
Sequence Reference

Principles of Functional Programming

Contents

1 Preamble 2

2 Signature 3

3 Documentation 5
3.1 Constructing a Sequence . 6
3.2 Deconstructing a Sequence . 7
3.3 Simple Transformations . 8
3.4 Combinators and Higher-Order Functions . 9
3.5 Indexing-Related Functions . 11
3.6 Sorting and Searching . 13

4 Views 14
4.1 List Views . 14
4.2 Tree Views . 14

5 Thinking About Cost 15

6 Cost Graphs 17

1

1 Preamble

The type Seq.t represents sequences. Sequences are parallel collections: ordered collections of
things, with parallelism-friendly operations on them. Don’t think of sequences as being implemented
by lists or trees (though you could implement them as such); think of them as a new built-in type
with only the operations we’re about to describe. The differences between sequences and lists or
trees is the cost of the operations, which we specify below. In this document, we describe the cost
of array-based sequences.

2

2 Signature

1 signature SEQUENCE =

2 sig

3

4 type ’a t (* abstract *)

5 type ’a seq = ’a t (* concrete *)

6

7 exception Range of string

8

9

10 (* Constructing a Sequence *)

11

12 val empty : unit -> ’a seq

13 val singleton : ’a -> ’a seq

14 val tabulate : (int -> ’a) -> int -> ’a seq

15 val fromList : ’a list -> ’a seq

16

17

18 (* Deconstructing a Sequence *)

19

20 val nth : ’a seq -> int -> ’a

21 val null : ’a seq -> bool

22 val length : ’a seq -> int

23 val toList : ’a seq -> ’a list

24 val toString : (’a -> string) -> ’a seq -> string

25 val equal : (’a * ’a -> bool) -> ’a seq * ’a seq -> bool

26

27

28 (* Simple Transformations *)

29

30 val rev : ’a seq -> ’a seq

31 val append : ’a seq * ’a seq -> ’a seq

32 val flatten : ’a seq seq -> ’a seq

33 val cons : ’a -> ’a seq -> ’a seq

34

35

36 (* Combinators and Higher -Order Functions *)

37

38 val filter : (’a -> bool) -> ’a seq -> ’a seq

39 val map : (’a -> ’b) -> ’a seq -> ’b seq

40 val reduce : (’a * ’a -> ’a) -> ’a -> ’a seq -> ’a

41 val reduce1 : (’a * ’a -> ’a) -> ’a seq -> ’a

42 val mapreduce : (’a -> ’b) -> ’b -> (’b * ’b -> ’b) -> ’a seq -> ’

b

43 val zip : (’a seq * ’b seq) -> (’a * ’b) seq

44 val zipWith : (’a * ’b -> ’c) -> ’a seq * ’b seq -> ’c seq

45

46

47 (* Indexing -Related Functions *)

3

48

49 val enum : ’a seq -> (int * ’a) seq

50 val mapIdx : (int * ’a -> ’b) -> ’a seq -> ’b seq

51 val update : (’a seq * (int * ’a)) -> ’a seq

52 val inject : ’a seq * (int * ’a) seq -> ’a seq

53

54 val subseq : ’a seq -> int * int -> ’a seq

55 val take : ’a seq -> int -> ’a seq

56 val drop : ’a seq -> int -> ’a seq

57 val split : ’a seq -> int -> ’a seq * ’a seq

58

59

60 (* Sorting and Searching *)

61

62 val sort : (’a * ’a -> order) -> ’a seq -> ’a seq

63 val merge : (’a * ’a -> order) -> ’a seq * ’a seq -> ’a seq

64 val search : (’a * ’a -> order) -> ’a -> ’a seq -> int option

65

66

67 (* Views *)

68

69 datatype ’a lview = Nil | Cons of ’a * ’a seq

70

71 val showl : ’a seq -> ’a lview

72 val hidel : ’a lview -> ’a seq

73

74 datatype ’a tview = Empty | Leaf of ’a | Node of ’a seq * ’a seq

75

76 val showt : ’a seq -> ’a tview

77 val hidet : ’a tview -> ’a seq

78

79 end

4

3 Documentation

If unspecified, we assume that all functions that are given as arguments (such as the g in reduce

g) have O (1) work and span. In order to analyze the runtime of sequence functions when this is
not the case, we need to analyze the corresponding cost graphs.

