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Abstract— We describe a framework for finding and tracking “trails”
for autonomous outdoor robot navigation. Through a combination of vi-
sual cues and ladar-derived structural information, the algorithm is able
to follow paths which pass through multiple zones of terrain smooth-
ness, border vegetation, tread material, and illumination conditions.
Our shape-based visual trail tracker assumes that the approaching
trail region is approximately triangular under perspective. It generates
region hypotheses from a learned distribution of expected trail width
and curvature variation, and scores them using a robust measure of
color and brightness contrast with flanking regions. The structural
component analogously rewards hypotheses which correspond to empty
or low-density regions in a groundstrike-filtered ladar obstacle map.
Our system’s performance is analyzed on several long sequences
with diverse appearance and structural characteristics. Ground-truth
segmentations are used to quantify performance where available, and
several alternative algorithms are compared on the same data.

I. INTRODUCTION

Navigationally-useful linear features along the ground, or trails,
are ubiquitous in man-made and natural outdoor environments.
Spanning engineered highways to rough-cut hiking tracks to above-
ground pipelines to rivers and canals, they “show the way” to
unmanned ground or aerial vehicles that can recognize them. Built
trails also typically “smooth the way,” whether by paving, grading
steep slopes, or removing obstacles. The perceptual tasks involved
in general trail-following may be divided into three categories:

Finding This is the problem of detecting and segmenting a trail
with little or no a priori information about its specific appearance,
location, and shape. Corollary issues include deciding whether the
trail is coming to a dead-end or a branch, or more generally counting
how many trails are currently in view.

Keeping Analogous to the sense of “lane keeping” from au-
tonomous road following, this involves repeated estimation, or
tracking, of the gross shape and appearance attributes of a
previously-found trail. For discontinuous trails marked by blazes,
footprints, or other sequences of discrete features, the underlying
task is successive guided search rather than segmentation.

Negotiation When a trail contains hazards such as rocks, roots,
logs, and puddles, the gross shape estimate may be insufficient
for safe travel. In-trail obstacle detection and more general motion
planning are necessary for avoidance maneuvers, as well as control
policy adjustments due to bumpiness or tread material changes
affecting wheel slip.

In this paper we describe an approach to the tasks of finding
and keeping to a non-branching, non-terminating, continuous trail
which relies primarily upon vision and secondarily upon ladar to
discriminate the drivable region ahead. Though above we define
trails as broad category relevant to UGVs and UAVs, here we focus
primarily on hiking and mountain-biking trails through field and
forest terrain which are suitable for wheeled travel. Representative
images taken along such trails are shown in Figure 1. Our robot
platform is a Segway RMP 400 (see Figure 2 on the next page)
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Fig. 1. Representative trail images showing typical summer variation
in tread material, adjacent foliage, and lighting conditions. Trail region
estimates using the image-only algorithm of Section II are overlaid

outfitted with several common sensors, including a monocular color
camera, a SICK LMS laser range-finder, and a Hokuyo URG short-
range ladar.

Placing trail finding and trail keeping in context, an obvious
analogy is to consider these tasks as scaled-down versions of road
following. However, while traditional vision-based road following
has been thoroughly studied on paved and/or painted roads with
sharp edges and shapes which are well-approximated by clothoids
or other analytic curves [1], [2], [3], [4], hiking trails lack many
of these attributes. as they may have ragged, indistinct borders.
This suggests using bottom-up methods based on color or texture
to classify image patches as road vs. background [5], [6], [7], [8].
Though more useful, these approaches often assume that the finding
task is trivial and may be unable to cope with rapidly changing tread
materials and lighting conditions.

The two DARPA Grand Challenges required vehicles to follow
rough roads, but GPS and ladar were sufficient for most successful
teams [9], [10]. Vision was not primary for any team, although
it was exploited as a means of detecting long-range obstacles for
speed control [11] and as a road direction estimator [12]. The
navigational tasks in the DARPA Urban Challenge largely did
not require direct road shape estimation, although a very detailed



Fig. 2. “Warthog”: Segway RMP 400 robot platform with color camera,
SICK ladar, and sagitally-mounted Hokuyo URG

approach which relied on rich structural information such as from
a Velodyne ladar was described in [13]. There are some similarities
between the ladar component of this work, that of [12], and the
road shape estimator in [13].

