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Abstract

Object tracking aims to estimate the state of the object representation in consecutive frames. Representing
the object in the low-dimensional space, such as a bounding box, is a common way followed by the tracking
algorithms. However, a more accurate and detailed point-wise representation is useful to obtain better
object descriptors which could be more beneficial for action recognition and pose estimation tasks. Hence,
point-wise tracking of the object could be more beneficial for these applications. In this paper, we propose
a novel and accurate multi-modal, point-wise, and generic object tracker which uses RGB-D data. It does
not make any assumptions about the shape of the object, so it is generic. The presented method builds
a point-wise descriptor which combines the color and the shape related cues. The descriptors are trained
by Random Decision Forests online. The confidence scores achieved from the classification stage are used
in a graph cut step to have the final mask of the object. The displacement of the object is computed by
a keypoint matching method between the frames. The proposed method was experimented with several
datasets and outperformed suitable point-wise trackers.

Keywords: RGB-D Tracker; Multi-modal tracking; Point-wise tracker; Random Decision Forests; RGB-D;
Graph Cut

1. Introduction

Object tracking is an essential task for wide range
of applications, such as robot vision [1] [2] [3] and
surveillance [4] [5] [6]. Many tracking algorithms
represent the object in the low-dimensional space5

as a bounding box [7] [8] [9] [10] [11] [12] [13] [14].
The purpose of these methods is to track the object
by estimating the position and scale of the bound-
ing box in the subsequent images. Even though this
representation is enough for some tasks, a more ac-10

curate and detailed point-wise representation is use-
ful to obtain better object descriptors which could
be more beneficial for action recognition [15] [16]
and pose estimation tasks [17] [18]. This is pos-
sible in two ways. First, the point-wise represen-15

tation of the object can be obtained by a refining
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Figure 1: Top row illustrates the result of our proposed
point-wise multi-modal tracker for a dataset. Bottom row
displays the result of a single-model tracker [20]. The pro-
posed tracker uses RGB-D data to achieve more accurate
results.

the bounding box [19]. Or in another way, directly
its point-wise representation is tracked [20] [21] [22]
[23] [24].
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In this paper, we propose a novel multi-modal20

point-wise tracker which utilizes RGB-D data. It
does not make any assumptions and restrictions
about the shape of the object, so it is generic for dif-
ferent object types, such as rigid and deformable. It
learns point-wise shape related cues and the color of25

the object online. A point-wise descriptor is built to
employ the color and the shape information of the
point neighborhood. This powerful descriptor uses
the depth data of the scene by generating three cues
that are (1) relative geodesic and (2) vectorial spa-30

tial distances of a point to the center of the mass of
the object, and (3) the local structure information
encoded as the normal. The descriptors are used to
train a Random Decision Forests machine learning
algorithm [25] online which favors the most impor-35

tant cues in the descriptor. The confidence scores
obtained from the classifier are passed to a graph
cut step to have final more smooth results. The dis-
placement of the object mask between the frames
is estimated by computing the shift of the center of40

the mass. This estimation process employs a key-
point matching process. The proposed tracker was
experimented with several datasets which include
rigid and deformable objects. It outperformed the
compared algorithms which aim to track point-wise45

representations of the objects. An illustration of
the results of the proposed method can be seen in
Figure 1

Related work is reviewed and summarized in
the next section. The details of the multi-modal50

tracker, point-wise descriptor, training, classifica-
tion and graph cut steps are described in Section 3.
The results of the proposed tracker are compared
and analyzed in Section 4. Finally, the proposed
work is summarized and possible future directions55

of this work are drawn in the last section.

2. Related Work

Object tracking has been studied for decades.
The tracking methods differ according to the types
of the object representations. Different object rep-60

resentations require different solutions. Categoriza-
tion of object representations is summarized by [26]
and recently by [27]. One way of representing the
object is as a point as explained in [28]. To track a
non-rigid object, it can be formed by primitive geo-65

metric shapes as in [29]. If the object has a complex
shape and its detailed border has to be output, an
active contour based method [30] can be the solu-
tion.