Constraint: Whenever you use these sequence functions, please make sure you meet the specified
preconditions.

If you do not meet the precondition for a function, it may not behave as expected or meet the cost
bounds stated below.

Definition 3.1 (Associative). Fix some type t. We say a function g : t * t -> t is associa-
tive if for all a, b, and c of type t:

g (g (a,b),c) ∼= g (a,g (b,c))

Definition 3.2 (Identity). Fix some type t. Given a function g : t * t -> t, we say z is
the identity for g if for all x : t:

g (x,z) = g (z,x) = x

5

3.1 Constructing a Sequence

empty : unit -> ’a seq

ENSURES: empty () evaluates to the empty sequence (the sequence of length zero).

Work: O (1), Span: O (1).

singleton : ’a -> ’a seq

ENSURES: singleton x evaluates to a sequence of length 1 whose only element is x.

Work: O (1), Span: O (1).

tabulate : (int -> ’a) -> int -> ’a seq

REQUIRES: n ≥ 0, and for all 0 ≤ i < n, f i is valuable.

ENSURES: tabulate f n evaluates to a sequence S of length n, where the ith element of
S is equal to f i.

Note that indices are zero-indexed.

Work
∑n−1

i=0 Wf(i), Span max
0≤i<n

Sf(i).

Work O (n), Span O (1), with constant-time f.

fromList : ’a list -> ’a seq

ENSURES: fromList L returns a sequence consisting of the elements of L, preserving order.
This function is intended primarily for debugging purposes.

Work: O (|L|), Span: O (|L|).

6

3.2 Deconstructing a Sequence

nth : ’a seq -> int -> ’a

REQUIRES: 0 ≤ i < length S

ENSURES: nth S i evaluates to the ith element (zero-indexed) of S.

Work: O (1), Span: O (1).

null : ’a seq -> bool

ENSURES: null S evaluates to true if S is an empty sequence, and false otherwise.

Work: O (1), Span: O (1).

length : ’a seq -> int

ENSURES: length S (often written as |S|) evaluates to the number of items in S.

Work: O (1), Span: O (1).

toList : ’a seq -> ’a list

ENSURES: toList S returns a list consisting of the elements of S, preserving order. This
function is intended primarily for debugging purposes.

Work: O (|S|), Span: O (|S|).

toString : (’a -> string) -> ’a seq -> string

ENSURES: toString ts S evaluates to a string representation of S, using the function ts

to convert each element of S into a string.

Work: O (|S|), Span: O (log |S|).

equal : (’a * ’a -> bool) -> ’a seq * ’a seq -> bool

ENSURES: equal eq (S1,S2) returns whether or not the two sequences are equal accord-
ing to the equality function eq.

Work: O (min(|S1|, |S2|)), Span: O (log(min(|S1|, |S2|))).

7

3.3 Simple Transformations

rev : ’a seq -> ’a seq

ENSURES: rev S returns the sequence containing the elements of S in reverse order.

Work: O (|S|), Span: O (1).

append : ’a seq * ’a seq -> ’a seq

ENSURES: append (S1 ,S2) evaluates to a sequence of length |S1|+ |S2| whose first |S1|
elements are the sequence S1 and whose last |S2| elements are the sequence S2.

Work: O (|S1|+ |S2|), Span: O (1).

flatten : ’a seq seq -> ’a seq

ENSURES: flatten S flattens a sequence of sequences down to a single sequence (similar
to List.concat for lists).

Work: O

(
|S|+

∑
s∈S

|s|
)
, Span: O (log |S|).

cons : ’a -> ’a seq -> ’a seq

ENSURES: If the length of S is n, cons x S evaluates to a sequence of length n+1 whose
first item is x and whose remaining n items are exactly the sequence S.