General off-road navigation using vision and ladar was inves-
tigated in the DARPA PerceptOR program [14], which preceded
the DGC. In the recent DARPA LAGR program robots had stereo
vision instead of ladar and were looking only for open space on their
way to a GPS goal, although in constrained areas this was often
coincident with path following. Along the lines of [11], a method
to learn long-range obstacle appearance from short-range stereo
labels was given in [15]. Among LAGR-derived work, [16] stands
out for explicitly looking for path-like corridors of a homogeneous
color along the ground. The European ELROB competitions have
also called for path-following skills, with one robot effectively
following paths by finding “passages” among scattered trees in ladar
data [17]. A full ground plane estimate or measures of upcoming
longitudinal or transverse slope are necessary along some trail
sections to disambiguate obstacles and aid motion planning. A
method which uses stereo for this purpose is discussed in [15],
and one which uses ladar in the context of urban search and rescue
is presented in [18]. Finally, several other researchers have looked
into superpixel segmentation as a preprocessing step for dividing
a scene into drivable and non-drivable regions, including [19] and
[20].

The motivating intuition behind the computer vision aspect of our
approach is that the shape of trails is subject to less variability than
their appearance, and therefore should be a more distinctive cue
in finding them. Modulo high-frequency variation along the edges
and nonlinearity due to curvature in the distance, we believe that a
triangle is a reasonable shape template to describe an unoccluded
trail viewed under perspective. Therefore, rather than look for, say,
a “brown region” which we hope is the trail and then parametrize
its shape, we should look for a “triangular region” which simply
contrasts with the surroundings and only then parametrize its color.

There has been much recent work on combining bottom-up
grouping with top-down shape constraints for segmentation and

object detection [21], [22], [23], [24], [25], [26], [27], and one
could regard the search for a triangular region in this fashion. A
common feature of many such approaches is their use of an over-
segmentation technique such as [28], [29] to generate superpixels
as a preprocessing step. The superpixels are combined in different
ways in a bottom-up hypothesis generation step, which is followed
by top-down hypothesis-scoring.

In [26]’s formulation, for example, the overall goodness of a
region hypothesis R is assessed through a likelihood function
L comprising a linear combination of shape, deformation, and
appearance likelihood terms. The shape likelihood measures how
closely R’s boundary fits a deformable object class template
(e.g., a generic fish or banana silhouette). The more bending or
stretching necessary to optimize the template-region fit, the lower
the deformation likelihood. Finally, the appearance term measures
the agreement of the hypothesized region’s pixels with a model of
the object’s expected color, texture, and so on.

We reported on a trail-following system using such an approach
in IROS last year [30]. While mostly successful, there were several
drawbacks to the approach. First, the method was too slow for
real-time use, taking several seconds per image. Second, it had
trouble with multimodal color distributions in the trail region caused
by shadows or mixed materials. Partly this was due to an overly
simplistic unimodal model of the trail color, but also because
superpixel groupings (and therefore trail region hypotheses) were
formed by agglomerative clustering of neighbors, which outlier
superpixels such as lane lines or rocks could interrupt.

This paper improves upon the previous work in several significant
ways which we describe in the following sections. First, the method
achieves much greater speed by hypothesizing triangular regions
directly instead of superpixel groupings which must then be scored
for triangularity. Even with this speed-up, it also works on a wider
variety of images due to a more sophisticated and flexible model
of trail color. Second, by introducing structural information from
a ladar sensor it is able to handle additional trail segments which
lack sufficient visual contrast for the image-only method to handle.
The combined system is significantly more efficient and reliable.

II. APPEARANCE-BASED TRAIL SEGMENTATION

We approximate the boundary of a trail region R viewed under
perspective from a vehicle on or near the trail as a triangle with its
base coincident with the bottom of the image. This trail triangle is
our shape template in the sense of [26]. For a given triangle T the
positions of the top, bottom-left, and bottom-right vertices are pt,
pl, and pr , respectively. Since pl and pr are on the bottom row
of the image y = h − 1, their x coordinates xl and xr suffice to
describe them. Thus, a minimal geometric description of the triangle
is a 4-D point t = (xt, yt, xl, xr), subject to the constraint that
xr > xl. Note that xl and xr may be outside of the range [0, w−1],
corresponding to the triangle being clipped by the left and/or right
image edge. The trail triangle associated with a particular region R
will thus be referred to in a region sense as T (R) and in a point
sense as t(R). We may drop the reference to R for notational
simplicity when the association is unambiguous.

