on distance preservers [13] by Cop-
persmith and Elkin. A distance preserver is a subgraph that maintains distances
exactly for a pre-specified subset of pairs of nodes, as opposed to our case in
which the only guarantee is that a large fraction of pairs of nodes have their dis-
tances well-approximated. On the other hand, the work of Elkin and Peleg [14]
shows that there exist sparse spanners such that for large distances that are
at least logarithmically large, the multiplicative stretch can be close to 1. This
agrees with our results in the sense that large distances can be better maintained
than small distances.

2 Preliminaries and Notation

All metric spaces we consider in this paper are finite and the graphs we consider
are undirected. Let (V, d) be a metric space, where n = |V |. The ball B(x, r) =
{y | d(x, y) ≤ r} is the set of points at distance at most r from x. For 0 < ǫ < 1,
R(x, ǫ) is the minimum distance r such that |B(x, r)| ≥ ǫn. The point y is ǫ-far
away from point x if d(x, y) ≥ R(x, ǫ). Observe that all spanners H we consider
are non-contracting ; i.e., for any x, y ∈ V , d(x, y) ≤ dH(x, y).

Definition 1 ((Uniform) Slack Spanner). Given a metric (V, d) and 0 <
ǫ < 1, a weighted graph H = (V,E) with each edge (u, v) ∈ E having weight

d(u, v) is an α-spanner with ǫ-uniform slack if for all x, y ∈ V such that y is

ǫ-far away from x, dH(x, y) ≤ α · d(x, y). In general, α can be a function of ǫ
and |V |. If the metric (V, d) is induced by some weighted graph G, we say that

H is a subgraph spanner if H is a subgraph of G.

In other words, an ǫ-uniform slack spanner is one such that for each point x, apart
from the ǫn points closest to x, the distances from x to the rest of the points
are well approximated. We call this concept “uniform slack” to be consistent
with previous notation; all references to “ǫ-slack” in this paper mean “ǫ-uniform
slack”.3

Definition 2 (Gracefully degrading spanner). A weighted graph H is an

α( 1
ǫ )-gracefully degrading spanner for the metric (V, d) if for each 0 < ǫ < 1,

H is an α( 1
ǫ )-spanner with ǫ-slack. The notion of subgraph spanner also applies

analogously.

We also consider two incomparable notions of “average” distortion; both have
been considered previously in the literature, and we will construct spanners that
are simultaneously good with respect to both these notions.

Definition 3 (Average Distortion). The average distortion of a spanner H

for a metric space (V, d) is 1

(n

2)

∑
{x,y}∈(V

2)
dH(x,y)
d(x,y) .

3 For the record, there is a non-uniform notion of slack; see [2, Defn. 1.1] for details.
Also, readers of [1] should note that ǫ-uniform slack embeddings are called “coarsely
(1 − ǫ) partial embeddings” in that paper.



Definition 4 (Distortion of Averages). The distortion of averages of a span-

ner H for a metric space (V, d) is
∑

{x,y}∈(V

2)
dH(x, y)/

∑
{x,y}∈(V

2)
d(x, y).

Most of our algorithms make use of a small sample of points from the metric
space V such that each point is “close” to some sample point:

Definition 5 (Density Net). Given a metric space (V, d) with n = |V |, and

0 < ǫ < 1, an ǫ-density net is a set N ⊆ V such that (1) for all x ∈ V , there

exists y ∈ N such that d(x, y) ≤ 2R(x, ǫ), and (2) |N | ≤ 1
ǫ .

We will often refer to the nodes in N as centers. Note that the difference between
an ǫ-net and an ǫ-density net is in the notion of “closeness”—here the allowed
distance from x to its closest center depends on the density of points around x.

Lemma 1. Given a metric space (V, d) and 0 < ǫ < 1, an ǫ-density net N can

be found in polynomial time.

Proof. For each point x ∈ V , let Bx denote the ball B(x,R(x, ǫ)). We order the
vertices in a list L by nondecreasing value of R(·, ǫ), breaking ties arbitrarily,
and initialize the set N to be empty. We remove the first vertex v from list L. If
there exists u ∈ N such that Bv intersects Bu, then we just discard v; otherwise,
we add v to N and remove all vertices in the ball Bv from the list L. We repeat
this process until the list L becomes empty and return N as our ǫ-density net.

