
Image and Vision Computing 40 (2015) 16–27

Contents lists available at ScienceDirect

Image and Vision Computing

j ourna l homepage: www.e lsev ie r .com/ locate / imav is
Approaches for automatic low-dimensional human shape refinement
with priors or generic cues using RGB-D data☆
Mehmet Kemal Kocamaz a, Christopher Rasmussen b

a Robotics Institute, Carnegie Mellon University, United States
b Department of Computer and Information Sciences, University of Delaware, United States
☆ This paper has been recommended for acceptance by
E-mail addresses: kocamaz@cmu.edu (M.K. Kocamaz)

http://dx.doi.org/10.1016/j.imavis.2015.05.001
0262-8856/© 2015 Elsevier B.V. All rights reserved.
a b s t r a c t
a r t i c l e i n f o
Article history:
Received 14 July 2014
Received in revised form 10 May 2015
Accepted 11 May 2015
Available online 19 June 2015

Keywords:
Human shape refinement using RGB-D data
Multi-layer graph cut
Human body shape descriptor
Random decision forests
Refinement of low-dimensional
representations
RGB-D
Somehumandetection or tracking algorithms output a low-dimensional representation of the humanbody, such
as a bounding box. Even though this representation is enough for some tasks, amore accurate and detailed point-
wise representation of the human body ismore useful for pose estimation and action recognition. The refinement
process can produce a point-wise mask of the human body from its low-dimensional representation. In this
paper, we tackle the problem of refining low-dimensional human shapes using RGB-D data with a novel and ac-
curate method for this purpose. This algorithm combines low-level cues such as shape and color, and high level
observations such as the estimated ground plane, in a multi-layer graph cut framework. In our algorithm, shape
prior information is learned by training a classifier. Unlike some existing work, our method does not utilize or
carry features from the internal steps of the methods which provide the bounding box, so our method can
work on the outputs of any similar shape providers. Extensive experiments demonstrate that the proposed tech-
nique significantly outperforms other suitable methods. Moreover, a previously published refinement method is
extended by incorporating more generic cues to serve this purpose.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

Detecting and tracking humans are important tasks for a wide range
of computer vision applications, such as human behavior understand-
ing, surveillance systems, autonomous driving, interactive games, and
gesture recognition. A rough low-dimensional representation of the
human, such as a bounding box, is commonly output by human detec-
tion and tracking algorithms [1–14].

Even though this representation is enough for some tasks, a more
accurate and detailed point-wise representation is useful to obtain bet-
ter object descriptors which could bemore beneficial for action recogni-
tion [15,16] and pose estimation tasks [17,18]. It is possible to obtain a
point-wise representation of a human from a low-dimensional repre-
sentation, a process which can be called shape refinement. An illustra-
tion of this process using color and depth images can be seen in Fig. 1.

The refinement of a low-dimensional human shape representation
is a challenging problem. Several reasons make this process difficult.
Representation of the human, most commonly a bounding box in an
image, B(x,y,w,h), where x and y is the top left point, w is the width,
and h the height of the box, not only contains the human points, but it
also includes some background points. The background in the bounding
box might have colors, texture, or 3-D geometric features which
are similar to those of the human. Additionally, the human might be
Stan Sclaroff.
, ras@udel.edu (C. Rasmussen).
standing in any position, which causes pose variance and possible
self-occlusion of body parts. All of these factors make the refinement
process complicated. On the other hand, the bounding box representa-
tion provides some hints about the appearance and color of the object.
Also, a smaller search space is given to label the points as foreground/
background, and the existence of a human in the box is guaranteed.
Fig. 1.Our proposed refinement method takes the low-dimensional representation of the
human to produce more detailed point-wise representation. It uses both color and depth
data for this process.
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These hints and advantages do not exist if the human body points need
to be found and segmented in the entire image space.

In this paper, a novel algorithmwhich combines low- and high-level
observations obtained from RGB-D data in a multi-layer graph cut
framework is proposed for refining a low-dimensional representation
of the human shape—a bounding box B(x,y,w,h). We assume that this
representation is provided by some other human detection or tracking
method. The proposed algorithmdoes not leverage the internal compu-
tations of the methods which provide the bounding box. Hence, it is
generic and applicable on the output of any kind of method which pro-
duces a similar low-dimensional human shape. A point-wise descriptor
is built to employ the shape information of the point neighborhood. This
powerful descriptor utilizes the depth data of the scene by generating
three cues that are (1) relative geodesic and (2) vectorial spatial dis-
tances of a point to the middle point of B(x,y,w,h), and (3) the local
structure information encoded as the normal. The descriptors are used
to train a Random Forest machine learning algorithm [19] which favors
themost important cues in the descriptor. Multiple low- and high-level
observations–e.g. the point-wise confidence scores output by the classi-
fier, the color, and estimated ground plane–are combined jointly in a
multi-layer graph. The proposed method outperforms existing compa-
rable algorithms in our experiments.