In [26] and [30], the basic framework for trail finding is to
hypothesize possible trail regions R, score each hypothesis with
a likelihood function Ltrail, and return the maximum likelihood
hypothesis. As mentioned in the introduction, for complex shapes a
typical approach is to first oversegment the image into superpixels,
then combine them in different ways using local cues in a bottom-
up hypothesis generation step, and finally to rank these hypotheses
using a more global, top-down objective function. This is often the



only way to proceed with complicated objects, which live in high-
dimensional shape spaces that are impractical to sample directly.
However, since our template is a simple triangle describable with a
4-D state, it is feasible to directly generate triangle hypotheses and
test them.

Here we use a sequential Monte Carlo search method to find
good trail hypotheses in a given image. Because we ultimately
want to track any found trail regions, it is convenient to implement
our single-image search method using a tracking method, particle
filtering [31]. In particle filtering, the current state is derived from
a weighted sum of all current state hypotheses, or particles. In this
paper each trail triangle hypothesis is denoted ti and the weight of
each particle is proportional to its trail likelihood Ltrail(t

i). The best
trail region estimate at time t, t̂t, is taken directly from the particle
filter state for all image sequence results. However, for individual
images this method results in an estimate which is continually and
unnecessarily changing due to noise. In this case, the trail region
estimate t̂t is simply the particle with the highest trail likelihood
seen in t iterations of the filter.

As discussed in the introduction, the trail likelihood function
Ltrail in our earlier work [30] consisted of a linear combination
of three terms measuring the appearance, shape, and deformation
likelihood of the trail region hypothesis. In this work we use only
the appearance likelihood (greatly modified, as described in the
next subsection). Because we now only hypothesize triangular trail
regions, the shape likelihood can be dropped.

The deformation likelihood measures how closely a trail triangle
meets expectations about the trail’s apparent width, centeredness,
horizon line, curvature, and so on. These of course depend on both
the trail’s shape properties as well as the camera intrinsics and its
pose relative to the trail. Since the particle filter uses a prior on
the state p(t) to sample particles, we simply use the deformation
distribution as this prior and also drop the deformation likelihood
from the trail likelihood. For trail data collected from our robot
platform, our deformation distribution is a Gaussian (t̄,Σ) learned
from examples drawn from our testing area and manually labeled
using the LabelMe tool [32]. A uniform distribution is used in other
cases where the camera intrinsics and pose are unknown.

A. Single-image appearance likelihood

As with [30], for a single image we have no a priori model
of the trail’s color or texture: the basis of a high appearance
likelihood is contrast with the surround. In addition to contrast,
we also reward hypotheses which exhibit symmetry, meaning that
neighboring regions to the right and left are similar to one another.

To be more precise, we refer to the hypothesized trail region
as T , and to its left and right neighboring regions as TL and
TR, respectively. These are all triangles. For this work, we set the
neighboring regions to have identical bottom widths to the central
one. This arrangement is shown in the left image of Figure 3.

A number of different measures have been proposed to measure
appearance similarity (the opposite of contrast) between image
regions, including brightness in grayscale images [33], Euclidean
color distance [34], and color and texture histogram similarity
measures such as Bhattacharyya or χ2 [35], [36] and the Earth
Mover’s Distance [24]. Here we have chosen to adapt an effi-
cient yet reasonably sophisticated technique from [16] based on
histograms of k-means cluster labels in CIE-Lab color space. Using
this method, a set of textons is first created from the input image
by computing an n-dimensional feature vector at each pixel (x, y).

[16] describes both color and texture features, but we found the
latter (as defined) rarely informative and did not use them. CIE-Lab

Fig. 3. Hypothetical trail triangle region and sample k-means labels for
different cues. Clockwise from upper-left: Central trail region (red) and
neighboring regions (blue); cluster labels using LAB features (k = 8);
labels using L features; and labels using AB features. For this image,
a maximum appearance likelihood of 0.693 was found with AB (the
maximum for LAB is 0.655; for L it is 0.523).

space is a transformation of RGB space in which the L coordinate
encodes lightness or intensity and the a, b coordinates represent
chromaticity. CIE-Lab has the advantage of greater perceptual
uniformity–in it, Euclidean distance is a somewhat reasonable
metric for color similarity. We consider three possible color feature
vectors: LAB, which uses all three channels; AB, which uses only
the chromaticity coordinates and is thus nominally illumination-
insensitive; and L, which uses only brightness.