Tracking the objects by representing them as70

point-wise is possible. Optical flow is one method
to estimate the motion of some sparse points in the
images [31] [32] [33]. Also, dense optical flow meth-
ods are available to estimate the movements of all
points in the object [34]. [35] incorporates a dis-75

tance penalty to the graph cut energy to eliminate
non-object regions. This work is one of the earliest
attempt to convert the graph cut to a point-wise
tracker.

The methods described in [23] [24] introduce a80

novel way to incorporate the previous locations of
the tracked objects as high-level observations to the
graph cut. A multi-layer graph is constructed to
combine low and high level observations. Back-
ground subtraction is performed and a set of candi-85

date blobs are obtained in the preprocessing step.
High level observations are included as nodes in an-
other layer in the graph. These nodes provides tem-
poral and spatial consistency for the object tracking
between the frames. The pixel displacements be-90

tween the frames are estimated by Lucas-Kanade
tracker. In the graph cut based tracker presented
in [24], occluded parts of the objects are tracked by
adding a new penalty term to the graph cut energy
function. The points in the object which do not95

move as the average displacement of the object are
penalized to determine the occluded parts.

A point-wise tracking method which combines
the graph cut and optical flow techniques is de-
scribed for augmented reality applications in [36].100

Since augmented reality applications are so de-
pended on the computational time, this algorithm
works in real-time. A similar approach is explained
in [37] to track the people in videos by modeling
them as ellipsoids. [38] proposes an object tracker105

method for live videos. A 3-D graph is built and
location probability information of the object is em-
ployed in the graph.

[20] introduces a point-wise tracking method
which learns object appearance online. The learn-110

ing step includes generalized Hough-Transform
which provides a rough estimation of the object.
It is provided to a final GrabCut [19] step. [21]
uses Hough transform by building point-wise de-
scriptors. [39] proposes a level-set formulation115

to track non-rigid objects. [40] presents a joint
method which fuses multi-part and segmentation
in a RANSAC-style iterative energy optimization
framework. The method explained in [40] aims to
track superpixels. [41] uses superpixels to build a120

dynamic graph and generates rough borders of the
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object.
The methods proposed in [10] [11] [12] [9] [42] use

RGB-D data to track the objects. [10] describes
a particle filter based object tracker. This algo-125

rithm takes a 3-D mesh model of the object as the
prior. Its particle filter framework is parallelized.
A model based and hypothesize-and-test approach
is proposed in [11] to track interacting objects. In
[12], 3-D level set functions are employed to repre-130

sent the object. A 3D chamfer matching based en-
ergy function is minimized during tracking. A fast
people RGB-D tracker algorithm is proposed in [9].
A joint likelihood function consisting of appearance
and depth models are learned online. [42] proposes135

a method to track deformable objects without re-
quiring prior object model. It learns how to weight
local image appearance, depth discontinuities, and
surface normals from a set of ground truth data.

3. Multi-modal Tracker Details140

The proposed point-wise multi-modal tracker,
MM − Tracker, is initialized with the ground
truth mask of the object at the first frame. It
learns point-wise color and shape related cues on-
line from RGB-D data to track the object. Lastly,145

a graph cut step is applied to obtain more smooth
results. The displacement of the object between
the frames is estimated by computing the center of
mass shift. This estimation process involves a key-
point matching step. The overall process diagram150

of MM − Tracker is illustrated in Figure 2.

3.1. Estimation of the Object Displacement

Detecting the keypoints in a 3-D point cloud
is computationally more expensive than detecting
them in a color image. Hence, MM − Tracker155

prefers to compute them in the color images instead
of in the corresponding point clouds. SIFT [43] fea-
ture descriptor is used to estimate roughly the dis-
placement of the object from time t to time t + 1.
There are several reasons why SIFT is chosen for160

this purpose. SIFT feature descriptor is invariant
to uniform scaling and orientation. Also, it is par-
tially invariant to the distortion and illumination
changes. In addition, it is fast to compute, so it is
suitable for MM −Tracker. However, correspond-165

ing 3-D point cloud of the image obtained from the
depth image is used for projecting the keypoints to
3-D space in MM − Tracker. The displacement of
the keypoints between the frames are computed in

this 3-D space to achieve more accurate estimation.170

The location of the object at time t+1 is estimated
by the following steps:

1) For given two color images, It and It+1, whose
time stamps are t and t+1 respectively in the image
sequences, their SIFT keypoints are computed by:

Kt = S (It) , Kt+1 = S (It+1) (1)

where Kt is the set of the keypoints, and S is the
operator to obtain SIFT keypoints from the image
It.175

2) The keypoints which are outside of the object
region are excluded only from Kt:

K−t = {k(x, y) ∈ Kt : k(x, y) /∈Mt} (2)

Kt = Kt −K−t (3)

where k(x, y) is a keypoint in the image, Mt is the
object region in the image.

