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Abstract

This paper describes a vision-based cyclist and pedes-
trian counting method. It presents a data collection pro-
totype system, as well as pedestrian and cyclist detection,
tracking, and counting methodology. The prototype was
used to collect approximately 50 hours of data which have
been used for training and testing. Counting is done using
a cascaded classifier. The first stage of the cascade detects
the pedestrians or cyclists, whereas the second stage dis-
criminates between these two classes. The system is based
on a state-of-the-art pedestrian detector from the literature,
which was augmented to explore the geometry and con-
straints of the target application. Namely, foreground de-
tection, geometry prior information, and temporal moving
direction (optical flow) are used as inputs to a multi-cue
clustering algorithm. In this way, false alarms of the de-
tector are reduced and better fitted detection windows are
obtained. The presented project was the result of a partner-
ship with the City of Pittsburgh with the objective of provid-
ing actionable data for government officials and advocates
that promote bicycling and walking.

1. Introduction
Object (vehicles, people, bicyclists, animals, etc) count-

ing is one of the essential tasks in Computer Vision sys-
tems for multiple applications and domains. This is a chal-
lenging and open problem due to several factors, including
illumination variations, pose changes, appearance similar-
ities, and occlusion between multiple objects and between
the objects and the environment. There are two primary
approaches to this problem: (1) Region of Interest (ROI)
counting [7, 8, 9, 17, 20, 22] and (2) and Line of Interest
(LOI) counting [2, 10, 18, 24]. The goal of ROI counting is
to estimate the number of the objects in a desired region of
the image at a specific time. In the LOI counting approach,
an object is counted if it crosses a virtual line of interest in
the image. This paper uses the LOI approach, as it better
matches the statistics desired by the end users of the system

Figure 1: The portable Data Collection and Pedes-
trian/Cyclist Counting Device

(City of Pittsburgh).
In contrast to ROI approaches, LOI methods track the

objects over time to produce instantaneous total count.
Multi-object tracking is one of the important steps of LOI
counting approaches. Advances of the object detection al-
gorithms [1, 11, 12, 23, 25] in the last decade have increased
the popularity and performance of the detection based track-
ing algorithms [6, 16, 19, 21, 26]. These trackers first run
a object detector to produce a group of candidate observa-
tions at time t. Then, the observations are associated with
the object trajectories at time t-1. The association step can
utilize appearance and structural spatial-temporal features.

This paper proposes a vision-based pedestrian and bi-
cyclist counting system. The presented system consists of
data collection prototype and a cascaded detect-track based
LOI counting approach. The presented approach uses only
stationary monocular uncalibrated camera input. The first
step in the cascade detects the pedestrians and bicyclists in
the image (i.e., detects regions where a pedestrian or a cy-
clist are present, without distinguishing between them). The
second step of the cascade discriminates the bicyclists from



the pedestrians. Both steps of the cascade use the infras-
tructure of Benenson’s state-of-the-art object detector [4]
and extended it by incorporating multiple geometry priors,
including foreground detection, object size, and temporal
moving direction. The tracking step follows a data asso-
ciation technique which utilizes the spatial proximity and
temporal flow directions between the observations and the
trajectories.

This work makes several contributions in the following
ways:

1: The state-of-the-art object detector [4] is extended to
obtain better results for the static camera input. The mod-
ifications employed in the clustering step of [4] reduce the
false alarms and provides better fitted window outputs.

2: A cascaded detection system is proposed that can ac-
curately classify and distinguish the pedestrians and bicy-
clists even though these have similar appearances.

3: A new pedestrian and bicyclist dataset, called Ped-
Bike, is introduced. This dataset consists of 50 hours of
video which has total of 5 million frames. 10 hours of
the dataset have been labeled. The labeled ground truths
include approximately 270,000 pedestrian samples (corre-
sponding to 541 different pedestrians) and approximately
49,000 bicyclist samples (corresponding to 111 different cy-
clists.)

The details of the hardware prototype and the dataset are
explained in the next section. The cascaded classifier, the
extensions of Benenson’s detector [4], and the counting al-
gorithm are described in Section 3. Experimental results of
the cascaded classifier and the pedestrian/cyclist counter are
analyzed in the Section 4. The last section presents conclu-
sions and future directions for the presented work.

.