Moreover, a previously published graph cut-based refinement algo-
rithm [20] is extended to serve the same purpose. This method does not
incorporate any prior information whichmust be learned by a classifier
as in our first proposed technique. It fuses three generic cues: the color,
the depth, and the normal of the points obtained from a single color and
depth (RGB-D) image.

A review of related work is summarized in the next section. The
human shape descriptor, the proposed classifier, and integration of
low- and high-level observations in themulti-layer graph are described
in Section 3. The generic cues, and the details of the extended graph cut-
based method are explained in Section 4. Experimental results of the
proposed and extended methods are analyzed in Section 5. Finally, the
proposed work is summarized and possible extensions of this work
are drawn in the last section.

2. Related work

GrabCut [21] can be considered as one of the most suitable methods
which obtains features from a color image for the refinement of a low-
dimensional human shape estimate. GrabCut is designed as a semi-
automatic segmentation algorithm which takes a box surrounding
the object as the input. GaussianMixtureModels of the object and back-
ground are formed by using the regions inside and outside of the input
box. Graph cut [22,23] is applied iteratively by feeding the models.
At the end of each iteration, border matting is performed to achieve
smooth and more accurate results.

The algorithm explained in [24] does not particularly aim to refine
the low-dimensional human shape, but it simultaneously detects and
obtains person silhouette by integrating top-down and bottom-up
approaches in a balanced way. In this method, the pedestrians are si-
multaneously detected and segmented by integrating appearance and
motion cues. It learns the silhouette information from the training data.

Some refinement methods leverage features or confidence scores
taken from the internal steps of the methods which provide the low-
dimensional human shape [25–29]. Thesemethods donot followa gener-
icway to refine any given low-dimensional human shape. Hence, they de-
pend on their rough shape estimators. The human silhouette cue
computed by the HOG classifier [1] builds the essential parts of the
human model used in [27–29]. The faces of the humans are detected by
Haar-like features [34] and help to initialize the seed points of GrabCut
in [28,29]. The method explained in [25] uses some features obtained by
applying a human body part detector. A pre-processing step which uti-
lizes Edgelet features defines the region of the interest in [26]. Then, the
points of the human body are segmented in this region [26]. Humanising
GrabCut [30] is a specialized version of GrabCutmethod to refine the low-
dimensional human shape. The predictions of the HOG detector are used
to build the appearance models to initialize GrabCut.

Applying background subtraction techniques is another common
approach to segment human body points. The main disadvantage
of these methods is that they cannot readily be deployed on moving
platforms such as autonomous vehicles. [32,31] introduce multimodal
background models for labeling the human points in the scene. They
combine the features obtained from thermal and color cameras, where
a Gaussian distribution forms a temperature model for the human
body and the background models of each pixel in the color image are
described by a list of codewords. In [33], the texture and color of each
pixel in the image aremodeled to segment thehumans in indoor scenes.
In addition to the image-based features, [35] integrates the shape and
height of the human, and the camera model.

The evaluation of methods which are specifically designed for low-
dimensional human shape refinement or suitable for this purpose
according to different criteria is shown in Table 1. The second column
in this table indicates themethodswhich take a bounding box to refine.

3. Refinement with low- and high-level observations

Themethod proposed in this section combines in one joint graph cut
framework the low-level observations that are the point neighborhood
shape and the color information of the point, and a high-level observa-
tion that is the estimated ground plane. The point neighborhood shape
information of the human body is learned by training a classifier.

3.1. Point-wise descriptor

A point-wise descriptor is formed for each point in the image. The
point-wise descriptor, fs, utilizes the 3-D point cloud of the scene, so
the depth image of the scene is converted to a 3-D point cloud. fs in-
cludes the following shape-related cues:

1) Normals: A cue about the local shape information surrounding
the point, pi, can be encoded in the descriptor, fs, by calculating the
normal, ηi, of the point, pi. It is computed for all three dimensions
of the point cloud space, ηi = (ηx, ηy, ηz). The neighborhood search
of the points is performed by building a FLANN-based Kd-tree [36]
to reduce the computation time.