Before clustering, textons containing saturated pixels are set
aside. k-means is performed on the valid remaining textons to
identify a small number of common colors in the image; these
are combined with the under- and over-saturated groups to yield
k+ 2 final texton labels l1, . . . , lk+2. The value used in this paper
is k = 8. Examples of texton labels using different feature vectors
are shown in Figure 3. Note that the over-saturated sky is labeled
white in all three.

A triangle region T ’s color distribution is modeled by a his-
togram H = (f1, . . . , fk+2) of the frequencies of the k-means
and saturation cluster labels inside it. This allows multi-modal
color distributions within trails, which is useful for heterogeneous
materials such as leaves or rocks. The appearance dissimilarity
between two regions Ti, Tj is captured by a histogram distance
function; we use the common chi-squared metric χ2(Hi, Hj).

Formally, then, the contrast of a hypothetical trail region T with
its left and right neighboring regions TL and TR and the symmetry
of the flanking regions are combined to obtain:

Lappear(T ) = (1)
χ2(H,HL)+χ2(H,HR)+(1−χ2(HL,HR))

3

In order to avoid biases for triangle hypotheses near the image
edges, we set thresholds on the minimum visible area of the neigh-
boring regions for their histograms to be considered statistically
significant and therefore included in the appearance likelihood
calculation.

Rewarding other characteristics such as trail region interior



homogeneity is possible, but from observation these seem to hold
for fewer scenes. [26] uses homogeneity but not contrast, while
[37], [33] use a ratio of contrast to heterogeneity. Our experiments
have indicated that including a homogeneity term (either through
raw color variance or the entropy of the label histogram) introduces
a bias toward smaller regions, so we do not use it.

B. Feature selection and confidence

An issue of particular interest is whether the choice of a different
set of features to cluster with k-means can affect the algorithm.
Because of the speed of the procedure, it is easy to simply perform
the clustering using each of several alternative sets of cues. Recall
that the alternatives here are LAB, which combines chromaticity
and brightness; AB, which uses only chromaticity; and L, which
uses solely brightness. Empirically, we have found that on different
images and in different lighting situations, which cue is chosen can
have a strong effect on the appearance likelihood objective function
that we are trying to maximize.

Our approach is to do k-means clustering three times, once
for each cue alternative, on every image. The results for one
particular image can be seen in Figure 3. This results in three
different histograms HLAB, HAB, and HL and thus three different
appearance likelihoods for each region hypothesis. We do not run
three separate particle filters, but rather for each “generation” (a
block of, say, 10 iterations) of the particle filter, we make three
clones of the particle set and evaluate which feature vector leads to
the highest observed appearance likelihood. The particles associated
with this cue are the only ones propagated into the next generation.
In all of this paper’s results figures, the trail tracker estimate is
colored according to the “most helpful” cue. For tracking sequences,
this is the best cue for the last generation of particle filter iterations;
for single images it is the cue associated with the maximum
likelihood particle seen thus far.

Following this procedure is important for robust functioning of
the tracker. Although LAB is superior for the majority of images,
there are several (such as the one in Figure 3) for which either
AB or L is necessary to find the best segmentation. A corollary
of this technique for cue selection is that the magnitude of the best
hypothesis’ appearance likelihood is a useful measure of tracker
confidence. When the tracker has a strong “lock” on a trail, the
score is high (Lappear is always in the range [0, 1]); when the trail
has only marginal contrast or is not present, the trail likelihood
invariably drops. There is not space for the evidence, but through
testing we have found that a threshold on Lappear of about 0.6 is a
good dividing line. Images which are classified as not containing a
trail are colored red in this paper.