2. System Setup and Dataset

The pedestrian and cyclist counting project was a re-
sult of a real-world need from the City of Pittsburgh to
determine the usage of newly-created dedicated bike lanes
throughout the city. Due to the relatively large area of bike
paths for which it would be desirable to obtain information,
a portable data collection system was deemed the most ef-
fective solution.

2.1. Data Collection Device

The data collection device (Figure 1) consists of a
ruggedized Windows tablet (Panasonic Toughpad), an ex-
tensible pole, and a miniature bullet camera. In order to col-
lect data, the bullet camera is mounted at the top of the pole,
which is extended the pole to a suitable height. The whole
system is fastened to a lamp post or other sturdy city fix-
ture. The tabled is used to verify that the camera is pointed
accurately at the bike lane and to control the data collection.

Figure 2: Samples from the recorded dataset, called as Ped-
Bike dataset.

The system is battery powered and allows for the collection
of up to 12 hours of data on a full charge.

2.2. Dataset

The dataset was collected during a period of 11 days,
usually from 9 a.m. to 4 p.m., at two locations alongside
a bike lane. Data was recorded at different view-points,
weather, and illumination conditions. Approximately 50
hours of video were recorded. A sample of the dataset is
shown in Figure 2. The data was saved in AVI encoded files
each corresponding to about 20 seconds of video. 10 hours
of the recorded dataset was labeled. The labeled dataset in-
cludes 541 unique pedestrians and 111 unique cyclists. In
total, ground truths were generated for ∼270,000 separate
pedestrian observations and ∼49,000 separate bicyclist ob-
servations.

All the videos focus on the same bike lane but in differ-
ent directions. Among the 11 days, 5 days of data face the
bike lane in one direction and all the other days facing in
the opposite direction. Since the system is disassembled at
the end of each day, differences are present in the camera
height and angle from day to day. The weather varies from
clear, to cloudy to rainy, often during the same day which
leads to large background brightness variations throughout
the dataset.

3. Method

The proposed pedestrian and bicyclist counting method
follows a detect-track-count approach. The detection step
of the algorithm consists of a cascaded classifier. In the first
level of the cascaded classifier, the pedestrians and the bi-
cyclists are detected. In the second level of the classifier



Figure 3: Overview the proposed counting approach. In the first step, a cascaded classifier detects pedestrians and bicyclists
at each video frame. The subjects are tracked by associating the detections with the trajectories. In the last step, the subjects
are counted if their trajectories cross a virtual line in the image.

distinguishes the bicyclists from the pedestrians. The cas-
caded classifier is based on the state-of-art object detector
[4]. In order to reduce the false alarms of the original detec-
tor, it has been extended by incorporating additional cues.
Namely, foreground segmentation, geometry prior informa-
tion, and temporal moving direction are incorporated into
the non-maximal suppression step of the algorithm. The fi-
nal detections are obtained from by using a multi-cue clus-
tering algorithm. The call the overall detector, including
the priors and the multi-cue clustering, if referred through-
out the paper as the Extended Detector. A data association
method employs the output of this detector to produce tra-
jectories which are ultimately used to determine the pedes-
trian and cyclist counts. These cues are explained in the
next sections. The overview of the proposed method can be
seen in Figure 3.

Object classifiers commonly output a set of candidate
windows, SC = {WC

1 , ...,WC
i , ...,WC

n }, where WC
i is a

candidate window before a clustering step. WC
i consists of

the detector score, s, the top left coordinate, (x, y), width,
w, and height, h, of the window in the image space. These
candidate windows are clustered to output the final detec-
tions, SD.

3.1. Foreground Detection

For a given image at time t, It, its foreground image, ItF
is computed. The set of the number of the foreground points
in the candidate windows, SF = {WF

1 , ...,WF
i , ...,WF

n },
are formed by the following procedure:

Figure 4: A sample result of the foreground detection
method explained in Section 3.1.

1) Using the image set from time t to t-k, optical flow is
computed by Horn-Schunck’s method [15].

2) A background image, IBt , is formed by masking out
the flow points obtained in Step-1.

3) Foreground image, ItF , is calculated by subtracting IBt
from It. Then, thresholding and region filtering operations
are performed.

4) The number of the points counted in ItF for each can-
didate window in SC to assign to SF .

