
Game Reference

Principles of Functional Programming

Contents

1 Preamble 2
1.1 The SHOW signature . 2

2 Signatures 3
2.1 Game . 3
2.2 Player . 3
2.3 Controller . 3
2.4 Estimator . 3

3 Game 5
3.1 Types . 5
3.2 Functions . 5

4 Player 6

5 Controller 7

6 Estimator 8

1

1 Preamble

The GAME signature encodes the rules for a particular game.

The PLAYER signature encodes a player for a specific game, which amounts to simply its internal
state and a function to choose how to make a move.

The CONTROLLER signature encodes an abstract “referee” or “arena” for a given game. It is
typically implemented as a functor which keeps track of given players, alternating control as specified
by its game.

The ESTIMATOR signature encodes an estimator for a two-team, zero-sum game.

1.1 The SHOW signature

The GAME signature includes four structures encoding the players, moves, states, and outcomes
for a particular game, called Move , State , and Outcome . These structures ascribe to the SHOW

signature:

1 signature SHOW =

2 sig

3 type t

4 val toString : t -> string

5 end

2

2 Signatures

2.1 Game

1 signature GAME =

2 sig

3

4 structure State : SHOW (* public knowledge *)

5 structure Move : SHOW (* moves *)

6 structure Outcome : SHOW (* result of the game *)

7

8 datatype status = Playing of State.t | Done of Outcome.t

9

10 exception InvalidMove of string

11

12 val play : State.t * Move.t -> status

13

14 val player : State.t -> Player.t

15 val moves : State.t -> Move.t Seq.t

16

17 end

2.2 Player

1 signature PLAYER =

2 sig

3

4 structure Game : GAME

5

6 val next_move : Game.State.t -> Game.Move.t

7

8 end

2.3 Controller

1 signature CONTROLLER =

2 sig

3

4 structure Game : GAME

5

6 val play : Game.State.t -> Game.Outcome.t

7

8 end

2.4 Estimator

1 signature ESTIMATOR =

2 sig

3

3

4 structure Game : GAME

5

6 type guess

7 datatype est = Definitely of Game.Outcome.t | Guess of guess

8

9 val compare : est * est -> order

10 val toString : guess -> string

11

12 val estimate : Game.State.t -> guess

13

14 end

4

3 Game

The provided structure Player contains a datatype, representing Minnie and Maxie, and
some relevant utility functions.

3.1 Types

• The Move.t type represents a move within the game.

• The State.t type represents the state of a game. Note that a given state is public infor-
mation.

• The Outcome.t type represents all potential outcomes of an instance of the game.

Starting from a State.t, a move is made, which results in a status . This will either indicate
that the game is still in play (the Playing constructor), providing a new state, or indicate that
the game is done (the Done constructor), providing an outcome.

3.2 Functions

play : State.t * Move.t -> status

REQUIRES: s is valid, according to the rules of the game.

ENSURES:

• Suppose m is a valid move for state s, according to the rules of the game. Then,
play (s,m) =⇒ st, where st is of the form Playing s’ if the game is still in
play or Done oc if the game is completed.

• Otherwise, play (s,m) raises InvalidMove err, for some string err.

player : State.t -> Player.t

REQUIRES: s is valid, according to the rules of the game.

ENSURES: player s evaluates to a value.

moves : State.t -> Move.t Seq.t

REQUIRES: s is valid, according to the rules of the game.

ENSURES: moves s =⇒ ms, where ms represents all valid moves for state s.

5

4 Player

next_move : Game.State.t -> Game.Move.t

REQUIRES: s is a valid game state.

ENSURES: next_move s =⇒ m, where m is the desired move to make.

6

5 Controller

Given a starting state, a controller executes a game to completion, producing an outcome. This
should follow the model of players provided by the game, given players.

play : Game.State.t -> Game.Outcome.t

REQUIRES: s is a valid game state which terminates in an outcome, according to Game .

ENSURES: play s =⇒ oc, where oc is the outcome of playing from s according to Game

.

7

6 Estimator

The guess type represents a guess. Typically, it will be a numerical quantity, like int.

The est datatype encodes the notion of an estimate, where either the game is finished with an
outcome or a guess was made.

compare : est * est -> order

ENSURES: compare forms a total ordering.

toString : guess -> string

ENSURES: toString g converts a guess to a string representation.

estimate : Game.State.t -> guess

ENSURES: estimate s evaluates to a value.

Additionally, a functor MiniMax is included, which takes in a settings structure ascribing to the
following signature:

1 signature SETTINGS =

2 sig

3

4 structure Est : ESTIMATOR

5

6 val search_depth : int

7

8 end

8

	Preamble
	The SHOW signature

	Signatures
	Game
	Player
	Controller
	Estimator

	Game
	Types
	Functions

	Player
	Controller
	Estimator

