15-150

Principles of Functional Programming

Slides for Lecture 18

Red Black Trees

March 26, 2020
Michael Erdmann

Main Lesson:

 How to maintain Representation Invariants

within a structure when some

code

necessarily violates the invariants:

— Localize the violation
— Characterize the violation
— Determine weakened invariants

— Write code that re-establishes the original invariants
from data satisfying the weakened invariants

Ancillary Lessons:
* Functional implementation of
« Pattern-matching as code-by-

nalanced trees

nicture ;-)

Dictionary Signature

signature DICT =

sig
type key = string (* concrete *)
type 'a entry = key * 'a (* concrete *)

type 'a dict (* abstract *)
val empty : 'a dict
val lookup : 'a dict -> key -> 'a option

val insert : 'a dict * 'a entry -> 'a dict
end

Dictionary Implementation

signature DICT =

sig
type key = string (* concrete *)
type 'a entry = key * 'a (* concrete *)

type 'a dict (* abstract *)

val empty : 'a dict

val lookup : 'a dict -> key -> 'a option
val insert : 'a dict * 'a entry -> 'a dict
end

Last week we implemented

structure BinarySearchTree : DICT = ...

using a tree to represent a dictionary,
with the Representation Invariant
that the tree is sorted on key .

Red Black Tree Dictionaries

Binary search tree with Red and Black nodes:

datatype 'a dict =
Empty
| Red of 'a dict * 'a entry * 'a dict
| Black of 'a dict * 'a entry * 'a dict

(Empty considered black.)

Red Black Tree Dictionaries

Binary search tree with Red and Black nodes:

datatype 'a dict =
Empty
| Red of 'a dict * 'a entry * 'a dict
| Black of 'a dict * 'a entry * 'a dict

(Empty considered black.)

Red Black Tree (RBT) Invariants:

(1) The tree is sorted on the key part of the entries.
(2) The children of a Red node are Black.

(3) Each node has a well-defined black height:
The number of Black nodes on any path
from the node down to an Empty is the same.

Red Black Tree Dictionaries

Binary search tree with Red and Black nodes:

datatype 'a dict =
Empty
| Red of 'a dict * 'a entry * 'a dict
| Black of 'a dict * 'a entry * 'a dict

(Empty considered black.)

Red Black Tree (RBT) Invariants:

(1) The tree is sorted on the key part of the entries.
(2) The children of a Red node are Black.

(3) Each node has a well-defined black height:
The number of Black nodes on any path
from the node down to an Empty is the same.

Invariants imply the tree is roughly balanced:
depth < 21og2(|nodesl +1)

A given Red Black Tree:

3,

O 22
2) () @ &
010 25

(For presentational simplicity, only showing keys,
and using integer keys not strings.)

Now insert 20:

3,

Now insert 20:

What should we color
this node?

O 22
2) () @ @

&) G) 3

Let’s color it red,
to preserve black height.

Now insert 19;

Now insert 19;

19 RED-RED
VIOLATION!

Fix with a rotation and recoloring:

2 of the 4 possible kinds of rotations:

2 of the 4 possible kinds of rotations:

N

2 of the 4 possible kinds of rotations:

C3

2 of the 4 possible kinds of rotations:

A)reLeft
)

(2nd clause

restoreLeft
(1st clause)

The other 2 kinds of rotations:

AreRight

(2nd clause)

restoreRight
(1st clause)

Here is another example:

Again, let’s insert 20:

Insert 20 and color red
(as before)

Once again, let’s insert 19:

RED-RED
199 VIOLATION!

Again, fix with rotation & recoloring:

9

OH NO! Thereis a new
RED-RED VIOLATION!

That's OK. We can rotate again ...

Use this kind of rotation:

/

Here'’s the tree again before rotation:

...giving us this after the rotation:

O 25
s) W @ €&

2,

(It's not necessary, but we can
also safely recolor the root black.)