Constraint: Beware of using cons . When overused, it often leads to a sequential coding style
with little opportunity for parallelism, defeating the purpose of using sequences. See if there’s
a way to use other sequence functions to achieve your objective.

Work: O (|S|), Span: O (1).

8

3.4 Combinators and Higher-Order Functions

filter : (’a -> bool) -> ’a seq -> ’a seq

ENSURES: filter p S evaluates to a sequence containing all of the elements x of S such
that p x =⇒ true , preserving element order.

Work
∑
x∈S

Wp(x), Span O (log |S|) + max
x∈S

Sp(x).

Work O (|S|), Span O (log |S|), with constant-time p.

map : (’a -> ’b) -> ’a seq -> ’b seq

ENSURES: map f S =⇒ S’ such that |S| = |S’| and for all 0 ≤ i < |S’|, nth S’ i ∼=
f (nth S i).

Work
∑
x∈S

Wf(x), Span max
x∈S

Sf(x).

Work O (|S|), Span O (1), with constant-time f.

reduce : (’a * ’a -> ’a) -> ’a -> ’a seq -> ’a

REQUIRES:

• g is associative

• z is an identity for g

ENSURES: reduce g z S uses the function g to combine the elements of S using z as a
base case (analogous to foldr g z L for lists, but with a less-general type).

Work: O (|S|), Span: O (log |S|), with constant-time g.

reduce1 : (’a * ’a -> ’a) -> ’a seq -> ’a

REQUIRES: g is associative, and S is nonempty.

ENSURES: reduce1 g S uses the function g to combine the elements of S. If S is a singleton
sequence, the sequence element is returned.

Work: O (|S|), Span: O (log |S|), with constant-time g.

9

mapreduce : (’a -> ’b) -> ’b -> (’b * ’b -> ’b) -> ’a seq -> ’b

REQUIRES: z and g meet the preconditions for reduce .

ENSURES: mapreduce f z g S ∼= reduce g z (map f S)

Work: O (|S|), Span: O (log |S|), with constant-time g and f.

zip : ’a seq * ’b seq -> (’a * ’b) seq

ENSURES: zip (S1 ,S2) evaluates to a sequence of length min(length S1, length S2)
whose ith element is the pair of the ith element of S1 and the ith element of S2.

Work: O (min(|S1|, |S2|)), Span: O (1).

zipWith : (’a * ’b -> ’c) -> ’a seq * ’b seq -> ’c seq

ENSURES: zipWith f (S1 ,S2) ∼= map f (zip (S1 ,S2)).

Work
min(|S1|,S2|)−1∑

i=0

Wf(S1[i], S2[i]), Span
min(|S1|,S2|)−1

max
i=0

Sf(S1[i], S2[i]).

Work O (min(|S1|, |S2|)), Span O (1), with constant-time f.

10

3.5 Indexing-Related Functions

enum : ’a seq -> (int * ’a) seq

ENSURES: enum S evaluates to a sequence such that for each index 0 ≤ i < length S,
the ith index of the result is (i,nth S i).

Work: O (|S|), Span: O (1).

mapIdx : (int * ’a -> ’b) -> ’a seq -> ’b seq

ENSURES: mapIdx f S ∼= map f (enum S).

Work
∑
x∈S

Wf(x), Span max
x∈S

Sf(x).

Work O (|S|), Span O (1), with constant-time f.

update : ’a seq * (int * ’a) -> ’a seq

REQUIRES: 0 ≤ i < length(S)

ENSURES: update (S,(i,x)) returns a sequence identical to S but with the ith element
(0-indexed) now x.

Work: O (|S|), Span: O (1).

inject : ’a seq * (int * ’a) seq -> ’a seq

REQUIRES: For all (i,x) in U, 0 ≤ i < length(S).

ENSURES: inject (S,U) evaluates to a sequence where for each (i,x) in U, the ith

element of S is replaced with x. If there are multiple elements at the same index, one is chosen
nondeterministically.