2) Vectorial Spatial Distance: First, the middle point, midB =
(midx, midy, midz), of the bounding box, B(x,y,w,h), is calculated as
formulated in the following equations:

mid2DB ¼ xþw=2; yþ h=2ð Þ ð1Þ

midB ←T mid2DB
� �

ð2Þ

where T is the function which gives the corresponding 3-D location
of a pixel in the image. The vectorial distance relative to the middle
point of B(x,y,w,h), Δv = (Δx, Δy, Δz), is computed for the point pi =
(px, py, pz). This computation can be formulated as:

Δv ¼ px−midx; py−midy;pz−midz
� �

: ð3Þ

3) Geodesic Distance: As mentioned in [37], the geodesic distance
between two points on the human body is constant in different
poses. This cue is incorporated into our descriptor, fs. The relative
geodesic distance, GDi, to the middle point, midB, of the point, pi,
is computed byDijkstra's Shortest Path Algorithm. The image is con-
verted to a graph, G(V, E), where V is the graph nodes, and E is the
edges between the nodes. Each point, pi, in the image is represented
as a node in the graph, G(V, E). The neighbors of each node in the
graph are restricted to 4 pixels. The edge weight, wij, between two



Table 1
Evaluation of themethods specifically designed for refinement of low-dimensional human shape or can serve for this purpose. Eachmethod is evaluated according to four criteria. These
criteria are: 1) Is it designed specifically to refine low-dimensional human shape? 2) Can it work for non-stationary platforms? 3) Is it independent of the low-dimensional shape provider
method in terms of carrying some features from the provider? 4) Which sensor data sources are used for the refinement?

Method name Specifically designed for refinement Works for non-stationary cameras Independent of shape provider Sensors

GrabCut [21] X X X Color
Sharma and Davis [24] X X Color
Vineet et al. [25] X X Color
Wu and Nevetia [26] X X Color
Migniot et al. [27] X X Color
Vela et al. [28,29] X X Color
Gulshan et al. [30] X X Color & Deptha

Zhao and Cheung [31,32] X Color & Thermal
Luke et al. [33] X Color
Proposed methods X X X Color & Depth

a [30] uses the depth camera data only for labeling some ground truths, not for the refinement.
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points is set to the Euclidean distance between pi and pj in the corre-
sponding point cloud of the scene as in Eq. (4).

wij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jpix−pjx j2 þ jpiy−pjy j2 þ jpiz−pjz j2

q
ð4Þ

If there is no depth data is available for the neighbor, the edge
weight, wij is assigned a large distance.
A sample geodesic distance map for the given image can be seen in
Fig. 2.
The proposed point-wise human shape descriptor, fs, is the combina-
tion of the normal, ηi, vectorial distance, Δv, and geodesic distance,
GDi of a point pi. Then, fs becomes:

f s ¼ ηx ηy ηz Δx Δy Δz GDi

h iT
: ð5Þ

3.2. Training the classifier

The human refinement task can be considered as a 2-label classifica-
tion problem. In short, the label of the first class is “human”, while the
other label is for the non-human points and is called “background”. In
order to train a point-wise human classifier, H-Classifier, positive
human descriptors, fs+, and negative human descriptors, fs−, are neces-
sary. The samples of fs− are chosen from the non-human body points
of the scene.

Randomized Decision Forests are a state of the art, fast, and effective
machine learning technique [38,19,39,40] which are suitable and appli-
cable for wide range of different tasks and problems [41–43]. Therefore,
it is used to trainH-Classifier. A Decision Forest consists of somenumber,
T, of decision trees. A tree includes split and leaf nodes. Each split node
consists of an axis, fs(x), of fs, and a threshold τ. To classify the given
(a) (b)

Fig. 2. Geodesic distance calculation. (a) Color image with overlaid bounding box of the object,
corresponds to the middle point of the bounding box. The points which have darker intensity
descriptor of a point, fs, the split nodes of the decision tree are evaluated
by starting from the root of the tree.Whenever a leaf node is hit in a tree,
t, a decision distribution, Pt(d| fs), is obtained.

In the case of low-dimensional human shape refinement problem,
Pt(d| fs) can be considered as a 2-bin histogram. The labels of this histo-
gram are the human and background. The result label of the random-
ized decision forest classifier can be the average of all distributions
given by the trees in the forest:

P dj f sð Þ ¼ 1
T

XT
t¼1

Pt dj f sð Þ: ð6Þ

Or the result can be the label with the maximum number of votes
by each decision tree, t, in the forest as formulated in the following
equations:

Lt Pt dj f sð Þð Þ ¼ 1 if Pt dHj f sð Þ≥Pt dBj f sð Þ
−1 otherwise

�
ð7Þ

where Lt(x) is the decision label function of a given decision distribu-
tion of a tree, and t. dH and dB are the bin values of the human and
background labels in the distribution. The normalized confidence
score of a point which belongs to the human region becomes:

Ci ¼ 0:5þ 1
T

XT
t¼1

L Pt dj f sð Þð Þ: ð8Þ

Then, the final decision label of the forest, L(P(d| fs)) becomes:

L P dj f sð Þð Þ ¼ 1 if Ci≥0:5
−1 otherwise

�
: ð9Þ
(c)

(b) depth image, and (c) colored geodesic distance map of the given image. The red point
in the map are farther from the middle point and lighter points are closer to it.
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Each tree is trained on a different set of randomly selected positive
and negative samples using the following algorithm [42]:

1) Randomly obtain a set of splitting candidates for a tree node, Φ =
(fs(x), τ). fs(x) is an axis of a point-wise descriptor, and τ is the
split threshold.