3) The keypoints in Kt and Kt+1 are matched:

Kt, t+1 = M (Kt, Kt+1) (4)

Kt, t+1 = {kt(x1, y1), kt+1(x1, y1)},
....,

{kt(xn, yn), kt+1(xn, yn)}
(5)

where Kt, t+1 is the set of pairs of keypoints
matched from Kt to Kt+1, and M is the keypoint180

matching function.
4) Convert the depth images to 3-D point clouds

for timestamps of t and t+1 in the image sequences.
Then, compute the corresponding 3-D points of all
keypoints in Kt, t+1:

k3D(x, y, z) = T (P, k(x, y)) (6)

K3D
t, t+1 = {k3D

t (x1, y1, z1), k3D
t+1(x1, y1, z1)},

....,

{k3D
t (xn, yn, zn), k3D

t+1(xn, yn, zn)}
(7)

where T is the function to compute the correspond-
ing point in the point cloud P for a given keypoint
k(x, y) in the image. As an example, Figure 3 shows
the keypoints inside of the object in both color im-185

age and its corresponding 3-D point cloud after this
step is applied.
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Figure 2: Overall process diagram of the proposed MM − Tracker.

5) The rough displacement of the object from the
time t to the time t+ 1 is calculated as the average
displacement of the matched keypoints:

p3D
dis =

1

n

n∑
i=1

k3D
t+1(xi, yi, zi)− k3D

t (xi, yi, zi) (8)

where p3D
dis is the displacement of the object.

6) All object points, Mt, at time t are converted
to their corresponding in 3-D, M3D

t , by using func-
tion T as in the Equation 6. Then, the estimated
location of the object at time t + 1, M3D

t+1 is com-
puted by adding average displacement, p3D

d is, to
the each point of M3D

t :

p3D
i = T (P, pi) where pi ∈Mt, p3D

i ∈M3D
t

(9)

M3D
t+1 = M3D

t + p3D
dis (10)

7) Assuming that the camera calibration param-
eters are known, also the estimated object points in
the image, Mt+1 can be achieved:

pi = T−(p3D
i ) (11)

where pi ∈Mt+1, p3D
i ∈M3D

t+1, and T− is the trans-
formation function from the 3-D world space to the190

image space.

3.2. Point-wise Descriptor

A point-wise descriptor, fp is formed by incorpo-
rating several shape related and color cues in the
following way:195

1) Normals: A cue about the local shape infor-
mation surrounding the point, pi, can be encoded
in the descriptor, fp, by calculating the normal, ηi,
of the point, pi. It is computed for all three di-
mensions of the point cloud space, ηi = (ηx, ηy, ηz).200

The neighborhood search of the points is performed
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(a) (b)

Figure 3: Detected keypoints inside of the object in the color image and 3D point cloud. (a) displays the image at time t with
the keypoints drawn as red, (b) shows the corresponding point cloud and the keypoints colored as red. The scene is rotated in
the Point Cloud Viewer for better display.

by building a FLANN-based Kd-tree [44] to reduce
the computation time.
2) Vectorial Spatial Distance: First, the cen-

ter of the mass, midB = (midx,midy,midz), of the
object region is calculated as formulated in the fol-
lowing equations:

midB =
1

m

m∑
i=1

p3D
i (12)

where m is the number of the points in M3D
t

and p3D
i ∈ M3D

t . The vectorial distance rel-205

ative to the center of the mass of the object,
∆v = (∆x,∆y,∆z), is computed for the point
pi = (px, py, pz). This computation can be formu-
lated as:

∆v = (px −midx, py −midy, pz −midz) (13)