We next show that the subset N returned satisfies the two properties given
in Definition 5. Consider any point x ∈ V . We show that there is a point y ∈
N within distance 2R(x, ǫ) of x. If x is included in N , this is trivially true.
Otherwise, either x was at some point the first vertex in list L and get discarded,
or x was in some ball Bv and removed from list L. In the former case, there is
some point u ∈ N such that Bu intersects Bx. Since u appears before x in
the initial list, R(u, ǫ) ≤ R(x, ǫ) and hence the distance between x and the
density-net point u is d(u, x) ≤ R(u, ǫ) + R(x, ǫ) ≤ 2R(x, ǫ). In the latter case,
as v appear before x in the initial list, we also have R(v, ǫ) ≤ R(x, ǫ) and so
d(x, v) ≤ R(v, ǫ) ≤ R(x, ǫ) ≤ 2R(x, ǫ). To show that |N | ≤ 1

ǫ , observe that the
intersection of Bx and By is empty for any two distinct points x, y ∈ N . Since for
each x ∈ N , the ball Bx contains at least ǫn points, we conclude that |N | ≤ 1

ǫ .

3 Slack Spanners

In this section, we give a general transformation technique to convert α(n)-
spanners with T (n) edges into ǫ-slack spanners with distortion (5 + 6α( 1

ǫ )) and
n + T ( 1

ǫ ) edges. Our construction is very simple:

Construction. We first construct an ǫ-density net N as given in Lemma 1.
Since |N | ≤ 1

ǫ , we can construct an α( 1
ǫ )-spanner Ĥ for the set of centers

N . Then, for each point x ∈ X \ N , we add an edge between x and its

closest point in N to Ĥ; this gives us a spanner H for (V, d).



Theorem 5. The spanner H has n + T ( 1
ǫ ) edges, and is a (5 + 6α( 1

ǫ ))-spanner

with ǫ-uniform slack.

Proof. First we bound the size of H. Since N has at most 1
ǫ points, the spanner

Ĥ has at most T ( 1
ǫ ) edges. Moreover, for each point x ∈ V \N , one extra edge

is added. Hence, H has at most n + T ( 1
ǫ ) edges.

Next, we bound the stretch of H. Consider two points u and v such that v
is ǫ-far away from u, i.e., d(u, v) ≥ R(u, ǫ). Let u′ be a closest point in N to
which u is connected to in H (or set u′ = u if u is in N), and define v′ similarly
with respect to v. By the properties of the density net, the distance d(u, u′) ≤
2R(u, ǫ) ≤ 2d(u, v) and d(v, v′) ≤ d(v, u′) ≤ d(v, u) + d(u, u′) ≤ 3d(u, v). Also,
d(u′, v′) ≤ d(u′, u) + d(u, v) + d(v, v′) ≤ 6d(u, v). This implies that

dH(u, v) ≤ d(u, u′) + dH(u′, v′) + d(v′, v) ≤ 5d(u, v) + dH(u′, v′)

≤ 5d(u, v) + α( 1
ǫ )d(u′, v′) ≤ 5d(u, v) + α( 1

ǫ )(6d(u, v)).

As an example of how we apply Theorem 5, let us recall a well-known result
about spanners for general metrics, from which we derive Corollary 1.

Theorem 6 (Spanners for general metrics [24, 3]). For any metric of size

n, there exists a (2k − 1)-spanner with O(n1+1/k) edges.

Corollary 1 (Uniform slack spanners for general metrics). For any met-

ric, for any 0 < ǫ < 1, for any integer k > 0, there exists a (12k − 1)-spanner

with ǫ-uniform slack of size n + O(( 1
ǫ )1+1/k).

3.1 Subgraph spanners

Note that if the metric (V, d) was generated by a graph G = (V,E), our previous
construction may result in a spanner that is not a subgraph of the original graph
G. We now give an alternative construction to obtain a subgraph spanner. Let us
first recall a theorem by Coppersmith and Elkin [13] on subgraphs that preserve
distances exactly for a given set P of pairs of vertices in a weighted graph
G = (V,E).

Theorem 7 ([13]). Given a weighted graph G = (V,E) and a set P of pairs of

vertices, there exists a subgraph H of G with O(n +
√

n · |P |) edges such that for

any {u, v} ∈ P , dH(u, v) = dG(u, v).

Construction of the Subgraph Spanner. As before, let N be an
ǫ-density net, which we know has at most 1

ǫ elements. We construct an
α( 1

ǫ )-spanner H ′ of size T ( 1
ǫ ) on N , which we convert to a subgraph in

the following manner. We take P to be the set of distinct pairs {u, v}
that are edges in H ′ to be the subgraph of G that preserves distances
for all pairs in P in the manner as stated in Theorem 7. Finally, points
in V are connected to N by shortest path trees rooted at the points in
N , using edges in the given graph G.



