
Parameter Efficient Fine-Tuning

1

10-423/10-623 Generative AI

Matt Gormley & Henry Chai
Lecture 10

Sep. 30, 2024

Machine Learning Department
School of Computer Science
Carnegie Mellon University

Reminders

• Homework 2: Generative Models of Images
– Out: Mon, Sep 23
– Due: Mon, Oct 7 at 11:59pm

2

PARAMETER EFFICIENT FINE-TUNING

6

Few-shot Learning with LLMs

• Definition: fine-tune the LLM on the training data
using…
– a standard supervised objective
– backpropagation to compute gradients
– your favorite optimizer (e.g. Adam)

• Pro: fits into the standard ML recipe
• Pro: still works if N is large
• Con: backpropagation requires ~3x the memory

and computation time as the forward
computation

• Con: you might not have access to the model
weights at all (e.g. because the model is
proprietary)

Option B: In-context learning

• Definition:
1. feed training examples to the LLM as a

prompt
2. allow the LLM to infer patterns in the training

examples during inference (i.e. decoding)
3. take the output of the LLM following the

prompt as its prediction
• Pro: no backpropagation required and only one

pass through the training data
• Pro: does not require model weights, only API

access
• Con: for Transformers, a prompt (of length N)

requires O(N2) time/space
• Con: the prompt might not fit into max context of

a Transformer LM
7

Option A: Supervised fine-tuning

Suppose you have…
• a dataset D = {(xi, yi)}i=1

N and N is rather small (i.e. few-shot setting)
• a very large (billions of parameters) pre-trained language model
There are two ways to “learn”

Few-shot Learning with LLMs

• Definition: fine-tune the LLM on the training data
using…
– a standard supervised objective
– backpropagation to compute gradients
– your favorite optimizer (e.g. Adam)

• Pro: fits into the standard ML recipe
• Pro: still works if N is large
• Con: backpropagation requires ~3x the memory

and computation time as the forward
computation

• Con: you might not have access to the model
weights at all (e.g. because the model is
proprietary)

Option B: In-context learning

• Definition:
1. feed training examples to the LLM as a

prompt
2. allow the LLM to infer patterns in the training

examples during inference (i.e. decoding)
3. take the output of the LLM following the

prompt as its prediction
• Pro: no backpropagation required and only one

pass through the training data
• Pro: does not require model weights, only API

access
• Con: for Transformers, a prompt (of length N)

requires O(N2) time/space
• Con: the prompt might not fit into max context of

a Transformer LM
8

Option A: Supervised fine-tuning

Suppose you have…
• a dataset D = {(xi, yi)}i=1

N and N is rather small (i.e. few-shot setting)
• a very large (billions of parameters) pre-trained language model
There are two ways to “learn”

In this section, we consider the
question:

How can we do supervised fine-
tuning of a very large
foundation model more
efficiently?

Fine-Tuning vs. In-Context Learning
• Why would we ever bother with fine-tuning if it’s so inefficient?
• Because, even for very large LMs, fine-tuning often beats in-context learning
• In a fair comparison of fine-tuning (FT) and in-context learning (ICL), we find that FT

outperforms ICL for most model sizes

9
Figure from http://arxiv.org/abs/2106.09685

Question:
Why did fine-tuning of GPT-3 do so much
better on these two tasks than few-shot
learning?

Answer:

Fine-Tuning vs. In-Context Learning
• Why would we ever bother with fine-tuning if it’s so inefficient?
• Because, even for very large LMs, fine-tuning often beats in-context learning
• In a fair comparison of fine-tuning (FT) and in-context learning (ICL), we find that FT

outperforms ICL for most model sizes on RTE and MNLI

10
Figure from https://aclanthology.org/2023.findings-acl.779.pdf

Fine-Tuning vs. In-Context Learning
• Why would we ever bother with fine-tuning if it’s so inefficient?
• Because, even for very large LMs, fine-tuning often beats in-context learning
• In a fair comparison of fine-tuning (FT) and in-context learning (ICL), we find that FT

outperforms ICL for most model sizes on RTE and MNLI

11
Figure from https://aclanthology.org/2023.findings-acl.779.pdf

At least this was the
general wisdom in 2023.