3) Geodesic Distance: The geodesic distance210

between two points on the object is constant in dif-
ferent poses. This cue is incorporated into our de-
scriptor, fp. The relative geodesic distance, GDi,
to the center of the mass of the object, midB , of

the point, pi, is computed by Dijkstra’s Shortest215

Path Algorithm. The image is converted to a graph,
G(V,E), where V is the graph nodes, and E is the
edges between the nodes. Each point, pi, in the im-
age is represented as a node in the graph, G(V,E).
The neighbors of each node in the graph are re-220

stricted to 4 pixels. The edge weight, wij , between
two points is set to the Euclidean distance between
pi and pj in the corresponding point cloud of the
scene as in Equation 14.

wij =

√
|pix − pjx |

2
+ |piy − pjy |

2
+ |piz − pjz |

2

(14)

If there is no depth data is available for the neigh-225

bor, the edge weight, wij is assigned a large dis-
tance. A sample geodesic distance map for the
given image can be seen in Figure 4.

4) Color: In addition to the shape related cues,
also the color of the point is added to the point-
wise descriptor, fp, to make MM − Tracker more
robust. Finally, fp becomes:

fp = [ηx ηy ηz ∆x ∆y ∆z GDi r g b]
T (15)
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(a) (b) (c)

Figure 4: Geodesic distance calculation. (a) Color image with overlaid object mask, (b) Depth image, (c) Colored geodesic
distance map of the given image. The red point corresponds to the object center of the mass. The points which have darker
intensity in the map are farther from the object and lighter points are closer to it.

where r, g, and b are red, green, and blue channels
of the point, pi, in the color image of a sequence.230

3.3. Training Online Classifier and Classification

In order to classify the points in next image whose
time stamp is t + 1, a classifier is trained with the
samples obtained from a image set, Simg, online.
This image set, Simg, includes the images whose235

timestamps are t, t − 1, ..., t − n. This mecha-
nism can be considered as sliding a tracking win-
dow, wt, on the image sequences and the size of the
wt is n. Randomized Decision Forests, RDF, are a
state of the art, fast, and effective machine learn-240

ing technique [45] [25] [46] [47] which are suitable
and applicable for wide range of different tasks and
problems [48] [49] [50]. Therefore, it is used to train
our online classifier.

Positive training samples, f+
p , are taken from the245

inside of the object region, Mt. Negative samples,
f−p , are obtained from the outside of the object. In
the classification process of the points in next image
whose time stamp is t+1, first the object location is
estimated by SIFT based method explained in the250

previous section. The center of the mass of the ob-
ject, midB , is computed according to the estimated
object location. Then, the points of this frame are
classified. RDF provides a confidence score, Ci, of
being in the object region for a point, pi, in the255

image. In our case, Ci is the average decision dis-
tribution at the leaf nodes of RDF trees. The clas-
sification confidence scores produced by RDF are
feeded to a graph cut procedure to obtain the final
result.260

3.4. Graph Cut Smoothing

Graph cut [51] [52] [53] [54] is a powerful method
to achieve more smooth results or to eliminate
noises in the final result mask of the object, Mt+1.
The confidence scores, Ci, can be used to set edge265

weights in the graph cut. Therefore, MM −
Tracker applies the graph cut method as the last
step in the tracking process by utilizing Ci.

The energy function of the graph cut consists of
two terms, namely the regional term, R, and the
boundary term, B:

E(L̃) =
∑
i∈V

R(li) + α
∑
{i,j}∈V

Bi,j(li, lj) (16)

where i and j are the nodes of any edge, ei,j , in
the graph. α sets the relative influence between the270

terms.
The regional term of the graph cut is formulated

as:
R(li) = − ln(pc(pi, li)) (17)

where li is the label of the point, pi, in the image.
pc(i, li) is the likelihood of the point as it is defined
in the following Equation:

pc(li) =

{
Ci if l = ”Object”
1− Ci if l = ”Background”

.

