Red/Black Trees

Frank Pfenning

15-150, March 26, 2020

1/15



Learning Objectives

m Data structure invariants

m Defining
m Maintaining
m Restoring

m Persistent data structures
m Red/black trees

2/15



m Introduce red/black trees
m Walk through some examples

m Live code

3/15



Red/Black Trees

Binary search tree refinement to maintain balance
Goal: O(logn) insert and lookup
Alternatives: AVL trees, splay trees, treaps, ...

Quite clever, and easy to implement functionally

Our version is persistent!

m Insertion does not mutate the tree, but returns a new one
m From Chris Okasaki, Red-Black Trees in a Functional Setting,
Journal of Functional Programming 9(4): 471-477 (1999)

4/15



Red/Black Tree Invariants

Order Invariant: The tree is ordered

Height Invariant: The number of black nodes on every path
from a leaf to the root is the same (black height)

Color Invariant: The parent of every red node is black

m These are enough to guarantee O(logn) insert and lookup
m [hese can be maintained by local operations

m Where not, they can be restored efficiently

5/15



Data Abstraction

m We can replace BST with RBT!
m Client will be unable to tell (except their code may be faster)

m While live coding we use integer keys and no data

m Implements sets of integers, with operations

m Insert an integer into a set (insert)
m Test membership in the set (lookup)

6/15



a trivial tree Insert 2

7/15



Insert 3 rebalance

8 /15



recolor root

9/15



Insert 4 Insert 5

2 2 2

A AN A

10/15



AN AN AN
AN
\ \



A A
AN AN
Al
\7



recolor root

VANERVAN
ANANANVAY



NN
by dudb
St & &



m Data structure invariants

m Defining
m Maintaining
m Restoring

m Persistent data structures
m Red/black trees

15/15