A sample computed foreground of an image can be seen
in Figure 4.

3.2. Flow Direction Vector

The set of optical flow directions, SO =
{Ô1, ..., Ôi, ..., Ôn}, for each WC

i is computed as
follows:

1) For given two images, It and It−1, whose time stamps
are t and t − 1 respectively in the image sequences, their



Figure 5: The scale priors of the detection windows for
some points are obtained from the user with the help of
a software. These points are uniformly distributed in the
image. The user provides the expected scale info for each
green colored point in the image.

SURF [3] keypoints are computed by:

Kt = S (It) , Kt−1 = S (It−1) (1)

where Kt is the set of the keypoints, and S is the operator
to obtain SURF keypoints from the image It.

2) The keypoints which are not in the foreground image,
ItF , are excluded only from Kt:

K−
t = {k(x, y) ∈ Kt : k(x, y) /∈ ItF } (2)

Kt = Kt −K−
t (3)

where k(x, y) is a keypoint in the image and ItF is the fore-
ground image.

3) The keypoints in Kt and Kt−1 are matched:

Kt, t−1 = M (Kt, Kt−1) (4)

Kt, t−1 = {kt(x1, y1), kt−1(x1, y1)},
....,

{kt(xn, yn), kt−1(xn, yn)}
(5)

where Kt, t−1 is the set of pairs of keypoints matched from
Kt to Kt−1, and M is the keypoint matching function.

5) For each pedestrian candidate window, WC ∈ SC , its
average displacement vector at time t is calculated by:

KW
t, t−1 = {kWt (x1, y1), kt−1(x1, y1)},

....,

{kWt (xn, yn), kt−1(xn, yn)}
(6)

where kWt (xi, yi) ∈WC

WC
dis =

1

n

n∑
i=1

kWt (xi, yi)− kt(xi, yi) (7)

where WC
dis is the displacement vector of a candidate win-

dow, WC .
6) The unit vector of, WC

dis, becomes the optical flow
direction, Ôi, of the candidate window, WC

i .

3.3. Geometric Priors

It is useful to have a prior information about the scales of
the detection windows at different points of the scene. This
prior, Ss, can be obtained through the help of a software in
following way:

1) The image of the scene is divided into grids

IG = {G1(p1, ..., p4), Gn(p1, ..., p4)} (8)

where Gi is a grid which consists of four corner points. IG
is the set of the grids in the image.

2) For each Gi ∈ IG, expected scales at its corner points
are taken from a person

GS
i = {WS

1 (w1, h1), ...,WS
4 (w4, h4)} (9)

where GS
i corresponds to the scales of a grid, Gi ∈ IG.

WS
i (wi, hi) is the scale of one corner of the grid Gi.
3) In order to compute the expected scales for the other

points in a grid, bilinear interpolation, B, is performed using
the prior scales at the corner points of the grid, GS

pSi (wi, hi) = B(GS) (10)

where pSi is the scale of a point in a grid. The set of geo-
metric prior for the candidate windows, Ss, are formed by
pci (wi, hi) that is the expected width and height of a win-
dow whose center point is pc. An illustration of this process
can be seen in Figure 5.

3.4. Multi-Cue Clustering

In order to have the final detections, SD, a non-
maximal suppression based multiple cue clustering method
is applied using the candidate detection windows, SC =
{WC

1 , ...,WC
i , ...,WC

n }, obtained from the detector [4].
SC might include some false detections and outliers whose
size are too big or small for the specific part of the scene.
The false alarms and outliers can be removed by a filtering
process. The filtering process computes the ratio between
the number of the foreground points, WF

i , in a window and
its area. It removes WF

i if the ratio is less than a thresh-
old. In a similar way, WF

i is filtered by calculating the ratio
between its size and the prior for its center defined in Ss.

The local maximas define the detections in the non-
maximal suppression algorithm. The local maximas are de-
termined based on two cues: 1) the overlap difference, so



between the area of the candidate windows; and 2) the dif-
ference, sf , between the spatial flow directions in the candi-
date windows. If so or sf are larger than constants othresh
or fthresh, these candidate windows might define two dif-
ferent local maximas. The pseudo-code of the described
method can be see in Algorithm 1.