We might have a
different story to tell

now that it’s 2024.
(See Lecture 19)

Parameter Efficient Fine-Tuning
• Goal: perform fine-tuning of fewer parameters, but achieve

performance on a downstream task that is comparable to fine-
tuning of all parameters

• Various approaches:
– Subset: Pick a subset of the parameters and fine-tune only those (e.g.

only the top K layers of a K+L layer deep neural network)
– Adapters: add additional layers that have few parameters and tune only

the parameters of those layers, keeping all others fixed
– Prefix Tuning: for a Transformer LM, pretend as if there exist many

tokens that came before your sequence and tune the keys/values
corresponding to those tokens

– LoRA: learn a small delta for the each of the parameter matrices with
the delta chosen to be low rank

14

Fine-Tuning the Top Layers Only
• Simple baseline for PEFT:
– keep all parameters fixed

except for the top K layers
– gradients only need to flow

through K layers instead of
K+L total layers

– reduced memory usage b/c
we don’t need to store the
adjoints (gradient of the loss
with respect to each
parameter) for the full
computation graph

• Can easily be applied to
most deep neural networks

15

h1 h3 h4

[CLS] the cat sat

Transformer layer

Transformer layer

Transformer layer

x1 x2 x3 x4

h2

ŷ = p(y|h1)

ℓ1(·,·) = cross-entropy(ŷ, y)

y = one-hot(positive)

stop gradient here
s.t. error does not

backprop to lower
layers

Fine-Tuning the Top Layers Only
• Simple baseline for PEFT:
– keep all parameters fixed

except for the top K layers
– gradients only need to flow

through K layers instead of
K+L total layers

– reduced memory usage b/c
we don’t need to store the
adjoints (gradient of the loss
with respect to each
parameter) for the full
computation graph

• Can easily be applied to
most deep neural networks

16

h1 h3 h4

[CLS] the cat sat

Transformer layer

Transformer layer

Transformer layer

x1 x2 x3 x4

h2

ŷ = p(y|h1)

ℓ1(·,·) = cross-entropy(ŷ, y)

y = one-hot(positive)

stop gradient here
s.t. error does not

backprop to lower
layers

Question:
Why does this work at all?
Shouldn’t it do a poor job fitting the
underlying trends in our data?

Answer:

ADAPTERS

17

Decoder-only Transformer

18

x1 x2 x3 x4

p(w1|h1)

h1

p(w2|h2)

h2

p(w3|h3)

h3

p(w4|h4)

h4

The bat made noise

…

Each layer of a Transformer LM
consists of several sublayers:
1. attention
2. feed-forward neural network
3. layer normalization
4. residual connections

Each hidden vector looks back at
the hidden vectors of the current
and previous timesteps in the
previous layer.

The language model part is just like
an RNN-LM.

Transformer layer

Transformer layer

Transformer layer

Encoder-only Transformer

19

h1 h3 h4

[CLS] [MASK] cat sat

…

Each layer of an encoder-only
Transformer consists of several
sublayers:
1. non-causal attention
2. feed-forward neural network
3. layer normalization
4. residual connections

Each hidden vector looks at the the
hidden vectors of all timesteps in
the previous layer.

The distribution over words is used
for masked language model (MLM)
pre-training (cf. BERT)

Transformer layer

Transformer layer

Transformer layer

x1 x2 x3 x4

h2

BERT popularized this
encoder-only
Transformer
architecture and style
of pretraining p(w1|h2)

ℓ1(·,·)

MLM Pretraining:
• Rather than trying

to predict the next
word from the
previous ones…

• …mask out a word
(or a few words)
and predict the
missing words from
the remaining ones

+J = log p(w1 | w2 , w3)

The

Adapters Module
• An adapter layer is simply a feed-

forward neural network with one
hidden layer, and a residual
connection

• For input dimension, d, the
adapter layer also has output
dimension d, but bottlenecks to a
lower dimension m in the middle

20
Figure from https://arxiv.org/pdf/1902.00751

d

d

r

Wup ∈ R
r×d

Wdown ∈ R
d×r

d

d

r

Adapters for Transformer
• In practice, r is chosen s.t.

r << d and the adapter
layers contain only 0.5% –
8% of the total parameters

• When added to a deep
neural network (e.g.
Transformer) all the other
parameters of the
pretrained model are kept
fixed, and only the
adapter layer parameters
are fine-tuned

• Interesting: it works even
though the grey modules
are kept fixed!

