15-150

Principles of Functional Programming

Slides for Lecture 18

Red Black Trees

March 26, 2020

Michael Erdmann

Main Lesson:

- How to maintain Representation Invariants within a structure when some code necessarily violates the invariants:
 - Localize the violation
 - Characterize the violation
 - Determine weakened invariants
 - Write code that re-establishes the original invariants from data satisfying the weakened invariants

Ancillary Lessons:

- Functional implementation of balanced trees
- Pattern-matching as code-by-picture ;-)

Dictionary Signature

Dictionary Implementation

Last week we implemented

```
structure BinarySearchTree : DICT = ...
```

using a tree to represent a dictionary, with the Representation Invariant that the tree is **sorted** on **key**.

Binary search tree with Red and Black nodes:

```
datatype 'a dict =
   Empty
| Red of 'a dict * 'a entry * 'a dict
| Black of 'a dict * 'a entry * 'a dict
(Empty considered black.)
```

Binary search tree with Red and Black nodes:

```
datatype 'a dict =
   Empty
| Red of 'a dict * 'a entry * 'a dict
| Black of 'a dict * 'a entry * 'a dict
(Empty considered black.)
```

Red Black Tree (RBT) Invariants:

- (1) The tree is **sorted** on the **key** part of the entries.
- (2) The **children** of a **Red** node are **Black**.
- (3) Each node has a well-defined black height:

 The number of **Black** nodes on any path from the node down to an **Empty** is the same.

Binary search tree with Red and Black nodes:

```
datatype 'a dict =
   Empty
| Red of 'a dict * 'a entry * 'a dict
| Black of 'a dict * 'a entry * 'a dict
(Empty considered black.)
```

Red Black Tree (RBT) Invariants:

- (1) The tree is **sorted** on the **key** part of the entries.
- (2) The **children** of a **Red** node are **Black**.
- (3) Each node has a well-defined black height:

 The number of **Black** nodes on any path from the node down to an **Empty** is the same.

```
Invariants imply the tree is roughly balanced: depth \le 2\log_2(|nodes| + 1)
```

A given Red Black Tree:

(For presentational simplicity, only showing keys, and using integer keys not strings.)

Now insert 20:

Now insert 20:

Now insert 19:

Now insert 19:

Fix with a rotation and recoloring:

The other 2 kinds of rotations:

Here is another example:

Again, let's insert 20:

Once again, let's insert 19:

Again, fix with rotation & recoloring:

That's OK. We can rotate again ...

Use this kind of rotation:

Here's the tree again before rotation:

... giving us this after the rotation:

(It's not necessary, but we can also safely recolor the root black.)

Binary search tree with Red and Black nodes:

```
datatype 'a dict =
   Empty
| Red of 'a dict * 'a entry * 'a dict
| Black of 'a dict * 'a entry * 'a dict
(Empty considered black.)
```

Red Black Tree (RBT) Invariants:

- (1) The tree is **sorted** on the **key** part of the entries.
- (2) The **children** of a **Red** node are **Black**.
- (3) Each node has a well-defined black height:

 The number of **Black** nodes on any path from the node down to an **Empty** is the same.

Binary search tree with Red and Black nodes:

```
datatype 'a dict =
   Empty
| Red of 'a dict * 'a entry * 'a dict
| Black of 'a dict * 'a entry * 'a dict
(Empty considered black.)
```

Red Black Tree (RBT) Invariants:

- (1) The tree is **sorted** on the **key** part of the entries.
- (2) The **children** of a **Red** node are **Black**.
- (3) Each node has a well-defined black height:
 The number of **Black** nodes on any path from the node down to an **Empty** is the same.

Almost RBT (ARBT) Invariants:

- (1) and (3) as above.
- (2') Like (2), but: **Red root** may have **one Red** child.

Specs for restoreLeft

Picture-based Programming

Picture-based Programming


```
fun
```

```
restoreLeft
```

```
(Black(Red(Red(d1, x, d2), y, d3), z, d4)) = Red(Black(d1, x, d2), y, Black(d3, z, d4))
```

Code for restoreLeft

```
(*
  restoreLeft : 'a dict -> 'a dict
  REQUIRES: Either d is a RBT
             or d's root is Black,
                 its left child is an ARBT,
                 and its right child a RBT.
  ENSURES: restoreLeft(d) is a RBT,
            containing exactly the same
            entries as d, and with the
            same black height as d.
*)
fun
restoreLeft (Black (Red (Red (d1,x,d2),y,d3),z,d4)) =
    Red (Black (d1, x, d2), y, Black (d3, z, d4))
restoreLeft(Black(Red(d1,x,Red(d2,y,d3)),z,d4))=
    Red (Black (d1, x, d2), y, Black (d3, z, d4))
restoreLeft d = d
```

Specs for insert and ins

```
(*
 insert : 'a dict * 'a entry -> 'a dict
 REQUIRES: d is a RBT.
 ENSURES: insert (d, e) is a RBT containing
           exactly all the entries of d
           plus e, with e replacing an entry
           of d if the keys are EQUAL.
 Locally defined helper function ins:
 ins : 'a dict -> 'a dict
 REQUIRES: d is a RBT.
 ENSURES: ins(d) is a tree containing
           exactly all the entries of d
           plus e, with e replacing an entry
           of d if the keys are EQUAL.
   ins (d) has the same black height as d.
   Moreover, ins(Black(t)) is a RBT
         and ins(Red(t)) is an ARBT.
```