2) The set of training points, S={pi}, are divided into two sets, Sl and Sr,
for left and right leaves of the node by each Φ:

Sl Φð Þ ¼ pi j f s xð Þ ≤ τf g ð10Þ

Sr Φð Þ ¼ S − Sl Φð Þ: ð11Þ

3) Find the best splitting candidate, Φ*, which produces the largest
information gain:

Φ� ¼ argmax G Φð Þ
Φ

ð12Þ

G Φð Þ ¼ H Sð Þ−
X

ψ ∈ l; rð Þ

Sw Φð Þj j
Sj j H Sw Φð Þð Þ ð13Þ

where H(S) is the Shannon Entropy. It is computed on the normal-
ized distribution of the labels of the points in the set of S as in the fol-
lowing equation:

H Sð Þ ¼ −
Xn
i¼1

Pr lijPLð Þ log2Pr lijPLð Þ ð14Þ

where PL is the label distribution in the set S, and li is the label name.
4) If the current depth of the tree is under amaximum threshold, create

left and right children of the current node by using left and right sub-
sets, Sl(Φ*) and Sr(Φ*).

3.3. High-level observation and color discontinuity

Graph cut [44,22,23,45] provides a powerful framework to produce
globally optimal segmentation results. Its graph structure enables the
combination of multiple different kinds of features in one joint frame-
work. In our approach, graph cut is chosen as the infrastructure to incor-
porate the cues for a joint final solution.

It is difficult to generalize the color models of the human and back-
ground for all possible scenes. The point-wise descriptor, fs, described
in the previous section does not include the color cue of the human
body. However, the refinement procedure can utilize the discontinuity
of the color between points in the scene. This can be achieved by
employing the color discontinuity in the graph cut framework.

The idea of putting high-level observations into graph cut was first in-
troduced in [46]. In order to incorporate high-level observations, a second
layer of nodes are added to the standardfirst layer of thenodes. Eachnode
(a) (b)

Fig. 3.Ground plane estimation. (a) shows a given image, (b) is its depth image, and (c) displays it
plane. The points of the estimated ground plane are colored as red.
in the second layer represents a high-level observation defined by a group
of the points in the first layer. In our case, one node is added to the second
layer to represent the estimated ground plane points. The interactions be-
tween the first and second layers are established in a way that a second-
layer node is connected to some of the nodes in the first level. These con-
nected nodes in the first level define the high-level observation.

All points of a high-level observation could be treated as the back-
ground. However, there is an important drawback of this assumption.
If the high-level observation is obtained by some estimation process,
they might include some foreground points. For example, some points
of the foot are estimated as the ground plane points as can be seen in
Fig. 3. In the graph cut framework, it is desirable to state two attributes
of these points. First, they all together define an observation. Second,
some of the points within this observation might be misclassified by
the estimator, and these are subject to modification of their labels.

3.3.1. Multi-layer graph
A multi-layer undirected graph, GMulti = (V, E), is defined by a set of

nodes, V, and a set of edges, E. The set of nodes consists of two subsets.
The first subset of the nodes, VL, are the first-layer nodes which represent
the low-level observations. Each point in the scene is definedby anode,ni,
where ni ∈ VL. The second subset of the nodes, VH, represents the high-
level observations employed in the second layer of the graph G. In our
case, VH consists of a single node, nH, which is for the estimated ground
plane. Thus, the set of the nodes, V, becomes V = {n1, …, nk} ∪ {nH},
where k is the number of the points in the image.

The set of edges, E, consists of two types. The low-level interactions
between the points in the first layer are formed by a subset of the edges,
denoted byEL.EL consists of the edges, ei, j, between two neighbor nodes,
ni and nj, in VL. The connections between the low- and high-level obser-
vations are established by the edges, EH. Each node, ni ∈ VL, in the low-
level, is connected to the node, nH ∈ VH, in the second level by the edges,
ei,H. Thus, E becomes E = {e1,2, …, ei, j, …, ek − 1,k} ∪ {e1,H, …, ek,H}. The
structure of the multi-layer graph is illustrated in Fig. 4.

Segmentation of the multi-layer graph, GMulti = (V, E), is equivalent
to assigning a label li, from a set of labels, {lH, lB}, to each node, ni, in V. In
this case, lB refers to the background, and lH refers to human points. The
set of all labels assigned to the nodes in V is denoted by~L. The final mask
of the human is formed by the points whose labels are assigned to lH by
the graph cut algorithm.