21

m
ul

ti-
he

ad
ed

add & layer norm

WkWq Wv

X

Q K V

⨉ ⨉ ⨉

attention

adapter

feed-forward neural net

add & layer norm

adapter

tr
an

sf
or

m
er

X’

Figure inspired by He et al. (2022) https://arxiv.org/pdf/2110.04366

Adapter Results
• Pretrained Model: BERT-

Large
• Baseline Method: fine-

tune only the top K layers
of BERT-Large

• Adapters achieve nearly
the performance (i.e. 0%
delta) of full fine-tuning
but with substantially
fewer parameters

• Sometimes adapters even
outperform full fine-tuning

22
Figure from https://arxiv.org/pdf/1902.00751

Adapter Results
• Pretrained Model: BERT-

Large
• Baseline Method: fine-

tune only the top K layers
of BERT-Large

• Adapters achieve nearly
the performance (i.e. 0%
delta) of full fine-tuning
but with substantially
fewer parameters

• Sometimes adapters even
outperform full fine-tuning

23
Figure from https://arxiv.org/pdf/1902.00751

Adapter Results
• Pretrained Model: BERT-

Large
• Baseline Method: fine-

tune only the top K layers
of BERT-Large

• Adapters achieve nearly
the performance (i.e. 0%
delta) of full fine-tuning
but with substantially
fewer parameters

• Sometimes adapters even
outperform full fine-tuning

24
Figure from https://arxiv.org/pdf/1902.00751

PROMPT TUNING & PREFIX TUNING

26

Prefix Tuning

For a Transformer, we will say the
activation of token i in some layer/head
is given by its key/value vectors:
 hi = [ki

 T, vi
 T]T

1. inject (dummy) prefix
tokens, indexed by Pidx,
before the real tokens

2. represent i’th prefix token’s
activation by trainable
parameters:
 hi = Pθ[i, :]

3. for each i let
 Pθ[i, :] = MLP(Qθ[i, :])
because having Qθ of lower
dimension than Pθ improves
stability during training

4. during training, keep all
Transformer parameters
fixed, except for θ 27

Figure from http://arxiv.org/abs/2101.00190

Prefix Tuning

Also works for encoder-only
Transformer models, but we inject
prefix tokens before both the source
tokens x and the target tokens y

28
Figure from http://arxiv.org/abs/2101.00190

1. inject (dummy) prefix
tokens, indexed by Pidx,
before the real tokens

2. represent i’th prefix token’s
activation by trainable
parameters:
 hi = Pθ[i, :]

3. for each i let
 Pθ[i, :] = MLP(Qθ[i, :])
because having Qθ of lower
dimension than Pθ improves
stability during training

4. during training, keep all
Transformer parameters
fixed, except for θ

Prefix Tuning

29
Figure inspired by He et al. (2022) https://arxiv.org/pdf/2110.04366

m
ul

ti-
he

ad
ed

add & layer norm

WkWq Wv

X

Q K V

⨉ ⨉ ⨉

attention

feed-forward neural net

add & layer norm

Pk PV

tr
an

sf
or

m
er

X’

Figure from http://arxiv.org/abs/2101.00190

LOW-RANK ADAPTATION (LORA)

31

How large are LLMs?

32

Comparison of some recent large language models (LLMs)

Recall…

Model Creators Year of
release

Training Data (#
tokens)

Model Size (#
parameters)

GPT-2 OpenAI 2019 ~10 billion (40Gb) 1.5 billion

GPT-3
(cf. ChatGPT)

OpenAI 2020 300 billion 175 billion

PaLM Google 2022 780 billion 540 billion

Chinchilla DeepMind 2022 1.4 trillion 70 billion

LaMDA
(cf. Bard)

Google 2022 1.56 trillion 137 billion

LLaMA Meta 2023 1.4 trillion 65 billion

LLaMA-2 Meta 2023 2 trillion 70 billion

GPT-4 OpenAI 2023 ? ? (1.76 trillion)

Gemini (Ultra) Google 2023 ? ? (1.5 trillion)

LLaMA-3 Meta 2024 15 trillion 405 billion

How large are the linear layers in a Transformer?

33
Figure from https://arxiv.org/pdf/2005.14165.pdf

Size of linear layer in GPT-3:
12k * 12k

https://arxiv.org/pdf/2005.14165.pdf

Fine-Tuning LLMs without Regularization

34

Question:
Why don’t LLMs
overfit when we fine-
tune them without
regularization?

Hypothesis:
They are intrinsically
low dimensional

Intrinsic Dimensionality

Motivation
• Maybe the number of parameters in a

model is not a great measure of how
many degrees of freedom are needed
to successfully learn some problem

• How could we measure the number
of degrees of freedom you really
need?

Intrinsic Dimension
Definition from Li et al. (2018):
• Learn a neural network with D

parameters in a random lower
dimensional subspace, d

• Then repeat, gradually increasing the
dimensionality, d

• Let the intrinsic dimension be the
value of d when good solutions
(above 90% threshold of full
parameterization) start to appear

35

For MNIST digit recognition, original
neural network has D=199,210
parameters but the intrinsic

dimension is only d=750

Figure from http://arxiv.org/abs/1804.08838

Intrinsic Dimensionality

36

How do we learn in a low dimensional subspace?

