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PARAMETER EFFICIENT FINE-TUNING



Few-shot Learning with LLMs

Suppose you have...

« adataset D = {(x;, y;)}i-;N and N is rather small (i.e. few-shot setting)
« avery large (billions of parameters) pre-trained language model
There are two ways to “learn”

Option A: Supervised fine-tuning Option B: In-context learning
* Definition: fine-tune the LLM on the training data * Definition:
using... 1. feed training examples to the LLM as a
— astandard supervised objective prompt
— backpropagation to compute gradients 2. allow the LLM to infer patterns in the training
— your favorite optimizer (e.g. Adam) examples during inference (i.e. decoding)
* Pro: fits into the standard ML recipe 3. take the output of the LLM following the
* Pro:still works if N is large prompt as its prediction
* Con: backpropagation requires ~3x the memory * Pro: no backpropagation required and only one
and computation time as the forward pass through the training data
computation * Pro: does not require model weights, only API
* Con: you might not have access to the model access
weights at all (e.g. because the model is « Con: for Transformers, a prompt (of length N)
proprietary) requires O(N2) time/space

* Con: the prompt might not fit into max context of
a Transformer LM



Few-shot Learning with LLMs

Suppose you have...

There are two ways to “learn”

Option A: Supervised fine-tuning @

Definition: fine-tune the LLM on the training data
using...

— astandard supervised objective

— backpropagation to compute gradients

— your favorite optimizer (e.g. Adam)
Pro: fits into the standard ML recipe
Pro: still works if N is large
Con: backpropagation requires ~3x the memory
and computation time as the forward
computation
Con: you might not have access to the model
weights at all (e.g. because the model is
proprietary)

a dataset D = {(x;, ¥;)}i-:\ and N is rather small (i.e. few-shot setting)
a very large (billions of parameters) pre-trained language model

In this section, we consider the
question:

o the LLM as a

How can we do supervised fine-
tuning of a very large
foundation model more
efficiently?

atterns in the training
nce (i.e. decoding)
LM following the

* Pro: no backpropagation required and only one
pass through the training data

* Pro: does not require model weights, only API
access

« Con: for Transformers, a prompt (of length N)
requires O(N2) time/space

* Con: the prompt might not fit into max context of
a Transformer LM



Fine-Tuning vs. In-Context Learning

* Why would we ever bother with fine-tuning if it’s so inefficient?
* Because, even for very large LMs, fine-tuning often beats in-context learning

Method MNLI-m (Val. Acc./%) RTE (Val. Acc./%)

GPT-3 Few-Shot 40.6 69.0

GPT-3 Fine-Tuned 89.5 85.4
Question: Answer:

Why did fine-tuning of GPT-3 do so much
better on these two tasks than few-shot
learning?

Figure from http://arxiv.org/abs/2106.09685



Fine-Tuning vs. In-Context Learning

* Why would we ever bother with fine-tuning if it’s so inefficient?
* Because, even for very large LMs, fine-tuning often beats in-context learning

* In a fair comparison of fine-tuning (FT) and in-context learning (ICL), we find that FT
outperforms ICL for most model sizes on RTE and MNLI

FT FT
125M 350M 13B 27B 6.7B 13B 30B 125M 350M 13B 27B 6.7B 13B 30B
125M -0.00 001 002 003 012 014 0.09 125M  —-0.00 0.00 = 0.02 0.01 0.10  0.11 0.07
350M -0.00 001 002 003 012 014 0.09 350M  —-0.00 0.00 = 002 0.01 0.10  0.11 0.07
1.3B 000 001 002 003 012 014 0.09 1.3B —-0.01 -0.00 = 0.01 0.01 0.10  0.11 0.07
d 27B  -0.00 = 001 002 003 012 0.14 0.09 d 27B -0.01 -0.00 0.01 0.01 0.09 010 0.07
~ 67B —0.00 001 002 003 012 014 0.09 — 678 =001 -0.01 0.01 0.00 009 010 0.06
13B —-0.04 -0.02 -0.01 -0.00 0.09 0.11 0.05 13B -0.03 -0.03 -0.02 -0.02 007 008 0.04
30B -0.11 -0.09 -0.08 -0.08 0.02 0.03 -0.02 30B -0.07 -0.07 -0.05 -0.06 003 004 0.00
(a) RTE (b) MNLI

Table 1: Difference between average out-of-domain performance of ICL and FT on RTE (a) and MNLI (b) across
model sizes. We use 16 examples and 10 random seeds for both approaches. For ICL, we use the gpt -3 pattern.
For FT, we use pattern-based fine-tuning (PBFT) and select checkpoints according to in-domain performance.
We perform a Welch'’s t-test and color cells according to whether: N i
performs significantly better than ICL. For cells without color, there is no significant difference.