3.3.2. Graph cut energy functions
The energy function of the multi-layer graph cut consists of two

terms, namely the regional term, R, and the boundary term, B, as in
the standard graph cut energy equation:

E ~L
� �

¼
X
i ∈ V

R lið Þ þ
X
i; jf g ∈ V

Bi; j li; l j
� � ð15Þ

where i and j are the nodes of any edge, ei, j, in E.
(c)

s corresponding 3-Dpoint cloudwith registered color of the points and the estimated ground



Fig. 4. Illustration of multi-layer graph structure. Each node that represents a high-level observation in the second layer is connected to some nodes in the first layer.
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The regional term of the multi-layer graph cut employs the confi-
dence score of the H − Classifier, Ci , for each point as defined in
Eq. (8). Also, the high-level observation which is the ground plane esti-
mation is incorporated into the regional term. More precisely, the re-
gional term of the multi-layer graph cut energy function becomes:X
i ∈ V

R lið Þ ¼
X
i ∈ VL

−ln pc lið Þð Þ þ α HL lHð Þð Þ: ð16Þ

The first term in the above equation describes the confidence score
of H − Classifier. The second term defines the high-level observation.
α sets the relative influence between the two terms.

The likelihood of being in the object region of a point, pc, is formulated
using the confidence score, Ci, produced by H− Classifier as following:

pc lið Þ ¼ Ci if l ¼ }human}
1−Ci if l ¼ }background}

�
: ð17Þ

HL defines the likelihood function of the high-level observation node
for a given label, lH.HL(lH) is set to 1 if lH is background and 0 if lH is fore-
ground. In our case, the estimated ground plane is considered simply as
the background.

The color discontinuity and the interactions between low- and high-
level observations are defined in the boundary term of the energy func-
tion, Eð~LÞ. As in [47], the color discontinuity between neighbor points in
the first layer of the graph is formed by the following equation:

B−Colori; j ∈ VL
¼ λ1

1
dist i; jð Þ e

− jjci−c j jj2ð Þ=2σ2 ð18Þ

where ci and cj are the colors of the points i and j, dist(i, j) is the standard
L2 Euclidean norm yielding point distance, andσ2 is the average squared
norm in the image.

The graph edge between one node of the first layer and the high-
level observation node depends on the distance between the normal
of the point, ηi = (ηx, ηy, ηz), in the estimated ground plane and the es-
timated normal of the ground plane, ηH . It is defined by:

B−Highi ∈ VL
¼ λ2e− jjηi−ηH jj2ð Þ=2σH

2 ð19Þ

where σH is the averaged squared distance between the normal of the
points, ηi, and estimated normal of the ground plane, ηH . λ1 and λ2 are
to weight these two boundary terms.

The final labeling, fLF , can be achieved by minimizing the energy
function in Eq. (15):

fLF ¼ argmin E ~L
� �

~L

: ð20Þ

The graph cut algorithm in [45] is used to minimize this equation.
The proposed refinement process which utilizes the multi-layer graph
cuts and H − Classifier is called H − ClassifierMulti − GC after this point.
4. Refinement using only generic cues

It is possible to develop some point-wise human refinement algo-
rithms without incorporating any learned prior information. In these
approaches, the models of the human and background are obtained
from a single input image. The models can include some generic
cues, such as the color, depth, normals, and edges. All points inside
of the bounding box can be used to form the foreground model. Or
some pre-processing steps can be applied to remove some of the
background points from the inside of the given bounding box. Apply-
ing pre-processing steps can produce more reliable foreground
model.

The algorithm explained in [20] is a previously published graph
cut-based refinement method. It takes the low-dimensional shape
of any object and outputs its point-wise representation. This meth-
od uses only a monocular color camera data source. The fore-
ground/background models are constructed by using the regions
which are obtained by scaling the given initial low-dimensional
shape. These models incorporate color and shape distance terms.
We extended this method to serve as a low-dimensional human
shape refinement algorithm. In addition to the color, we incorpo-
rated raw depth and normal information to build the models of
this algorithm. Algorithm 1 outlines the steps of the extended
method.

Algorithm 1. GC-Refine.

Finding a good scale factor plays an important role in constructing
discriminative foreground and background models. Using a small scale
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factor causes the inclusion of some background points in the human
model. On the other hand, choosing a large scale factor can erroneously
eliminate some of the human body points. In order to reduce the num-
ber of the background pixels in the humanmodel, some pre-processing
steps can be applied. Therefore, the ground plane is estimated and ex-
cluded from the foreground model.