Red Black Tree Dictionaries

Binary search tree with Red and Black nodes:

datatype 'a dict =
Empty
| Red of 'a dict * 'a entry * 'a dict
| Black of 'a dict * 'a entry * 'a dict

(Empty considered black.)

Red Black Tree (RBT) Invariants:

(1) The tree is sorted on the key part of the entries.
(2) The children of a Red node are Black.

(3) Each node has a well-defined black height:
The number of Black nodes on any path
from the node down to an Empty is the same.

Red Black Tree Dictionaries

Binary search tree with Red and Black nodes:

datatype 'a dict =
Empty
| Red of 'a dict * 'a entry * 'a dict
| Black of 'a dict * 'a entry * 'a dict

(Empty considered black.)

Red Black Tree (RBT) Invariants:

(1) The tree is sorted on the key part of the entries.
(2) The children of a Red node are Black.

(3) Each node has a well-defined black height:
The number of Black nodes on any path
from the node down to an Empty is the same.

Almost RBT (ARBT) Invariants:

(1) and (3) as above.
(2') Like (2), but: Red root may have one Red child.

Specs for restorelLeft

(*

restoreLeft : 'a dict -> 'a dict

REQUIRES: Either d is a RBT
or d's root is Black,
its left child is an ARBT,
and its right child a RBT.

ENSURES: restoreLeft(d) is a RBT,
containing exactly the same
entries as d, and with the

same black height as d.
*)

Picture-based Programming

”

Picture-based Programming

”

fun
restoreLeft
(Black (Red (Red (dl, x, d2), y, d3), z, d4)) =
Red (Black(dl, x, d2), y, Black(d3, z, d4))

Code for restorel.eft

(*

restoreLeft : 'a dict -> 'a dict

REQUIRES: Either d is a RBT
or d's root is Black,
its left child is an ARBT,
and its right child a RBT.

ENSURES: restoreLeft(d) is a RBT,
containing exactly the same
entries as d, and with the
same black height as d.

*)

fun
restoreLeft (Black (Red (Red(dl,x,d2),y,d3),z,d4))=
Red (Black(dl,x,d2), vy, Black(d3,z,d4))

| restoreLeft (Black (Red (dl,x,Red(d2,y,d3)),z,d4))=
Red (Black(dl,x,d2), vy, Black(d3,z,d4))

| restoreLeft d = d

Specs for ingert and ins

(*

*)

insert : 'a dict * 'a entry -> 'a dict

REQUIRES: d is a RBT.

ENSURES: 1insert(d,e) is a RBT containing
exactly all the entries of 4
plus e, with e replacing an entry
of 4 if the keys are EQUAL.

Locally defined helper function ins:

ins : 'a dict -> 'a dict

REQUIRES: d is a RBT.

ENSURES: 1ins(d) is a tree containing
exactly all the entries of 4
plus e, with e replacing an entry
of 4 if the keys are EQUAL.

ins (d) has the same black height as d.

Moreover, ins(Black(t)) is a RBT
and ins(Red(t)) is an ARBT.

Code for insert

(* insert : 'a dict * 'a entry -> 'a dict
REQUIRES and ENSURES RBT. *)

fun insert (d , e as (k, v)) =
let
fun ins ... (will write shortly)
in
case ins(d) of
Red(t as (Red(), ,)) => Black(t)
| Red(t as (_, ,Red())) => Black(t)
| 4’ => a’
end

Code for insert

(* insert : 'a dict * 'a entry -> 'a dict
REQUIRES and ENSURES RBT. *)
fun insert (4 , e‘(k v)) =
let

fun ins ... 111 write shortly)
in

case ins(d) of

recall the keyword as means
layered pattern matching

Code for insert

(* insert : 'a dict * 'a entry -> 'a dict
REQUIRES and ENSURES RBT. *)

fun insert (d , e as (k, v)) =
let
fun ins ... (will write shortly)
in
case ins(d) of
Red(t as (Red(), ,)) => Black(t)
| Red(t as (_, ,Red())) => Black(t)
| 4’ => a’
end