Figure from https://aclanthology.org/2023.findings-acl.779.pdf
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Fine-Tuning vs. In-Context Learning

* Why would we ever bother with fine-tuning if it’s so inefficient?
* Because, even for very large LMs, fine-tuning often beats in-context learning

* In a fair comparison of fine-tuning (FT) and in-context learning (ICL), we find that FT
outperforms ICL for most model sizes on RTE and MNLI

At least this was the

FT FT

125 M 350M 1.3B 2.7B 6.7B 13B 30B 125M 350M 1.3B 2.7B 6.7B 13B 30B

125M  —0.00 0.01 0.02 0.03 0.12 0.14 0.09 125M  —0.00 0.00 0.02 0.01 0.10 0.11 0.07
350M —-0.00 0.01 0.02 0.03 0.12 0.14 0.09 350M —0.00 0.00 0.02 0.01 0.10 0.11 0.07

. 13B  —-0.00 0.01 0.02 0.03 0.12 0.14 0.09 1.3B —-0.01 —-0.00 0.01 0.01 0.10 0.11 0.07
O 27B —0.00 0.01 0.02 0.03 0.12 0.14 0.09 d 27B 001 -0.00 0.01 0.01 0.09 0.10 0.07
~ 67JB —0.00 0.01 0.02 0.03 0.12 0.14 0.09 =~ 6.7B —0.01 -0.01 0.01 0.00 0.09 0.10 0.06
13B —0.04 —-0.02 -0.01 -=0.00 0.09 0.11 0.05 13B —0.03 —-0.03 -0.02 -0.02 0.07 0.08 0.04
30B —0.11 -0.09 -0.08 -0.08 0.02 0.03 -—-0.02 30B —0.07 —=0.07 -=0.05 -=0.06 002 WAL S.00

(a) RTE (b) MNLI

Table 1: Difference between average out-of-domain performance of ICL and FT on RTE (a) ar
model sizes. We use 16 examples and 10 random seeds for both approaches. For ICL, we use
For FT, we use pattern-based fine-tuning (PBFT) and select checkpoints according to in-do

We perform a Welch’s t-test and color cells according to whether:

performs significantly better than ICL. For cells without color, there is no significant difference

Figure from https://aclanthology.org/2023.findings-acl.779.pdf

general wisdom in 2023.

We might have a
different story to tell
now that it’s 2024.
(See Lecture 19)




Parameter Efficient Fine-Tuning

* Goal: perform fine-tuning of fewer parameters, but achieve
performance on a downstream task that is comparable to fine-

tuning of all parameters

* Various approaches:

— Subset: Pick a subset of the parameters and fine-tune only those (e.g.
only the top K layers of a K+L layer deep neural network)

— Adapters: add additional layers that have few parameters and tune only
the parameters of those layers, keeping all others fixed

— Prefix Tuning: for a Transformer LM, pretend as if there exist many
tokens that came before your sequence and tune the keys/values
corresponding to those tokens

— LoRA: learn a small delta for the each of the parameter matrices with
the delta chosen to be low rank



Fine-Tuning the Top Layers Only

. . 2,() | = ) 9,
* Simple baseline for PEFT: cross-entropy(§, )

— keep all parameters fixed

except for the top K layers g=p(ylh) [ y=onehot(positive) |
— gradients only need to flow ‘ 5
through K layers instead of i T i i i
K+L total layers 1 i : ‘
— reduced memory usage b/c . Ny o N
dient here
we don’t need to store the ~ ° P& [ e )
. : t. d t
adjoints (gradient of the loss ;adfprz; thZVCZr SN S
with respect to each layers

parameter) for the full
computation graph

* Can easily be applied to
most deep neural networks



Fine-Tuning the Top Layers Only

. . 2,() | = ) 9,
* Simple baseline for PEFT: cross-entropy(§, )

— keep all parameters fixed

except for the top K layers g=p(ylh) [ y=onehot(positive) |
— gradients only need to flow L,
through K layers instead of i T i i i

K+L total layers

— reduced memory usage b/c Ny o N

stop gradient here [ Transformer layer ]
we don’t need to store the J
. . . s.t. error does not
adjoints (gradient of the loss backprop to lower Ny e
with respect to each layers
nararmaonrar) fAar +ha fll
Question: Answer:

Why does this work at all?

Shouldn’t it do a poor job fitting the
underlying trends in our data?




ADAPTERS



Decoder-only Transformer
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Each layer of a Transformer LM
consists of several sublayers:

1. attention

2. feed-forward neural network
3. layer normalization

4. residual connections

Each hidden vector looks back at
the hidden vectors of the current
and previous timesteps in the
previous layer.