Algorithm 1 Multi-Cue NMS

Input: * Set of candidate detections, SC =
{WC

1 , ...,WC
i , ...,WC

n }
Output: * Set of pedestrian detections, SD =
{W1, ...,Wi, ...,Wm}

1: * Compute SF , SO, and Ss by the steps in Section 3.1,
3.2 and 3.3

2: * Find the false and outlier detections by filtering in SF

and Ss

3: * Remove these false and outlier detections from SC

4: * Sort candidate detections, SC , by descending order of
the detector scores

5: for i=1, ... , length(SC)
6: for j=i+1, ... , length(SC)
7: * Compute flow direction difference score, sf , be-

tween WC
i and WC

j

8: * Calculate area overlap score, so between WC
i and

WC
j

9: if so < othresh or sf < fthresh
10: * Remove WC

i from SC

11: * SD ← SC

3.5. Tracking and Counting

A multiple object tracking approach is used. In order to
construct the trajectories of the objects, the detection win-
dows, SD, at time t need to be associated to the trajecto-
ries at time t-1, Tt−1 = (Wt1, ...,Wti, ...,Wtm), in the
method where Wti is a detection window of this trajectory
at time i. This data association process use two features:
the spatial proximity, sd, and the flow direction difference,
sf , between the last detection windows of the trajectories in
Tt−1 and detection windows, SD. The window whose sf
is smaller than a threshold is associated with the trajectory
whose sd is the smallest. Since the proposed cascaded clas-
sifier already provides the subject type, the trajectories are
labeled for pedestrians or bicyclists. Finally, the subjects in
the image are counted if they cross a virtual line segment.

4. Experiments

Several experiments were conducted to quantify the per-
formance of the improved person detector, cascaded classi-
fier, proposed tracking, and counting methods.

Table 1: Comparison of the raw [4] and the extended de-
tector which includes the modifications explained in Sec-
tion 3.4. Mean Euclidean distances (in pixels) are computed
between the output boxes of the detectors and the ground
truth.

Metric (in px) Raw Detector Extended Detector
∆x 7.79 4.78
∆y 8.07 5.13
∆width 9.53 4.26
∆height 11.82 5.71

4.1. Analyzing the Performance of the Extended
Detector

In order to analyze the multiple cue clustering approach
outlined in Algorithm 1, two sets of the experiments were
performed. In the first experiment, the proposed detector
was compared with a publicly available challenging dataset
[5]. The experimented dataset, TownCentre, includes a
4500 video frames from a busy town street. It contains 230
unique pedestrians walking in two different directions and
their 71,460 ground truth bounding boxes, B(x, y, w, h),
where x and y is the top left point, w is the width, and h
the height of the box.

Pre-trained detector trained with Caltech pedestrian
dataset [4], was run for TownCentre dataset to detect the
pedestrians. The detector was set to 0.2 miss rate which
produces ∼ 5 false positives per image. When the output
of the raw detector was clustered by applying the modified
algorithm explained in Section 3.4, the proposed Extended
Detector obtained a false alarm rate of 1.7 per image at the
same miss rate. In all experiments, othresh was set to 0.7
and fthresh was set to 30 degrees. If the ratio between the
area of the candidate window and the number of the fore-
ground points is less than 0.6, the candidate window was
filtered. In a similar way, if the ratios between the width
and height of the candidate window and the expected win-
dow scale prior are less than 0.67 or larger than 1.33, then
this candidate window is filtered.

In addition to low miss and false alarm rate, it is benefi-
cial to have correctly well fitted bounding boxes for detect-
track applications to form precise trajectories. Therefore,
the output of the raw detector [4] is compared with the
output of the proposed extended detector and the with the
ground truth bounding boxes. The median Euclidean dis-
tance (in pixels) is computed between the center points,
width, and the height of the bounding box estimated by the
detectors and the ground truth. These metrics are defined
as the ∆x, ∆y, ∆width, and ∆height. As can be seen in
Table 1, the extended detector achieved significantly better
results than the original raw detector [4]. Figure 6 presents
some of the detector outputs.



Figure 6: Sample results of the raw and extended detectors from TownCentre dataset. First column displays the output of the
raw detector. Second column shows the results of the extended detector. Proposed detector produces better fitted detection
windows in addition to eliminating some false alarms.