Work: O (|S|+ |U|), Span: O (1).

subseq : ’a seq -> int * int -> ’a seq

REQUIRES: 0 ≤ i < length S, and i ≤ i + l < length S

ENSURES: subseq S (i,l) takes the subsequence of S with length l starting at index
i.

Work: O (1), Span: O (1).

take : ’a seq -> int -> ’a seq

REQUIRES: 0 ≤ i ≤ length S

ENSURES: take S i evaluates to the sequence containing exactly the first i elements of
S.

11

Work: O (1), Span: O (1).

drop : ’a seq -> int -> ’a seq

REQUIRES: 0 ≤ i ≤ length S

ENSURES: drop S i evaluates to the sequence containing all but the first i elements of
S.

Work: O (1), Span: O (1).

split : ’a seq -> int -> ’a seq * ’a seq

REQUIRES: 0 ≤ i ≤ length S

ENSURES: split S i evaluates to a pair of sequences (S1,S2) such that S1 has length
i and append (S1 ,S2) ∼= s.

Work: O (1), Span: O (1).

12

3.6 Sorting and Searching

sort : (’a * ’a -> order) -> ’a seq -> ’a seq

REQUIRES: cmp is a comparison function (reflexive and transitive)

ENSURES: sort cmp S returns a permutation of S that is sorted according to cmp.
The sort is stable: elements that are considered equal by cmp remain in the same order they
were in S.

Work: O (|S| log |S|), Span: O
(
log2 |S|

)
, with constant-time cmp.

merge : (’a * ’a -> order) -> ’a seq * ’a seq -> ’a seq

REQUIRES: cmp is a comparison function (reflexive and transitive), and S1 and S2 are both
cmp-sorted.

ENSURES: merge cmp (S1,S2) returns a sorted permutation of append (S1 ,S2)

.

Work: O (|S1|+ |S2|), Span: O (log(|S1|+ |S2|)), with constant-time cmp.

search : (’a * ’a -> order) -> ’a -> ’a seq -> int option

REQUIRES: cmp is a comparison function (reflexive and transitive), and S is cmp-
sorted.

ENSURES: search cmp x S =⇒ SOME i where i is the first index in S satisfying
cmp (nth i S, x) ∼= EQUAL or NONE if no such index exists.

Work: O (log |S|), Span: O (log |S|), with constant-time cmp.

13

4 Views

4.1 List Views

Recall that list operations have bad parallel complexity, whereas the corresponding sequence oper-
ations are much better.

However, sometimes you want to write a sequential algorithm (e.g., because the inputs aren’t very
big, or because no good parallel algorithms are known for the problem). Given the sequence interface
so far, it is difficult to decompose a sequence as “either empty, or a cons with a head and a tail.”
You could write this jank codemonkey’s “length induction instead of structural induction”...

case Seq.length s of

0 =>

| _ => ... uses (Seq.hd s) and (Seq.tl s) ...

But nah. We can solve this problem using a view. We’ll put an appropriate datatype in the signa-
ture, along with corresponding functions that convert sequences to and from this datatype. This
allows us to pattern-match on an abstract type, while keeping the actual representation abstract.
These definitions enable viewing a sequence like a list:

datatype ’a lview = Nil | Cons of ’a * ’a seq

val showl : ’a seq -> ’a lview

val hidel : ’a lview -> ’a seq

Note the invariant:
showl (hidel v) =⇒ v

Because the datatype definition is in the signature, the constructors Nil and Cons can be used
outside the abstraction boundary. The showl and hidel functions convert between sequences
and list views. The following is an example of using this view to perform list-like pattern match-
ing:

case Seq.showl s of

Seq.Nil => ... (* Nil case *)

| Seq.Cons (x,s’) => ... uses x and s’ ... (* Cons case *)

Note that the second argument to Cons is another ’a seq, not an lview . Thus, showl lets
you do one level of pattern matching at a time: you can write patterns like Seq.Cons (x,xs)

but not Seq.Cons (x,Seq.Nil) (to match a sequence with exactly one element).

