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Learning Objectives

m Data structure invariants

m Defining
m Maintaining
m Restoring

m Persistent data structures
m Red/black trees
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m Introduce red/black trees
m Walk through some examples

m Live code
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Red/Black Trees

Binary search tree refinement to maintain balance
Goal: O(logn) insert and lookup
Alternatives: AVL trees, splay trees, treaps, ...

Quite clever, and easy to implement functionally

Our version is persistent!

m Insertion does not mutate the tree, but returns a new one
m From Chris Okasaki, Red-Black Trees in a Functional Setting,
Journal of Functional Programming 9(4): 471-477 (1999)
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Red/Black Tree Invariants

Order Invariant: The tree is ordered

Height Invariant: The number of black nodes on every path
from a leaf to the root is the same (black height)

Color Invariant: The parent of every red node is black

m These are enough to guarantee O(logn) insert and lookup
m [hese can be maintained by local operations

m Where not, they can be restored efficiently
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Data Abstraction

m We can replace BST with RBT!
m Client will be unable to tell (except their code may be faster)

m While live coding we use integer keys and no data

m Implements sets of integers, with operations

m Insert an integer into a set (insert)
m Test membership in the set (lookup)
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a trivial tree Insert 2
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Insert 3 rebalance
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recolor root
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Insert 4 Insert 5
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m Data structure invariants

m Defining
m Maintaining
m Restoring

m Persistent data structures
m Red/black trees

15/15