(18)
The boundary term is the absolute difference be-

tween the regional term scores of the points:

Bi,j(li, lj) = |Ri(”Object”)−Rj(”Object”)| (19)

4. Experiments

Several experiments were conducted to analyze
and measure the performance of the proposed
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MM − Tracker. Darpa Robotics Challenge [55],275

DRC, became our inspiration to create first exper-
iment to test the described method. In one of the
tasks in DRC, the robot must accomplish using a
drill to open a hole on the wall. A similar a scenario
was established as a test case.280

In this scenario, the robot was far away from a
drill. It walks toward the drill to grab it by avoid-
ing from the obstacles on its path. The robot might
make different movements because of the obstacles,
such as left/right turns, while walking. Tracking285

the drill properly is important for several reasons
in this case. First of all, it shows the path/way for
it. Also, in order to be able grab the drill for a
specific task, it must recognize and know the ori-
entation/position of the object relative to its arms290

to execute a correct motion plan. Tracking and fi-
nally grabbing an object a common problem for the
robots. The object might be any kind of hand tool,
house or kitchen equipments.

A similar test environment as in DRC was cre-295

ated to record a dataset, called as DRC-Track. The
recording setup moved around the object. Different
types of movements that the robot can make while
walking were captured, such as left/right turns, ap-
proaching to the target or walking away from it.300

The frame rate was set to 20 per second during the
recording. Total of 1900 frames, depth and color
images, were saved. 76 ground-truth masks (one
for every 25 frames) of the object were manually
generated.305

Another dataset was collected to analyze and
compare the performance of MM − Tracker for
the articulated and deformable objects. A short
video of two people in which they approach each
other, shake their hands, and then walk away in310

front of a complex background was recorded. This
dataset, called as HandShaking, includes 220 frames
of the color and depth images. Its video frame rate
is about 20 per second. One ground truth per 25
images was labeled manually.315

4.1. Other Methods for Comparison

The result of MM − Tracker was compared to
several other methods whose goals are to track the
point-wise representations of the objects. These
methods are:320

Godec[20]: This method includes an online ap-
pearance learning step. Its learning process is based
on generalized Hough-Transform which provides a
rough estimation of the object. The rough segmen-
tation of the object is given to the GrabCut [19] to325

obtain final point-wise mask of the tracked object.
This method outperforms some of the state-of-the-
art methods to track non-rigid objects in several
challenging videos.

GC-Tracker-3D: The graph cut based track-330

ing method which is explained in [56] has been ex-
tended to compare to MM−Tracker. [56] is a sin-
gle frame point-wise object tracker which does not
estimate the location of the object in next frames.
Firstly, the same SIFT based location estimation335

approach, described in the previous section, has
been employed into it. In this way, the produced
object mask by the method at time t-1, is shifted
by the location estimation method at time t.

[56] includes a distance map which is computed340

in the image space to penalize the points far from
the object. The computation of this map was mod-
ified and it was computed in 3-D space to obtain
more accurate penalties. Firstly, 3-D point cloud
of the scene was generated. Then, Euclidean dis-345

tances of each point to the object were computed.
The distance penalty maps computed in two ways
are showed for a given image in Figure 4. As it can
be noticed in (d) of this figure, even though some
points are close to the border of the object in the350

image space, they might have large penalties due to
their distances to the object in 3-D space.

Farneback [34]: It is a dense optical flow
method whose details is explained in [34]. In con-
trast to detecting and matching a set of keypoints,355

this method estimates the displacement of all points
inside a mask in next frames. Its performance com-
paring to other types of the optical flow methods
showed in [34]. It outperforms other dense optical
flow algorithms as showed in [34].360

4.2. Analyzing the Performance of the Methods

The tracking results of the methods were saved
when they hit a ground-truth frame to analyze their
performances. The following polygon area overlap
formula was used to measure the overlap between365

the ground-truth and the result of the tracker sug-
gested by [57]:

O(R1,R2) = A(R1 ∩R2)2/(A(R1)A(R2))

(20)

where R1 and R2 are the two regions to calculate
the overlap between. In the experiments, sliding
window size of MM −Tracker, wt, is set to 4. The370

max depth of the RDF tree was set to 10.
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(a) (b)

(c) (d)

Figure 5: Examples of 2-D and 3-D distance penalty maps. (a) displays given color image, and (b) its depth image. (c) shows
its 2-D distance penalty map computed in 2-D image space, and (d) its distance penalty map computed in 3-D. Please note
that no penalty is assigned for missing depth data and inside the object. Darker points in the maps have less penalty.