Theorem 8 shows that the resulting subgraph spanner H contains a small
number of edges and has small stretch. Applying the theorem to Theorem 6 gives
a nice corollary.

Theorem 8. The subgraph H is a (5+6α( 1
ǫ ))-spanner with ǫ-uniform slack and

has O(n +
√

n · T ( 1
ǫ )) edges.

Corollary 2 (Subgraph uniform slack spanners for general metrics).
For any metric, for any 0 < ǫ < 1, for any integer k > 0, there exists a subgraph

(12k − 1)-spanner with ǫ-uniform slack of size O(n +
√

n · ( 1
ǫ )1+1/k).

3.2 Low Weight Spanners

In some cases, we would like spanners which are not only sparse, but whose
weight is also comparable to the weight of an MST on the metric (V, d). Due
to lack of space, we merely mention a representative result here, and omit the
details.

Proposition 1 (Low weight uniform slack spanner). For any metric of

size n, there exists an O(log 1
ǫ )-spanner with ǫ-uniform slack of size O(n + 1

ǫ )

and weight O(log2 1
ǫ ) times that of an MST.

4 Gracefully Degrading Spanners and Notions of Average

Distortion

In this section, we give general procedures to convert ordinary spanners into
gracefully degrading spanners. Suppose we know how to construct ordinary α(n)-
spanners of size T (n) for finite metrics of size n. Observe that typically, α(·) is a
sublinear function, such as O(log n). In particular, we assume that there exists
C, c > 1 such that α(n) ≤ Cα(n1/c).

Construction. Take ǫ0 = n−1/c (think of c as 2 or 4) and construct a
1-spanner H0 for some ǫ0-density net N0 that has O(n) edges. We also

construct an α(n)-spanner Ĥ for the entire metric V . The gracefully

degrading spanner consists of the union of Ĥ and H0, together with
edges that connect each point in V to its closest point in N0.

This simple construction gives us the following theorem on gracefully degrad-
ing spanners. Using similar techniques as in Section 3.1, we can obtain subgraph
spanners as well. Applying Theorem 9 to Theorem 6 with k = O(log n), we
obtain the result as promised in the introduction.

Theorem 9. Suppose there exists an α(n)-spanner of size T (n) for any metric

of size n, where α(·) is a non-decreasing function such that there exists exists

C > 1 such that α(n) ≤ Cα(n1/2). Then, for any finite metric (V, d) of size n,

there exists an Cα( 1
ǫ )-gracefully degrading spanner of size at most T (n) + O(n).

If we have the stronger assumption that α(n) ≤ Cα(n1/4), then the gracefully

degrading spanner can be made to be a subgraph of the weighted graph that induces

the metric (V, d).



Corollary 3 (Gracefully degrading spanner for general metrics). Any

metric of size n has a O(log 1
ǫ )-gracefully degrading spanner H of size O(n). If

the metric is induced by some weighted graph G, then H can be made to be a

subgraph of G.

Since the greedy construction given in [24, 3] gives an O(log n)-spanner with
size O(n) for any metric, we can show that any metric has a spanner that has
O(1) “average distortion” for both notions of average distortion given in Defini-
tions 3 and 4 in the following theorem.

Theorem 10 (“Average Distortion”). For any metric (V, d), there exists a

spanner H with size O(n) that has both constant average distortion and constant

distortion of the average, and moreover has O(log n) stretch in the worst case.

If the metric (V, d) is induced by some graph G, then H can be made to be a

subgraph of G.

5 Distance Oracles and Labelings

The techniques that we have developed for slack spanners also turn out to be
useful for developing slack distance oracles and distance labelings. Distance or-
acles and labelings have been widely studied, and distance labelings were in
fact one of the original motivations for the study of slack embeddings by Klein-
berg et. al. [21]. Slack distance oracles and (implicitly) labelings were considered
by Abraham et. al. [1], who gave both slack and gracefully degrading construc-
tions. We give simple constructions with slightly better bounds for distance
oracles, and give the first uniform slack labelings that do not use an embedding
into ℓp, allowing us to bypass a lower bound from Abraham et al. [2].

5.1 Distance oracles

Thorup and Zwick [27] studied the problem of creating distance oracles for metric
spaces. A distance oracle is a small data structure which allows fast queries for
approximate distances. They give an oracle that, for any integer k ≥ 1, takes
O(kn1+1/k) space, has O(k) query time, and has stretch of 2k−1. Slack distance
oracles were first studied by Abraham et. al. [1], whose results we improve on
for both uniform slack and gracefully degrading distance oracles. We first give a
general transformational theorem. By using this transformation on the distance
oracle of Thorup and Zwick [27, Theorem 3.1], we get a uniform slack distance
oracle with the best known guarantee.