Figure from http://arxiv.org/abs/1804.08838

x

z

W1

MLP

y

W2

MLP

θ(D) = concat(flatten(W1), flatten(W2))

Intrinsic Dimensionality
• Using similar techniques,

Aghajanyan et al. (2020) measure
the intrinsic dimension of LLMs

• Empirical results suggest that pre-
training finds parameters that
have low intrinsic dimensionality

• Number of parameters:
– BERT-Base: 110 million
– BERT-Large: 345 million

37
Figure from http://arxiv.org/abs/1804.08838

LoRA
• Motivation #1:

“We take inspiration from Li et al. (2018a); Aghajanyan et al. (2020) which show that the
learned over-parametrized models in fact reside on a low intrinsic dimension.”

• Motivation #2:
Directly optimizing the prompt, as in prefix tuning, leads to non-monotonic changes in
performance as the number of parameters increases (we want more parameters to
mean better performance!)

• Motivation #3:
Adapters and related methods introduce inference latency at test time that is non-trivial!

38

LoRA
Key Idea
• Keep the original pretrained

parameters W0 fixed during
fine-tuning

• Learn an additive
modification to those
parameters ΔW

• Define ΔW via a low rank
decomposition:

where BA has rank r, which is
much less than the input
dimension k or the output
dimension d

39
Figure inspired by He et al. (2022)

z = W0x + BAx
= (W0 + BA)x

LoRA Linear Layer

z = W0x
Standard Linear Layer

x

z

W0

A

BLinear
Linear

Linear

k

d

r

x

z

W0

Linear

W0 ∈ R
d×k

, x ∈ R
k
, z ∈ R

d

W0 ∈ R
d×k,

A ∈ R
r×k,B ∈ R

d×r

where r << min(d, k)

∆W = BA

LoRA
Initialization
• We initialize the trainable

parameters:

• This ensures that, at the start
of fine tuning, the
parameters have their
pretrained values:

40
Figure inspired by He et al. (2022)

z = W0x + BAx
= (W0 + BA)x

LoRA Linear Layer

z = W0x
Standard Linear Layer

x

z

W0

A

BLinear
Linear

Linear

k

d

r

x

z

W0

Linear

W0 ∈ R
d×k

, x ∈ R
k
, z ∈ R

d

W0 ∈ R
d×k,

A ∈ R
r×k,B ∈ R

d×r

where r << min(d, k)

Aij ∼ N (0,σ2), ∀i, j

B = 0

∆W = BA = 0

W0 + BA = W0

LoRAHot Swapping Parameters
• W0 and BA have the same

dimension, so we can ”swap”
the LoRA parameters in and
out of a Standard Linear Layer

• To get a Standard Linear Layer
with parameters W that
includes our LoRA fine tuning:

• To remove the LoRA fine
tuning from that Standard
Linear Layer:

• If we do LoRA training on two
tasks s.t. the parameters B’A’
are for task 1 and B’’A’’ are for
task 2, then we can swap back
and forth between them

41
Figure inspired by He et al. (2022)

z = W0x + BAx
= (W0 + BA)x

LoRA Linear Layer

z = W0x
Standard Linear Layer

x

z

W0

A

BLinear
Linear

Linear

k

d

r

x

z

W0

Linear

W0 ∈ R
d×k

, x ∈ R
k
, z ∈ R

d

W0 ∈ R
d×k,

A ∈ R
r×k,B ∈ R

d×r

where r << min(d, k)

W←W0 + BA

W←W− BA = W0

Transformer Language Model

42

x1 x2 x3 x4

p(w1|h1)

h1

p(w2|h2)

h2

p(w3|h3)

h3

p(w4|h4)

h4

The bat made noise

…

Each layer of a Transformer LM
consists of several sublayers:
1. attention
2. feed-forward neural network
3. layer normalization
4. residual connections

Each hidden vector looks back at
the hidden vectors of the current
and previous timesteps in the
previous layer.

The language model part is just like
an RNN-LM.