III. INCORPORATING STRUCTURAL INFORMATION

Irrespective of the visual environment, along trail sections bor-
dered by thick foliage, SICK ladar scans are characterized by linear
clusters along the direction of the trail. These may be on just one
side or both, as seen in the top Figure 5(b), indicating a corridor-
like structure. When this structure is present, it is a strong cue for
the trail direction. This could lead us to formulate an analog of the
trail likelihood function above for trail-following with ladar data.
Instead of a triangle in the image, we would be looking for a “trail
rectangle” in vehicle coordinates. The deformation distribution
would be parametrized in units of meters rather than pixels, and
the dynamics of the trail tracker would stem directly from the robot
motion. There would be no color for a ladar appearance likelihood,
of course. Rather, a high-likelihood trail rectangle hypothesis would

(a)

(b)

Fig. 4. Structural obstacles constrain the trail, but do not necessarily define
its edges. (a) Overhead view of SICK ladar scan of trail region (concentric
circles are at 1 m intervals); (b) Camera view with ladar obstacles projected.

(a) (b) (c)

Fig. 5. Filtering ladar groundstrike, two examples. (a) Sideview of robot
platform showing sagittal ground profile from Hokuyo data; (b) Overhead
view of simultaneous SICK ladar scan; (c) Camera view of trail with SICK
ladar points projected (groundstrikes removed). The groundstrike distance
was calculated as 2.3 m in the first example and 3.1 m in the second.

be one that is relatively empty of ladar obstacles yet flanked by
obstacle-dense neighboring regions.

The problem with trying to use ladar alone to find trails is that
it only constrains them—it does not always define their borders
as visual cues do, as seen in Figure 4. Thus, in order to integrate
structural information with the image-based component described
above, we project ladar points into the camera image using the
relative poses of the ladar and camera and the camera’s internal
calibration. This allows us to augment the trail likelihood with
a term that penalizes hypotheses that stray into obstacle regions.
To place a higher priority on avoiding nearby obstacles, projected
obstacle points are rendered as circles with radii proportional to
their depths, as seen in Figure 4(b).



A. Groundstrike filtering

The robot’s SICK ladar is mounted to sweep a coronal plane,
parallel to the ground. Although it is roughly 0.5 m off the ground,
groundstrikes or ladar returns which intersect drivable ground
features can frequently occur on undulating trails. Groundstrikes
may be encountered as the robot approaches the base of an incline
or hump along the trail, or as it comes down a slope which is
starting to level off. Although groundstrikes are often transient and
clear naturally as the robot moves forward, if these situations are
not explicitly recognized the robot may erroneously believe that its
path is blocked by a “phantom wall.”

Such slopes may be detected in several ways, including fitting a
ground plane to a stereo depth map [15]. We use a separate Hokuyo
ladar mounted to sweep a sagittal plane which yields clean profiles
of the ground in front of the robot out to about 4 m, as seen in Figure
5. After removing ladar points which are above the robot (due to
overhanging foliage), a RANSAC robust line-fitting algorithm is
applied to the ground profile. The line thus obtained is intersected
with a line representing the plane of the SICK ladar’s sweep, and
the result is the estimated groundstrike distance. SICK ladar points
beyond this distance are removed as suspected groundstrikes; only
points nearer are projected into the image.

IV. RESULTS

Our results demonstrate the accuracy and efficiency of the image-
only trail finder and tracker of Section II on a diverse set of trail
images. These experiments use data collected both from the Web
and several trail image sequences taken from our robot platform
as it was manually driven. For all of the Web images and at
regularly-spaced intervals along these sequences we have manually-
generated ground-truth segmentations. These permit us to quantify
the accuracy of our trail triangle estimates1.

We also provide a baseline comparison to several image-based
“freespace segmentation” algorithms from other authors. The first
comparison algorithm is the surface layout method of [38], which
was used for robotic motion planning in [19]. This algorithm
oversegments an image into superpixels and then groups them into
categories such as ground (i.e., drivable areas), vertical surfaces
(i.e., obstacles), and sky using a variety of appearance and geomet-
ric features. We use the outdoor, IJCV version of their classifier
which is the most advanced of those publicly available and the
most appropriate to our data.