Removing the ground plane points from the foreground model is
helpful only at the foot level of the human. However, there might
remain some other background points in the foreground model,
e.g. the points of a wall, an object, or another human. In order to re-
move these points, it is assumed that a human (modeled roughly as
an upright cylinder) has a maximum radius of dH. A slice of region
which is perpendicular to the ground and whose radius is dH is
searched to extract the region of interest within B(x,y,w,h). The
slice which holds the maximum number of points is selected to
form the foreground model. This slice can be estimated by a Random
Sample Consensus (RANSAC) procedure as outlined in Algorithm 2.
The method which includes these pre-processing steps is called GC-
Refine-Pre.

Algorithm 2. Extracting ROI.

5. Experiments

Several experimentswere conducted to quantify and analyze the per-
formance of the proposedmethods H− Classifier, H− ClassifierMulti − GC,
GC-Refine, and GC-Refine-Pre. For these experiments, a subset dataset
of DontHitMe, called as DontHitMe-Refine, was collected. The details
of DontHitMe are explained in [10]. Briefly, this dataset includes
low-dimensional (a bounding box) ground truths of 3600 humans
both in color and registered depth images. In addition to these low-
dimensional representations, DontHitMe-Refine contains point-wise
ground truths of 1016 human images which were manually annotated.

The positive samples are obtained from the ground truth masks of
DontHitMe-Refine dataset to train the classifier. All points inside a
ground truthmask are used to generate the positive samples. However,
not all points outside of the ground truth region are selected as negative
samples. Only one of every two pixels in a row of the image is added to
the set of the negative samples. In this way, the training time of the clas-
sifiers is aimed to be reduced. Also, the points which do not have valid
depth data are not included in the training set. 5 decision trees were
trained.

5.1. Analyzing the performance of shape cues and multi-layer graph cut

We performed a set of tests to analyze the performance of H− Clas-
sifier when it is trained with the point-wise descriptors, fs, which in-
cludes different combination of the cues. The normal, η, vectorial
spatial distance, Δv, and the geodesic distance, GD cues were combined
in fs in 7 different possible ways. A different H − Classifier was trained
for each of these combinations using the same training set. In order to
reduce the variability in the testing scores, we performed multiple
rounds of 5-fold cross-validation. The following polygon area overlap
formula is used to measure the overlap between the ground-truth and
the result of the classifier suggested by [48]:

O R1;R2ð Þ ¼ A R1 ∩R2ð Þ2= A R1ð ÞA R2ð Þð Þ ð21Þ

whereR1 andR2 are the two regions to calculate the overlap between.
The results of this experiment can be seen in Table 2. The best perfor-

mance, for which the median overlap score is 0.89, was achieved when
all of three cues were included in fs. In the case of removing one of the
cues from fs, the scores dropped down. Also, the classifier which uses
only the normals, η, was unable to distinguish between background
and human points. Thus, the normal, η, alone is not capable of
representing the human body points. However, when it is associated
with the vectorial spatial distance, Δv, they both performed well by
achieving the overlap score of 0.81.

In addition to three cues related to the shape, two more tests were
conducted to see the effect of incorporating the color of the points
into the point-wise descriptor, fs. Simply, the three channels of RGB
color of the points are included in fs as additional dimensions. The
same test was also performed over converting to LAB color space. The
median overlap scores of these two classifiers which include the color
information are shown in the last two rows of Table 2. Adding the
color information reduced the performance of the classifier from 0.89
to 0.83. This is mainly because of the color variation of the human
skin, clothes, background and different illumination conditions. No per-
formance difference between different color spaces was observed. They
both dropped the overlap scores by the same amount.

Furthermore, the images of DontHitMe-Refine were refined by H −
ClassifierMulti − GC. The confidence scores of H − Classifier which pro-
duced the best median overlap score in Table 2 by combining three
shape-related cues, Δv, η, and GD, in fs were used in the multi-layer
graph cut framework. This process can be considered as a second
stage in the refinement process. The median overlap scores of H −
ClassifierMulti − GC is listed in Table 3. A remarkable improvement was
achieved by this step. Incorporating the estimated ground plane as a
high-level observation, utilizing the shape confidence score ofH− Clas-
sifier, and employing the color information jointly in amulti-layer graph
took themedian overlap score from0.89 to 0.95. Fig. 5 displays someex-
amples refined by H − Classifier and H − ClassifierMulti − GC. (a) and
(c) of this figure show the results of H − Classifier. (b) and (d) display
the refinements results of H − ClassifierMulti − GC for the same input
images. In both of these results, the proposed multi-layer graph cut ap-
proach helped to remove some ground points and also background
points classified as the human by H− Classifier. The color discontinuity
term in the graph cut enabled the segmentation of pointswhere there is
no depth data is available. For example, some of the hair points on the
left side of the neck of the woman in Fig. 5(a) do not have valid depth
information. Hence, H − Classifier was unable to classify those points.
Yet, H − ClassifierMulti − GC included them into the final refined region
as shown in Fig. 5(b), because of the color similarity to other hair points
which have valid depth.