Transformer layer

Transformer layer

Transformer layer

Transformer Layer

43
Figure inspired by He et al. (2022)

m
ul

ti-
he

ad
ed

add & layer norm

WkWq Wv

X

Q K V

⨉ ⨉ ⨉

attention

feed-forward neural net

add & layer norm

tr
an

sf
or

m
er

X’

X′(i) = softmax
(

Q(i)(K(i))T
√

dk

+ M
)

V(i)

X = [x1, . . . , xN]T

Q(i)
= XW(i)

q

V(i)
= XW(i)

v

K(i)
= XW(i)

k

X′′ = concat(X′(1)
, . . . ,X′(h))

m
ul

ti-
he

ad
ed

 a
tt

en
tio

n

LoRA for Transformer
• LoRA linear layers could replace every linear layer in the

Transformer layer
• But the original paper only applies LoRA to the attention

weights

44
Figure inspired by He et al. (2022)

m
ul

ti-
he

ad
ed

add & layer norm

WkWq Wv

X

Q K V

⨉ ⨉ ⨉

attention

feed-forward neural net

add & layer norm

＋

Lo
RA

Lo
RA

＋

tr
an

sf
or

m
er

X’

z = W0x + BAx
= (W0 + BA)x

LoRA Linear Layer

x

z

W0

A

BLinear
Linear

Linear

k

d

r

W0 ∈ R
d×k,

A ∈ R
r×k,B ∈ R

d×r

where r << min(d, k)

＋

Lo
RA

LoRA for Transformer
• LoRA linear layers could replace every linear layer in the

Transformer layer
• But the original paper only applies LoRA to the attention

weights

45
Figure inspired by He et al. (2022)

m
ul

ti-
he

ad
ed

add & layer norm

WkWq Wv

X

Q K V

⨉ ⨉ ⨉

attention

feed-forward neural net

add & layer norm

＋

Lo
RA

Lo
RA

＋

tr
an

sf
or

m
er

X’

LoRA Linea Layer

x

z

W0

A

BLinear
Linear

Linear

k

d

r
＋

Lo
RA

Q = LoRALinear(X;Wq,Aq,Bq)

K = LoRALinear(X;Wk,Ak,Bk)

V = LoRALinear(X;Wv,Av,Bv)

LoRA for Transformer
• LoRA linear layers could replace every linear layer in the

Transformer layer
• But the original paper only applies LoRA to the attention

weights

46
Table from http://arxiv.org/abs/2106.09685

m
ul

ti-
he

ad
ed

add & layer norm

WkWq Wv

X

Q K V

⨉ ⨉ ⨉

attention

feed-forward neural net

add & layer norm

＋

Lo
RA

Lo
RA

＋

tr
an

sf
or

m
er

X’

• Empirically, for GPT-3, they also find that it is most efficient to
include LoRA only on the query and value linear layers

LoRA for Transformer
• LoRA linear layers could replace every linear layer in the

Transformer layer
• But the original paper only applies LoRA to the attention

weights

47
Table from http://arxiv.org/abs/2106.09685

m
ul

ti-
he

ad
ed

add & layer norm

WkWq Wv

X

Q K V

⨉ ⨉ ⨉

attention

feed-forward neural net

add & layer norm

＋

Lo
RA

Lo
RA

＋

tr
an

sf
or

m
er

X’

• Empirically, for GPT-3, they also find that it is most efficient to
include LoRA only on the query and value linear layers

• During training only the new LoRA parameters are fine-tuned,
all the other parameters are kept fixed

LoRA Results
Takeaways
• Applied to GPT-3, LoRA

achieves performance
almost as good as full fine-
tuning, but with far fewer
parameters

• On some tasks it even
outperforms full fine-
tuning

• For some datasets a rank
of r=1 is sufficient

• LoRA performs well when
the dataset is large or
small

48

LoRA Results
Takeaways
• Applied to GPT-3, LoRA

achieves performance
almost as good as full fine-
tuning, but with far fewer
parameters

• On some tasks it even
outperforms full fine-
tuning

• For some datasets a rank
of r=1 is sufficient

• LoRA performs well when
the dataset is large or
small

49

PEFT for Transformer

50
Figure inspired by / copied from He et al. (2022)

m
ul

ti-
he

ad
ed

add & layer norm

WkWq Wv

X

Q K V

⨉ ⨉ ⨉

attention

adapter

feed-forward neural net

add & layer norm

adapter

＋

Lo
RA

Lo
RA

＋

Pk PV

tr
an

sf
or

m
er

X’

＋

Lo
RA

PEFT FOR VISION TRANSFORMER

51

PEFT for Vision Transformer
• Since Vision Transfomer is just another transformer model, we can apply LoRA directly to it
• (LNLoRA is just a variant that includes LayerNorm in the LoRALinear module.)

52
Figure from https://arxiv.org/pdf/2401.01752.pdf

PEFT for Vision Transformer
• For various computer

vision tasks, parameter
efficient transfer-learning
(PETL) is sometimes better
than full fine-tuning!

• VTAB-1k is a collection of 19
different vision tasks; here
we’re seeing average
performance across tasks

• (FacT is another low-rank
method capable of
dramatically reducing the
number of parameters
tuned.)

53
Figure from https://ojs.aaai.org/index.php/AAAI/article/view/25187