Classified as Background Classified as Background Classified as Bike Classified as Pedestrian

Figure 7: Some false detections of the cascaded detector. Column headings show the classification results of the detector.
Low resolution of far objects, and/or partial occlusion are main reasons of the failure cases.

4.2. Performance of the Cascaded Detector

In order to train the proposed cascaded detector, the col-
lected dataset is divided into the train, PedBike-Train, and
the test, PedBike-Test, sets. PedBike-Train dataset consists
of 40k pedestrians, 13k bicyclists, and 200k negative sam-
ples. PedBike-Test dataset was formed in a way that no same
pedestrian or bicyclist exist in PedBike-Train. PedBike-Test
includes 10k pedestrian, 5k bicyclists, and 10k negative
samples. The training of the first and second levels of the
cascaded detector took ∼ 18 hours and ∼ 6 hours, respec-
tively, on a machine which has an Intel i7-3930K 6 core
CPU processor and an 1536 core NVIDIA GPU.

The confusion matrix for the trained detector can be seen
in Table 2. The presented cascaded detector achieved 95.1%
accuracy in the classification of the samples. Total of 461
background samples were labeled as the person and 421
pedestrian samples were evaluated as the background by the
detector. Only 11 pedestrians were classified as bikes in the
second level of the detector which shows that it has high
accuracy to distinguish between the pedestrians and bicy-
clists. Some false detections of the detector can be seen in
Figure 7. They usually occur when the objects are far from

Table 2: Results of the presented cascaded detector.

Peds Bikes Background

Predicted Peds 9568 4 453
Bikes 11 4665 8
Background 421 331 9539

the camera, and/or are partially occluded.

4.3. Performance of the Tracking and Counting
Methods

The tracking results of the proposed method were com-
pared with one of the state-of-the-art patch based tracker,
Fuhr’s [13, 14]. As it is suggested in these same references,
the trajectories of two subjects were analyzed from Town-
Centre dataset. Median Euclidean distance in the image
space between the trackers and the ground truth trajecto-
ries were measured at each frame. The results of this ex-
periment are displayed in Table 3. The presented method
significantly outperformed Fuhr’s [13, 14] by reducing the
median distance from 16.08 to 5.16 for the first subject and
from 20.86 to 8.45 for the second subject. The results of the
presented tracker are displayed in Figure 8.

Two experiments were conducted to analyze the perfor-



time t time t+1 time t+2 time t+3

Figure 8: Results of the presented tracker, described in Section 3.5, for two subjects from TownCentre dataset as it is
suggested in [14] [13].

Table 3: Comparison of the methods. Mean average dis-
tances (in pixels).

Test Subject Fuhr’s [14] [13] Proposed Method
TownCentre-1 16.08 5.16
TownCentre-2 20.86 8.45

mance of the presented counting method. In the first exper-
iment, TownCentre dataset and same pre-trained person de-
tector, as in Section 4.1, were used to count the pedestrians.
The proposed counting method achieved 94% accuracy. In
the second experiment, the pedestrians and the bicyclists in
∼3 hours of the collected dataset where manually counted
(which includes 149 pedestrians and 51 bikes). The same
cascaded classifier trained in Section 4.2 was used. All bi-
cyclists were counted correctly, but 9 out of 149 pedestrians
were mis-counted. Figure 9 displays some counting results
of PedBike dataset.

5. Conclusion

This paper proposed a vision based pedestrian and cy-
clist counting method, and an hardware prototype to collect
a dataset for the training of the proposed method. This large
dataset, which includes ∼ 50 hours of video, was recorded
in different days, view-points, weather, and illumination
conditions. Ten hours of the recorded dataset were labeled
(includes∼ 270,000 pedestrian and∼ 49,000 bicyclist sam-
ples). The dataset was used to train the proposed algorithm,
which follows the detect-track-count approach to count the
pedestrians and cyclists if they cross a virtual line in the
image. The detection step uses a cascaded classifier which
extends the-state-of-the-art object detector [4] by improving
its clustering stage with geometric priors (foreground detec-
tion, detection window scale information, and the temporal
flow direction). The first level of the cascaded classifier de-

tects pedestrians and cyclists, whereas its second level dis-
tinguishes cyclists. Our experiments showed that the exten-
sions of the detector reduces the false alarms while produc-
ing better fitted windows. The presented counting method
was and produced a 95% accuracy on the collected dataset.
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