Here is an acceptable alternate for the case:

case ins(d) of
Red (t) => Black (t)
| d’ => 4’

Code for ins

(* ins : 'a dict -> 'a dict
REQUIRES: d is RBT.
ENSURES: ins(Black(t)) 1s RBT,
ins (Red(t)) i1is ARBT.
Recall: e as (k,v) 1is in scope.*)

fun ins (Empty) = Red (Empty, e, Empty)

| ins (Black(¢{, e’ as (k’,), xr)) =
(case String.compare (k,k’) of
EQUAL => Black({,e,r) (* replace *)
| LESS => restoreLeft (Black (ins (f) ,e’,r))
| => restoreRight (Black(f,e’,ins(r))))

| ins (Red (¢!, e’ as (k’,), r)) =
(case String.compare (k,k’) of
EQUAL => Red({,e,r) (* replace *)
|LESS => Red(ins(f),e’,r)
| GREATER => Red({,e’,ins(r)))

Code for ins

(* ins : 'a dict -> 'a dict
REQUIRES: d is RBT.
ENSURES: ins(Black(t)) 1s RBT,
ins (Red(t)) i1is ARBT.
Recall: e as (k,v) 1is in scope.*)

fun ins (Empty) = Red (Empty, e, Empty)
| ins (Black(¢{, e’ as (k’,), xr)) =
(case String.compare (k,k’) of
EQUAL => Black({,e,r) (* replace *)
| LESS => restoreLeft (Black (ins (f) ,e’,r))
| => restoreRight (Black(f,e’,ins(r))))

| ins (Red (¢!, e’ as (k’,), r)) =
(case String.compare (k,k’) of
EQUAL => Red(f,e,r) (* replace *)

LESS => Red(ins(f),e’,r)
<GREATER => Red({,e’,ins(r)))
Why do we not call restoreLeft
or restoreRight here ?

Code for lookup

(* lookup : 'a dict -> key -> 'a option *)

fun lookup d k =
let

fun 1k (Empty) = NONE
| 1k (Red t) = 1k’ t
| 1k (Black t) = 1k’ t

and 1k’ (£, (k’,v), r) =
(case String.compare(k,k’) of
EQUAL => SOME (v)
| LESS => 1k (f)
| GREATER => 1k (r))
in
1k d
end

Code for lookup

(* lookup : 'a dict -> key -> 'a option *)

fun lookup d k =
let

fun 1k (Empty) = NONE
| 1k (Red t) = 1k’ t
| 1k (Black t) = 1k’ t

1k' ¢, (k',v), r) =

(case String.compare(k,k’) of
mutual 9 oo

recursion = EQUAL => SOME(v)
| LESS => 1k (f)

| GREATER => 1k (r))
in
1k d
end

Sample Usage

Suppose we have implemented the previous code as:

structure RBT :> DICT = struct ... end
Now consider:

val rl = RBT.insert (RBT.empty, ("a", 1))

Then ML will print:

val rl = - : int RBT.dict

T because we put in an integer value

because of opaque ascription

Now create the following:

val r2 = RBT.insert(rl, ("b", 2))
val look2 = RBT.lookup r2

Then look2 : RBT.key -> int option
look2 "a" =» SOME 1

look2 "¢" — NONE

That Is all.

Next Tuesday: Midterm

Review

Next Thursday: Online Midterm

Tuesday in 12 days: We wi
cost graphs and an abstract c

| discuss
atatype

designed for writing paralle
(SEQUENCEYS).

code

	15-150�Principles of Functional Programming
	Title.pdf
	15-150Principles of Functional Programming

	Title.pdf
	15-150Principles of Functional Programming

	Title.pdf
	15-150Principles of Functional Programming

	Title.pdf
	15-150Principles of Functional Programming