Theorem 11. Suppose that there exists some distance oracle with α(n) stretch

and O(q(n)) query time that uses O(f(n)) space. Then there exists a distance

oracle with ǫ-uniform slack, 5+6α( 1
ǫ ) stretch, and O(q( 1

ǫ )) query time that uses

O(n + f( 1
ǫ )) space.



Corollary 4 (Uniform slack distance oracle). For every integer k ≥ 1,
there is a distance oracle with ǫ-uniform slack, O(k) query time, and 12k − 1
stretch that uses O(n + k( 1

ǫ )1+1/k) space.

The uniform slack distance oracle in the full version of Abraham et. al. [1]
has stretch of only 6k − 1 and O(k) query time, but uses O(n log n log 1

ǫ +

k log n( 1
ǫ log 1

ǫ )1+1/k) space.

Gracefully degrading distance oracles The construction of gracefully de-
grading spanners in Section 4 can be easily modified to yield gracefully degrad-
ing distance oracles. Namely, we use two levels of distance oracles instead of two
levels of spanners, where the oracle on the density net is exact. Combining this
transformation theorem with the distance oracles of Thorup and Zwick [27] and
the average case analysis of Theorem 10, we get the following:

Corollary 5 (Gracefully degrading distance oracle). For any integer k
with 1 ≤ k ≤ O(log n), there is a distance oracle with worst case stretch of

2k − 1 and O(k) query time that uses O(kn1+1/k) space such that the average

distortion and the distortion of average is O(1).

The gracefully degrading distance oracle of Abraham et. al. [1, Theorem 14]
gives the same query time, worst case stretch, average distortion, and distortion
of average. However, their construction modifies the standard Thorup and Zwick
[27] construction by sampling the first level with probability 3n−1/k lnn, and thus
they use O(n1+1/k log n) space. This is more than we use if k = o(log n) and the
same if k = Θ(log n).

5.2 Distance labels

A distance labeling is an assignment of labels to the vertices so that the approx-
imate distance between any two vertices can be computed simply by looking at
the two labels. The goals are to minimize the stretch, the size of the label, and
the time needed to compute the distance given the two labels. We give the first
uniform slack distance labeling that uses space independent of n. Note that any
embedding of a metric into ℓp gives a distance labeling where the size of a label
is the dimension of the embedding. Embeddings of this form were considered by
Abraham et al. [2], who proved that the dimension must depend on log n. Thus
any distance labeling that uses a slack embedding into ℓp must use space that
depends on log n, whereas our labeling is independent of n.

Theorem 12. Let (V, d) be a metric space with n points. Suppose that there

exists a distance labeling where each label has size O(f(n)) and for any two

points u, v it is possible to compute, in O(q(n)) time, an approximation to the

distance between u and v with a stretch of at most α(n). Then there exists a

distance labeling with ǫ-uniform slack such that every label has size O(f( 1
ǫ )),

and computing distances up to a stretch of 5 + 6α( 1
ǫ ) can be done in O(q( 1

ǫ ))
time.



We get the following corollary by simply applying Theorem 12 to the distance
labeling of Thorup and Zwick [27, Theorem 3.4]. Note that the size of the labels
is independent of n.

Corollary 6 (Uniform slack distance labeling). Let (V, d) be a metric space

on n points. Let 0 < ǫ < 1, and let k be an integer with 1 ≤ k ≤ log 1
ǫ . Then it

is possible to assign each point a label that uses O(( 1
ǫ )1/k log1−1/k 1

ǫ ) space such

that, given the labels of vertices u, v where v is ǫ-far from u, the distance d(u, v)
can be computed up to a stretch of 12k − 1 in O(k) time.

We can also get gracefully degrading labelings. These labelings will be larger
than the embeddings into ℓp given by Abraham et. al. [1, Theorem 10], but
will have faster time complexity. We get the following result by combining a
standard transformation theorem (which we omit) with the labelings of Thorup
and Zwick [27] and Theorem 10.

Corollary 7 (Gracefully degrading distance labeling). For any integer k
with 1 ≤ k ≤ O(log n), there is a distance labeling of any n point metric such that

each label has size at most O(n1/k log1−1/k n), and given two labels it is possible

to compute the distance between the two points up to a worst case stretch of

2k − 1 in O(k) time. Furthermore, the average distortion and the distortion of

average are O(1).
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