The diversity of trail images that the system can process success-
fully is shown in Figure 6. The data set consists of thirty images
containing trails culled from Flickr and Google and cropped and
scaled to 320× 240 as necessary. Only 15 images are shown here;
images of rivers, paved roads, and snow were removed to focus on
hiking-type trails. On odd rows, the highest scoring trail hypothesis
obtained by our algorithm within 100 iterations of the particle filter
on a downsampled 80× 60 version of the input is shown for every
image (the trail triangle estimate is scaled up and drawn on the
full-size image for clearer display). The algorithm does a good job
of finding the trail region in each image despite their very different
colors, sizes, and image locations. Using the overlap formula above,
the median overlap between the found trail triangle and the ground
truth polygon over all 30 images was 0.828. On even rows we show
the output of the surface layout classifier of [38]. Their system does
a a credible job of finding nearby ground, but accuracy decreases

1We use the polygon area overlap formula suggested by [26]:
Overlap(R1,R2) = A(R1 ∩R2)2/(A(R1)A(R2))

with depth, and roads and trail regions do not seemed to be favored
over rougher ground.

Source code is not readily available for other recent algorithms
which segment images into drivable and non-drivable areas, and the
most current batch from DARPA LAGR projects also use stereo
depth in an integral fashion. Nonetheless, it is instructive to run
our algorithm as well as [38] on some selections from their data
as shown in Figure 7. Each column of images (numbered 1 to 6
from left to right) is headed by an input image taken from [16] (1
and 2), [15] (3 and 4), and [20] (5 and 6). The second row shows
the output of our algorithm, the third row shows the surface layout
of [38], and the fourth shows the output of the source algorithm
(note [15]’s output is an overhead view). Our algorithm gives an
incorrect or incomplete trail triangle for images 1 and 5. This is
most likely because the trails are so wide that a large fraction of
them is outside of the image—our appearance likelihood function
requires that both the left and right neighboring regions be at least
partially visible. Images 4 and 6 are classified as containing no
trail—the trail region in 4 is again bordering the image edge, and
the fork diminishes its triangularity. The trail triangles in images 2
and 3 are basically correct.

We have also run the single-image trail finder on several long
hiking trail sequences represented by the images in Figure 1. On
the hiking trail and canyon sequences there is excellent gross
accuracy of trail detection and excellent frame-to-frame correlation
considering the variability of illumination conditions. Frames from
a multi-km-long data set collected on the hiking trail are shown in
Figure 8. The median overlap with ground truth over the course of
the trail was 0.681. The LAB cue was used 40.4 percent of the
time, AB 34.6 percent, and L for the remaining 25 percent of the
frames. The ability of the system to negotiate a particularly tricky
section of shadows and bright spots is shown in Figure 9. For image
sequences, fewer iterations of the particle filter are necessary per
frame because of the high frame-to-frame correlation, and thus we
get a frame rate of nearly 30 fps.

V. CONCLUSION

We have presented a practical approach to visually finding and
following general trails for robot autonomy and showed it working
on a number of different kinds of images and image sequences.
The method does not require an a priori color or texture model
for the trail region, working primarily from general cues such as
gross shape and self-similar regional appearance vs. contrasting
surroundings to localize a variety of trail types without parameter
changes. This baseline implementation is fairly accurate on realistic
imagery and efficient for its level of sophistication, running at inter-
active rates suitable for control of a ground robot. We are currently
extending the trail tracker state to maintain a color model of the
trail region over time. Color hysteresis should help tracker stability
in several situations in which an off-trail region may have more
contrast than the trail itself. With odometric information from the
robot, knowledge of forward motion and turning speed in vehicle
coordinates can be transformed into image motion predictions. We
are working on incorporating this into the particle filter dynamics.

It is not critical for gross robot motion planning, but for high-
speed situations where turn anticipation is important or where
in-trail obstacles are a hazard, we are looking at several ways
to refine the coarse trail shape estimate returned by our triangle
finder to get a more precise region boundary. We have promising
preliminary results using a lightweight version of the superpixel
grouping method from [30] which runs as a post-process after trail
triangle estimation, as well as a pixel-level method which scales



Fig. 6. Results on single-image trail triangle finder on subset of the Web trail data set (see text). Odd rows are output of vision-only component of this
paper’s algorithm; even rows are output of [38]. Colors indicate which features were automatically chosen as most discriminative: red for LAB, green
for AB, and blue for L.

the trail triangle down and up to get high-confidence trail and
high-confidence background regions, respectively, in order to run
something similar to GrabCut [39] to classify the unknown border
region in between.
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