Table 2
Median overlap scores of H − Classifier for different cue combinations in its
descriptor, fs. For example, Δv + η means the vectorial spatial distance and
the normal of the points are used in the descriptor, fs.

Method Median overlap score

Only Δv 0.71
Only η 0.58
Only GD 0.66
Δv + η 0.81
Δv + GD 0.78
η + GD 0.73
Δv + η + GD 0.89
Δv + η + GD + RGB 0.83
Δv + η + GD + LAB 0.83

Table 3
The overlap scores of the methods for DontHitMe-Refine data set.

Method Name Score

H − ClassifierMulti − GC 0.95
H-Classifier 0.89
GC-Refine-Pre 0.70
H-Classifier-SVMs (trained by SVMs) 0.67
GC-Refine 0.64
Baseline method 0.64
Depth difference features from [49,50] 0.62
GrabCut [21] 0.58
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5.2. Other methods for comparison

The proposedH− Classifier andH− ClassifierMulti− GC are compared
to the following methods:

1) Baseline Method: We implemented a simple baseline approach. It
centers a cylinder of a fixed radius 0.5 m and height 2 m at the 3-D
center of the human determined via the bounding box. The ground
Fig. 5.Comparison between the results ofH− Classifier andH− ClassifierMulti − GC.(a) and (c) di
ClassifierMulti− GC for the same image set.H− ClassifierMulti− GC improves the results by eliminati
helps to classify some points correctly on the human body which have no valid depth data, su
plane points are removed from inside the cylinder and all other
points are taken as the object.

2) GrabCut [21] which is naturally suitable for the refinement of
low-dimensional human shape representation. It uses only the
color image.

3) The method explained in [49,50] was developed originally for label-
ing different body parts. We used the depth difference features of
this method to classify points as human or background. The same
set of images from DontHitMe-Refine-Train and samples are used to
train this classifier. In this case, the human body part labeling prob-
lem is reduced to a simple human/background labeling problem.

The proposedH− Classifier andH− ClassifierMulti − GCmethods per-
formed better than all compared methods. The overlap scores of the
methods can be seen in Table 3. Fig. 6 displays a gallery of the results
of themethods. In our tests, the poor performance of GrabCut can be ex-
plained by the color similarities between the fore/background models,
the lack of structural information, and possible background points
inside the human model. Also, our proposed descriptor, fs, is more suc-
cessful than the depth similarity features of [49,50] at distinguishing
the human points from the background points for the same training
and test sets.

We observed that the clustering method of GC-Refine is not able to
weight the cues according to their importance in different parts of the
scene. Since it does not employ a learning technique which favors the
important cue in the places where it is more discriminative than other
cues, H − Classifier outperformed its classification results. Fig. 7 shows
some results of GrabCut, Baseline method and the proposed H −
ClassifierMulti − GC for direct comparison.

5.3. Random decision forests vs support vector machines (SVMs)

In order to analyze the performance difference between Random
Decision Forests and SVMs, another point-wise human classifier, H −
Classifier − SVMs, was trained using SVMs [51]. A Radial Basis Function
(a) (b)

(c) (d)

splay classification results ofH− Classifier. (a) and (c) show the refinement outputs ofH−
ngmore backgroundpoints at the foot level of thehuman. Also, its color discontinuity term
ch as in the hair of the woman in (a) and (b).



Fig. 6. Sample results of different refinementmethods. Columnheadings show the names of themethods. The second column shows the depth images of scenes. Only the results of the cue
combinations which produced the best overlap scores are illustrated for GC-Refine-Pre and H − Classifier. Please note that Body Part Classifier [49,50] does not use color image data.
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(RBF) was used as the kernel function of the SVM. The same set of
point-wise descriptors, fs, to build H − Classifier, were used to train
H − Classifier − SVMs. Also, all dimensions of fs are scaled between
0 and 1 to assign the same weight to different cues in fs. In this way, the
same conditions were established to analyze and compare their perfor-
mances. SVMsperformedworse thanRandomForests in the experiments.



Fig. 7. Sample results of Baseline method, GrabCut and H − ClassifierMulti − GC. Column headings show the names of the methods. Please note that GrabCut does not use the depth data.
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The poorer performance of SVMs is related to its decision function.
SVMs measure the distance to the hyperplane which is the decision
margin of the space to classify a point. In this decision function, even
though some of the dimensions of fs are less discriminative than others,
all cues in fs take the same amount of importance, so they still affect the
distance to the hyperplane. However, our descriptor includes different
types of cues which may require different weights or pruning in the
training and testing phases of the classifiers. SVMs does not contain a
mechanism to balance the weights between different cues or to prune
some of them in a decision treeway. Fortunately, RandomDecision For-
ests supply these features. Some sample results ofH− Classifier− SVMs
can be seen in Fig. 8.
5.4. Performance of GC-Refine

Several tests which incorporate different combinations of the gener-
ic cues were performed to see the results of GC-Refine. Seven different
combinations of three generic cues that are the color, depth and normal
were used in the experiments. GC-Refine was separately tested with
each possible combination of the cues. All images in DontHitMe-Refine
dataset were refined in these tests. The median overlap scores of these
experiments can be seen in Table 5. The highest performance was
achieved when the feature vector of GC-Refine included all cues. Its me-
dian overlap score is 0.64. The combination of the depth and normal
cues produced the second-best results.



