Set Reference

Principles of Functional Programming

Contents

1 Preamble 2

2 Signature 3

3 Documentation 4
3.1 Constructing a Set L 4
3.2 Destructing a Set 5
3.3 Element Operations e 6

3.4 Bulk Operations e 7

1 Preamble

The SET signature outlines the functions necessary for basic set functionality. Given a structure
that lets us compare elements for equality, we can perform all basic set operations such as inserting,
removing, checking for membership, union, intersection, and set difference.

Note that this structure uses the EQ signature, which outlines what it means for a type t to be
comparable for equality:

signature EQ =
sig

type t
val equal : t * t -> bool

end

In order to make use of the set signature, we have provided a functor MkSet, which accepts as an
argument a structure E1t which ascribes to the EQ signature. You will have to define your own
structure E1t. It looks something like this:

functor MkSet (Elt : EQ) :> SET where type Elt.t = Elt.t =

20

21

22

23

24

25

26

27

28

29

2 Signature

signature SET =
sig

(* The EQ structure to use for element comparison x*)
structure Elt : EQ

(¥ The type of the set x*)
type t

(* These functions give the capability to create a set *)
val empty : t

val singleton : Elt.t -> t

val fromSeq : Elt.t Seq.t -> ¢t

(¥ These functions give information about a set (destructors) x*)
val size : t -> int
val toSeq : t -> Elt.t Seq.t

(* Element related functions x*)
val insert : t -> Elt.t -> t
val remove : t -> Elt.t -> t
val member : t -> Elt.t -> bool

(* Bulk Operations *)

val union : t *x t -> t
val intersection : t * t -> t
val difference : t *x t -> t

end

3 Documentation

3.1 Constructing a Set

empty : t
ENSURES: empty is a set with no elements, {}

singleton : Elt.t -> t

ENSURES: singleton x returns a set containing only x as an element, {x}

fromSeq : Elt.t Seq.t -> t

ENSURES: fromSeq(zg,Z1,...,op—1) returns a set containing each of zg,21,...,2n_1,
{xo,x1, ..., Tn—1}. If there exist duplicate elements, the first one is chosen and the rest are

discarded.

3.2 Destructing a Set

size : t -> int

ENSURES: size S returns the number of elements in S

toSeq : t -> Elt.t Seq.t

ENSURES: toSeq S returns a sequence containing every element in S

3.3 Element Operations

insert : t -> Elt.t -> t

ENSURES: insert S x returns a set S’ that contains all of the elements of S and x,
su{x}

remove : t -> Elt.t -> t

ENSURES: remove S x returns a set S’ that contains all of the elements of S except for x
if x € 8, and S otherwise, S\ {z}

member : t -> Elt.t -> bool

ENSURES: member S x returns true if x is a member of S and false otherwise.

3.4 Bulk Operations

union : t *x t -> t

ENSURES: union (S1, S2) returnsaset S’ containing all of the elements contained within
either S1 or S2,i.e. S1US2

intersection : t * t -> t

ENSURES: intersection (S1, 82) returns aset S’ containing all of the elements con-
tained within both S1 and S2,ie. S1NS2

difference : t *x t -> t

ENSURES: difference (81, S82) returns a set S’ containing all of the elements con-
tained within S1 but not within 82, i.e. 81\ 82

	Preamble
	Signature
	Documentation
	Constructing a Set
	Destructing a Set
	Element Operations
	Bulk Operations