We have also provided hidel , which converts a view back to a sequence—Seq.hidel (Seq.

Cons (x,xs)) is equivalent to Seq.cons(x,xs) and Seq.hidel Seq.Nil is equivalent
to Seq.empty().

4.2 Tree Views

The analogous ’a tview , showt , and hidet are provided in the signature.

14

5 Thinking About Cost

Let’s think about the big picture of parallelism. Parallelism is relevant to situations where many
things can be done at once: e.g. using the multiple cores in multi-processor machine, or the many
machines in a cluster. Overall, the goal of parallel programming is to describe computation in such
a way that it can make use of this ability to do work on multiple processors simultaneously. At
the lowest level, this means deciding, at each moment in time, what to do on each processor. This
is limited by the data dependencies in a problem or a program. For example, evaluating (1 +

2) + (3 + 4) takes three units of work, one for each addition, but you cannot do the outer
addition until you have done the inner two. So even with three processors, you cannot perform the
calculation in fewer than two timesteps. That is, the expression has work 3 but span 2.

The approach to parallelism that we’re advocating in this class is based on raising the level of
abstraction at which you can think, by separating the specification of what work there is to be
done from the schedule that maps it onto processors. As much as possible, you, the programmer,
worry about specifying what work there is to do, and the compiler takes care of scheduling it onto
processors. Three things are necessary to make this separation of concerns work:

1. The code itself must not bake in a schedule.

2. You must be able to reason about the behavior of your code independently of the schedule.

3. You must be able to reason about the time complexity of your code independently of the
schedule.

Our central tool for avoiding baking in a schedule is functional programming. First, we focus on
bulk operations on big collections which do not specify a particular order in which the operations on
each element are performed. For example, sequences come with an operation map that is specified
by saying that the value of map f <x1 ,x2 ,...,xn > is the sequence <f x1 , f x2 , ...

f xn >. This specifies the data dependencies (to calculate map, you need to calculate f x1 . . .)
without specifying a particular schedule. You can implement the same computation with a loop,
saying “do f x1, then do f x2,. . . ”, but this is inlining a particular schedule into the code—
which is bad, because it gratuitously throws away opportunities for parallelism. Second, functional
programming focuses on pure, mathematical functions, which are evaluated by calculation. This
limits the dependence of one chunk of work on another to what is obvious from the data-flow in
the program. For example, when you map a function f across a sequence, evaluating f on the first
element has no influence on the value of f on the second element, etc.—this is not the case for
imperative programming, where one call to f might influence another via memory updates. It is in
general undecidable to take an imperative program and notice, after the fact, that what you really
meant by that loop was a bulk operation on a collection, or that this particular piece of code really
defines a mathematical function.

So why are we teaching you this style of parallel programming? There are two reasons: First, even
if you have to get into more of the gritty details of scheduling to get your code to run fast today,
it’s good to be able to think about problems at a high level first, and then figure out the details.
If you’re writing some code for an internship this summer using a low-level parallelism interface,
it can be useful to first think about the abstract algorithm—what are the dependencies between
tasks? what can possibly be done in parallel?—and then figure out the details. You can use parallel
functional programming to design algorithms, and then translate them down to whatever interface
you need. Second, it’s our thesis that eventually this kind of parallel programming will be practical
and common: as language implementations improve, and computers get more and more cores, this
kind of programming will become possible and even necessary. You’re going to be writing programs

15

for a long time, and we’re trying to teach you tools that will be useful years down the road.

Cost Semantics Reminder

A cost graph is a form of series-parallel graphs. A series-parallel graph is a directed graph (we
always draw a cost graph so that the edges point down the page) with a designated source node
(no edges in) and sink node (no edges out), formed by two operations called sequential and parallel
composition. The particular series-parallel graphs we need are of the following form:

G1

G2

G1 G2

Depicted on the left is sequential combination: the graph formed by putting an edge from the sink
of G1 to the source of G2. The other, parallel combination, is the graph formed by adding a new
source and sink, and adding edges from the source to the source of each of G1 and G2, and from
the sinks of each of them to the new sink. We also need an n-ary parallel combination of graphs
G1 ... Gn

G1 G2 G3 . . . Gn

The work of a cost graph is the number of nodes. The span is the length of the longest path, which
we may refer to as the critical path, or the diameter. We will associate a cost graph with each closed
program, and define the work/span of a program to be the work/span of its cost graph.