Fig. 8. Sample results of H − Classifier− SVMs and H − Classifier. Column headings show the names of the methods.
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In order to analyze the performance of extracting the non-region of
interest from the humanmodel, we experimentedwithGC-Refine-Pre in
the same way. As in the previous tests of GC-Refine, all different combi-
nations of the cues were analyzed. As it can be foreseen, providing
Table 4
Average running time of the methods to classify the human points in one
bounding box. They include the required time for pre-processing steps and
computing the features.

Method name Time (in sec)

H − ClassifierMulti − GC 0.7
H-Classifier 0.6
GC-Refine-Pre 0.47
H-Classifier-SVMs 1.9
GC-Refine 0.4
Baseline method 0.05
Depth diff features from [49,50] 0.02
GrabCut [21] 0.2
cleaner models yielded better refinement results. The median overlap
scores of this experiment are summarized in Table 6. The best score
was achieved if all cues are used. The score went up to 0.70 from 0.64
which was achieved by GC-Refine.
Table 5
Median overlap scores of GC-Refine for DontHitMe-Refine data set. Each row
specifies an experiment in which different combinations of the cues used in the
refinement process. For example, RGB + Depth means that the combination of
RGB color and depth cues were incorporated into GC-Refine for that test.

Cues Median overlap score

Only RGB 0.43
Only Depth 0.57
Only Normal 0.47
RGB + Depth 0.59
RGB + Normal 0.49
Depth + Normal 0.61
RGB + Depth + Normal 0.64



Table 6
Median overlap scores of GC-Refine-Pre for DontHitMe-Refine data set. As it is
defined in Table 5, each row specifies different combinations of the cues used in
the process.

Cues Median overlap score

Only RGB 0.47
Only Depth 0.61
Only Normal 0.52
RGB + Depth 0.64
RGB + Normal 0.53
Depth + Normal 0.65
RGB + Depth + Normal 0.70
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5.5. Computational load

Amachinewhich has 32 GB RAM and Intel i7-2760QMquad proces-
sor was used in the experiments. The methods were implemented in
C++. The implementations do not contain thread-level parallel pro-
cessing. 5 decision trees were trained for H − Classifier. Since we per-
formed 5-fold cross-validation, about 800 ground truths were trained
for each test. It took about 7.5 h to train H − Classifier including the
time to compute the features. The training time of H − Classifier −
SVMs using SVMs took longer, or about 12 h. Training the classifier
which uses depth difference features from [49,50] took about 8.5 h.

The running times of themethods to classify the human points in one
bounding box can be seen in Table 4. The size of the images was not
scaled to reduce the computational time. The image size is 640 × 480
for all experiments. The classifier which uses depth difference features
from [49,50] was the fastest. Since H − Classifier, H − Classifier − SVMs
and H − ClassifierMulti − GC include the steps to compute the normal of
the points and their relative geodesic distances, they are slower than
other methods. We believe that a parallel implementation of the pro-
posed method can decrease the required computational time.

6. Conclusion

In this paper, we tackled the problem of low-dimensional human
shape refinement in two different ways: by combining shape prior in-
formation learned by training a classifier, or by using only some generic
cues obtained from given single image. We presented a novel and accu-
rate method to refine the low-dimensional shape representation of a
human. This method, H − ClassifierMulti − GC, combines low- and high-
level observations obtained from the image and depth images of the
scene jointly in a multi-layer graph framework. Unlike some existing
work, our approach does not use or carry any features from the internal
steps of the low-dimensional shape provider, so it is applicable to the
output of any methods which provides such a shape. Also, it works on
moving platforms and integrates multiple modalities by obtaining
cues from the color and depth images. On the other hand, we extended
a previously-published and graph cut-based refinement technique for
this purpose. In addition to the color, we incorporated more generic
cues that are the depth and normal of the points into this method.

Our extensive experiments showed that the proposed H −
ClassifierMulti − GC outperforms other suitable refinement algorithms. It
achieves a 0.92 overlap score while GrabCut stays at 0.57. As future
work, other high-level observations, such as estimated walls, or detect-
ed objects can be incorporated into the multi-layer graph framework in
addition to the estimated ground plane.
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