Method Name Overlap Score for
DRC-Track

Overlap Score for
HandShaking

MM − Tracker (Only Color) 0.16 0.18
MM − Tracker (Only Shape) 0.74 0.82

MM − Tracker (No Location Estimation) 0.41 0.73
MM − Tracker (Inludes All) 0.96 0.93

Table 1: Median overlap scores of MM−Tracker for DRC-Track and HandShaking datasets. Each row specifies an experiment
in which different combinations of the cues were used in the method. For example, MM − Tracker (Only Shape) means that
color cue is removed from the point-wise descriptor, fp, of MM − Tracker. MM − Tracker (No Location Estimation) means
that the displacement of the object between the frames was not computed that experiment.

In order to see the effect of using different cues
in the proposed point-wise descriptor, fp, two tests
were conducted by removing the shape or color
information from fp. Also, in another test, all375

cues were kept in fp, but the displacement of the

object between the frames was not computed for
MM − Tracker. Simply, it was assumed that the
object or camera does not move in the next frame.
Median overlap scores of the methods for these tests380

can be seen in Table 1. The best performance was
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(t=0) (t=30) (t=60)

Figure 6: Sample results of MM−Tracker that demonstrate the effect of the location estimation step at different time-stamps.
First row shows the outcome of MM − Tracker without estimating the object displacement. Second row displays the results
of MM −Tracker if it includes the proposed SIFT based location estimation method. In this example, the camera makes first
a right and then a left movement.

Method Name Overlap Score for
DRC-Track

Overlap Score for
HandShaking

GC − Tracker − 3D* 0.23 0.37
GC − Tracker − 3D 0.48 0.43

Farneback [34] 0.28 0.45
Godec [20] 0.46 0.61

MM − Tracker 0.96 0.93

Table 2: Median overlap scores of the methods for DRC-Track and HandShaking datasets. GC − Tracker − 3D* does not
include the SIFT based location estimation between the frames for GC − Tracker − 3D.

achieved when all cues and location estimation step
were included in MM − Tracker.

In the absence of the location estimation step,
the performance dropped from 0.95 to 0.41. Figure385

6 demonstrates a case, when the location estima-
tion was removed. In this example, the camera first
moved to the right. It caused the tracker to loose
the object location and stick on the wall. Then, the
camera made a left movement. It sticked on track-390

ing a part of the wall which has similar color cue.
However, SIFT based location estimation employed
in MM − Tracker helped to continue correctly to
track the object as can be seen in the second row

of Figure 6. Figure 7 shows a case when the color395

information helped MM−Tracker to track the ob-
ject properly. In this case, some part of the object
was lost by the tracker because of the pose changes.
Only shape related cues were not enough when the
camera was rotated over time. First row displays400

that MM − Tracker sticked at the middle part of
the object. However, the color information which
was associated with the point-wise shape related
cues helped MM − Tracker to work more robust
in noticable pose changes.405

Median overlap scores of the methods can be seen
in Table 2. MM − Tracker outperformed other

9



(t=0) (t=30) (t=60)

Figure 7: Sample results of MM − Tracker that demonstrates the effect of incorporating the color information at different
time-stamps. First row shows the results of MM − Tracker without fusing the color in its point-wise descriptor, fp. Second
row displays the results of MM − Tracker when all cues are incorporated.

trackers by achieving highest scores of 0.96 and
0.93, for DRC-Track and HandShaking datasets,
respectively. MM − Tracker can figure out that410

which cue is more important and distinctive in
which part of the scene around the object. This
ability is provided to it by the shape related cues in
its point-wise descriptor, fp. Godec [20] performed
better than Farneback and GC − Tracker − 3D415

in HandShaking. It can be said that Godec’s on-
line learning step to build the object model works
better than GC − Tracker − 3D . Godec [20] per-
formed slightly worse than GC −Tracker− 3D for
DRC-Track. Since the background has similar color420

information as the object, and Godec does not use
any 3-D related features, this performance of Godec
can be expected. Farneback [34] uses only the vi-
sual cues. Therefore, MM−Tracker outperformed
its results by a factor of 2.6. It can be noticed in425

Figure 8 that the results of Farneback do not con-
sist of dense points. The displacements of some
points inside of the object hit one point in the next
frame, so this situation causes the aggregation of
the points to only one point over time. Some re-430

sults of the trackers when they hit a ground-truth
can be seen in Figure 8 and 9.