These graphs model fork-join parallelism: a computation forks into various subcomputations that
are run in parallel, but these come back together at a well-defined joint point. These forks and joins
are well-nested, in the sense that the join associated with a later fork precedes the join associated
with an earlier fork.

16

6 Cost Graphs

Intuitively, these sequence operations do the same thing as the operations on lists that you are
familiar with. However, they have different time complexity than the list functions: First, se-
quences admit constant-time access to elements: nth takes constant time. Second, sequences have
better parallel complexity: many operations, such as map, act on each element of the sequence in
parallel.

For each function, we (1) describe its behavior abstractly and (2) give a cost graph.

Note: ⟨x1, ..., xn⟩ is not SML syntax. It is mathematical syntax which we will use to represent a
sequence value.

Length

Behavior of length :

length ⟨x1, ..., xn⟩ ∼= n

Cost Graph for length s:

W:O(1)

S:O(1)

As a consequence,

Work:

O(1)

Span:
O(1)

Nth

Behavior of nth:

nth ⟨x0, ..., xn−1⟩ i ∼= xi if 0 ≤ i < n or raises Range otherwise

Cost Graph for nth s i:

W:O(1)

S:O(1)

As a consequence,

Work:

O(1)

Span:
O(1)

17

Map

Behavior of map:

map f ⟨x1, ..., xn⟩ ∼= ⟨f x1, ..., f xn⟩

Cost Graph for map f s:

W:W(f(x1))
S:S(f(x1))

W:W(f(x2))
S:S(f(x2))

W:W(f(x3))
S:S(f(x3))

. . . W:W(f(xn−1))
S:S(f(xn−1))

W:W(f(xn))
S:S(f(xn))

where s is ⟨x1, ..., xn⟩.
As a consequence,

Work: ∑
x∈s

W(f(x))

Span:
max
x∈s

S(f(x))

18

Reduce

The behavior of reduce is

reduce g z S ∼= List.foldr g z (toList S)

That is, reduce applies its argument function g between every pair of elements in the sequence,
using z as a rightmost base case.

Cost Graph for reduce g z ⟨x1, . . . xn⟩:

x1 x2 x3 x4 . . . xn−2 xn−1 xn z

g

g

g g

g

g g

Observe from the above graph that, – if we assume that g is O(1) – then reduce has the following
time bounds.

Work:

O(n)

Span:
O(log n)

where n is the length of the sequence. If g does not have constant work and span, then refer directly
to the cost graph above.

19

Tabulate

The way of introducing a sequence is tabulate, which constructs a sequence from a function that
gives you the element at each position, from 0 up to a specified bound.
Behavior of tabulate f n:

tabulate f n ∼= ⟨v0, ..., vn−1⟩

where f 0 ∼= v0

f 1 ∼= v1

...

f (n-1) ∼= vn−1

Cost Graph for tabulate f n:

W:W(f(0))
S:S(f(0))

W:W(f(1))
S:S(f(1))

W:W(f(2))
S:S(f(2))

. . . W:W(f(n− 2))
S:S(f(n− 2))

W:W(f(n− 1))
S:S(f(n− 1))

As a consequence,

Work:
n−1∑
i=0

W(f(i))

Span:
n−1
max
i=0

S(f(i))

20

	Preamble
	Signature
	Documentation
	Constructing a Sequence
	Deconstructing a Sequence
	Simple Transformations
	Combinators and Higher-Order Functions
	Indexing-Related Functions
	Sorting and Searching

	Views
	List Views
	Tree Views

	Thinking About Cost
	Cost Graphs