*)

Code for insert

end

```
(* insert : 'a dict * 'a entry -> 'a dict
    REQUIRES and ENSURES RBT. *)

fun insert (d , e as (k, v)) =
    let
        fun ins ... (will write shortly)
    in
        case ins(d) of
        Red(t as (Red(_),__,_)) => Black(t)
        | Red(t as (_,_,Red(_))) => Black(t)
        | d' => d'
```

Code for insert

```
(* insert : 'a dict * 'a entry -> 'a dict
  REQUIRES and ENSURES RBT.
fun insert (d, e(as)(k, v)) =
    let
       fun ins ... (will write shortly)
    in
       case ins(d) of
         Red(tas(Red(_)\_,__)) \Rightarrow Black(t)
         Red(t(as)(,_,Red(_))) => Black(t)
         d' => d
    end
```

recall the keyword as means layered pattern matching

Code for insert

```
(* insert : 'a dict * 'a entry -> 'a dict
    REQUIRES and ENSURES RBT. *)

fun insert (d , e as (k, v)) =
    let
        fun ins ... (will write shortly)
    in
        case ins(d) of
        Red(t as (Red(_),__,_)) => Black(t)
        | Red(t as (_,_,Red(_))) => Black(t)
        | d' => d'
    end
```

Here is an acceptable alternate for the case:

```
case ins(d) of
  Red(t) => Black(t)
  d' => d'
```

Code for ins

```
(* ins : 'a dict -> 'a dict
   REQUIRES: d is RBT.
   ENSURES: ins(Black(t)) is RBT,
            ins(Red(t)) is ARBT.
   Recall: e as (k,v) is in scope.*)
fun ins (Empty) = Red(Empty, e, Empty)
  | ins (Black(\ell, e' as (k',_), r)) =
    (case String.compare(k,k') of
      EQUAL => Black(l,e,r) (* replace *)
     LESS => restoreLeft(Black(ins(l),e',r))
     => restoreRight(Black(\ellipse,e',ins(r))))
  ins (Red(\ell, e' as (k', ), r)) =
    (case String.compare(k,k') of
      EQUAL => Red(\ell, e, r) (* replace *)
     LESS => Red(ins(l),e',r)
     |GREATER| => Red(\ell, e', ins(r))|
```

Code for ins

```
(* ins : 'a dict -> 'a dict
   REQUIRES: d is RBT.
   ENSURES: ins(Black(t)) is RBT,
             ins(Red(t)) is ARBT.
   Recall: e as (k,v) is in scope.*)
fun ins (Empty) = Red(Empty, e, Empty)
  ins (Black(\ell, e' as (k', _), r)) =
    (case String.compare(k,k') of
      EQUAL => Black(\ell, e, r) (* replace *)
     LESS => restoreLeft(Black(ins(l),e',r))
     => restoreRight(Black(\ellipse,e',ins(r))))
  ins (Red(\ell, e' as (k', ), r)) =
    (case String.compare(k,k') of
      EQUAL => Red(\ell, e, r) (* replace *)
      LESS => Red(ins(l),e',r)
     |GREATER| => Red(\ell, e', ins(r))|
```

Why do we not call restoreLeft or restoreRight here?

Code for lookup

```
(* lookup : 'a dict -> key -> 'a option *)
fun lookup d k =
    let
       fun lk (Empty) = NONE
          lk (Red t) = lk' t
          | lk (Black t) = lk' t
       and lk'(\ell, (k', v), r) =
            (case String.compare(k,k') of
                EQUAL => SOME(v)
              | LESS => 1k(\ell)
              | GREATER => lk(r))
    in
       lk d
    end
```

Code for lookup

```
(* lookup : 'a dict -> key -> 'a option *)
fun lookup d k =
    let
       fun lk (Empty) = NONE
           lk (Red t) = lk' t
           lk 	ext{ (Black t)} = lk' t
            1k' (\ell, (k', v), r) =
            (case String.compare(k,k') of
 mutual
                EQUAL => SOME(v)
recursion
               LESS => 1k(ℓ)
               GREATER => lk(r)
    in
       1k d
    end
```

Sample Usage

Suppose we have implemented the previous code as:

```
structure RBT :> DICT = struct ... end
Now consider:
  val r1 = RBT.insert(RBT.empty, ("a", 1))
Then ML will print:
```

```
val r1 = - : int RBT.dict
    because we put in an integer value
    because of opaque ascription
```

Now create the following:

```
val r2 = RBT.insert(r1, ("b", 2))
val look2 = RBT.lookup r2

Then look2 : RBT.key -> int option
    look2 "a" \Rightarrow SOME 1
    look2 "c" \Rightarrow NONE
```

That is all.

Next Tuesday: Midterm Review Next Thursday: Online Midterm

Tuesday in 12 days: We will discuss cost graphs and an abstract datatype designed for writing parallel code (SEQUENCES).