Figure 10 displays the point-wise confidence
scores produced by the classifier and final results
obtained from graph cut step employed in MM −435

Tracker. It can be seen in the final results that
some points which have weak scores that are inside
of the objects were included into the result masks.
Moreover, some non-connected weak points were
eliminated by graph cut. These improvements can440

be explained by the ability of graph cut which can
combine smoothness and data terms in one frame-
work.

4.3. Discussion About a Special Case

A rare case was encountered during recording of445

HandShaking dataset. At one point of recording,
the hardware stalled due to so rare buffer prob-
lem in the sensor setup. This kind of conditions
can always be expected in real life robotics sys-
tems which require to process high bandwidth data.450

It is so useful, if the employed method can handle
these kind of issues in software level. In this case,
there had been large change in the location and
pose of the human between two frames. Therefore,
it was decided to analyze this case separately. Fig-455

ure 11 demonstrates the results of MM − Tracker
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Input Images GC − Tracker − 3D MM − Tracker Farneback [34] Godec [20]

Figure 8: Sample results of different tracking methods whenever they hit a ground-truth in DRC-Track dataset. Column
headings show the name of the methods. If the object was lost by the tracker, there is no green colored mask.

with and without having proposed location estima-
tion method. The stall occurs between time=0 and
time=1. As it can be seen in the last row of Figure
11, MM − Tracker was be able to capture most460

part of the person at time=1, even though the pose
of the foot and arms are different. It grasped the
other parts of the body at subsequent frames, after
time=1.

4.4. Computational Load465

A machine which has 32GB RAM and Intel i7-
2760QM quad processor was used in the experi-
ments. The methods were implemented in C++.

Method Name Time (in sec)

MM − Tracker 0.41
GC − Tracker − 3D 0.12

Farneback [34] 0.05
Godec [20] 0.71

Table 3: Average running time of the trackers per image.
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Input Images GC − Tracker − 3D MM − Tracker Farneback [34] Godec [20]

Figure 9: Sample results of different tracking methods whenever they hit a ground-truth in HandShaking dataset. Column
headings show the name of the methods.

The implementations do not contain thread-level
parallel processing. The image resolution was 640470

x 480 for all experiments. 3 RDF trees was trained
for MM − Tracker in the experiments. As it can
be seen in Figure 12, in order to reduce the online
training time during the tracking, only some points
which are around the object were used as the back-475

ground samples.
The average running time of the trackers per im-

age can be seen in Table 3. MM−Tracker took the
average of 0.41 seconds processing time per image
for the experimented datasets. This time also in-480

cludes the steps for the computation of the features.
As expected, Farneback [34] was the fastest tracker.
We believe in that implementation of our proposed
tracker on Graphics Processing Unit (GPU) would
reduce its computational time. Also, scaling the in-485

put image can help to decrease the computational
load.

5. Conclusion

We describe a novel point-wise and multi-modal
object tracker, MM − Tracker, which uses RGB-490

D data. Our method estimates the displacement
of the object in a generic way from one frame to
another by utilizing a keypoint matching process.
MM − Tracker forms a powerful point-wise de-
scriptor which consists of the color and shape re-495

lated cues. Positive and negative point-wise de-
scriptors are trained by Random Decision Forests
in MM − Tracker. A final graph cut step is ap-
plied to produce better smooth results.

The performance of MM − Tracker was com-500

pared with other suitable point-wise trackers. One
of the previously published method [56] was modi-
fied for this purpose. Two different sets of experi-
ments were performed to quantify and analyze the
results of MM − Tracker. One of the dataset in-505

cludes a complex shaped hand tool, which is a drill,
and the other dataset consists of two people who
approach each other, shake their hands and then
walk away. MM−Tracker outperformed the other
methods in these experiments. As future work, the510

observed locations of the object can be included as
the high level observations into the graph cut step.

12



Input Images Confidence Scores Graph Cut Results

Figure 10: Sample confidence scores and their result masks produced by graph cut in MM − Tracker.
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