The language model part is just like
an RNN-LM.



BERT popularized this
encoder-only
Transformer
architecture and style

of pretraining

MLM Pretraining:

* Rather than trying
to predict the next
word from the
previous ones...

e ...maskoutaword
(or a few words)
and predict the
missing words from
the remaining ones

Encoder-only Transformer

- p(
1?1("')

T
/[p(Wth

h, h, h, h,

N, N N

[ Transformer layer ]

[ Transformer layer ]

[ Transformer layer ]

eSS
X1/I\X2/]\X3/I\X4’]‘

[[CLS]] [[MASK]][ cat ] [ sat ]

Each layer of an encoder-only
Transformer consists of several
sublayers:

1. non-causal attention

2. feed-forward neural network

3. layer normalization
4. residual connections

Each hidden vector looks at the the
hidden vectors of all timesteps in
the previous layer.

The distribution over words is used

for masked language model (MLM)
pre-training (cf. BERT)



Adapters Module

* An adapter layer is simply a feed-
forward neural network with one
hidden layer, and a residual
connection

* Forinput dimension, d, the
adapter layer also has output
dimension d, but bottlenecks to a
lower dimension m in the middle

Figure from https://arxiv.org/pdf/1902.00751

/

- ————

/ Adapter

Layer

-4 .

OOOIOOO

s

\
Feedforward
up-project <
J

R i

Nonlinearity

OIO

[

Feedforward )
down-project J

[
Q00000
L 4

- ——

\d

20



X’

/ [ add & layer norm ]4— \ p
U T ___________ //l’
! adapter E d
---------- T e !
s |
[ feed-forward neural net ] 7 !
T g '
! — :
dd &I |
[ a ayer norm ]/4/—»; '
—— T ___________ s :
. adapter ! :
o etttk Ittt ~ !
E S ) :
£ [ attention ] S !
c [~ |
g Q K v "~ :
~ \\ :
© \\\\
(]
©
3
=
E
E
Wi
- J
N N /
X

Figure inspired by He et al. (2022) https://arxiv.org/pdf/2110.04366

Adapter

La

looopoo|i

Feedforward
up-project

Nonlinearity

Adapters for Transformer

In practice, ris chosen s.t.
r << d and the adapter
layers contain only 0.5% —
8% of the total parameters

When added to a deep
neural network (e.g.
Transformer) all the other
parameters of the
pretrained model are kept
fixed, and only the
adapter layer parameters
are fine-tuned

Interesting: it works even
though the grey modules
are kept fixed!
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Adapter Results

Pretrained Model: BERT-
Large
Baseline Method: fine-

tune only the top K layers
of BERT-Large

Adapters achieve nearly
the performance (i.e. 0%
delta) of full fine-tuning
but with substantially
fewer parameters

Sometimes adapters even
outperform full fine-tuning

Figure from https://arxiv.org/pdf/1902.00751
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Adapter Results

Pretrained Model: BERT-
Large
Baseline Method: fine-

tune only the top K layers
of BERT-Large

Adapters achieve nearly
the performance (i.e. 0%
delta) of full fine-tuning
but with substantially
fewer parameters

Sometimes adapters even
outperform full fine-tuning

Figure from https://arxiv.org/pdf/1902.00751
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Adapter Results

Pretrained Model: BERT-
Large
Baseline Method: fine-

tune only the top K layers
of BERT-Large

Adapters achieve nearly
the performance (i.e. 0%
delta) of full fine-tuning
but with substantially
fewer parameters

Sometimes adapters even
outperform full fine-tuning

Figure from https://arxiv.org/pdf/1902.00751
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PROMPT TUNING & PREFIX TUNING



Prefix Tuning

1. inject (dummy) prefix
Autoregressive Model (e.g. GPT2) tOkenS, lndexed by PidX’

PREFIX i (source table) y (target utterance)

r r 1r 1 before the real tokens

Z Harry Potter , Education , Hogwarts [SEP] Harry Potter is graduated from Hogwarts .

2. represent i’th prefix token’s
activation by trainable

Activation hl hz h3 h4 h5 h6 h7 hg hg th h11 h12 h13 h14 h15

Indexin 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
: 1L 10 ]

%idx —[1,2] X = [3,4,5,6,7,8] Yiax = [9,10,11,12,13, 14, 15] parameters:
hi = Pe[i, :]
For a Transformer, we will say the 3. foreachilet
activation of token i in some layer/head Poli, :] = MLP(Qg[i, :])
is given by its key/value vectors: because having Qg of lower
h=[kT, v dimension than P, improves

stability during training
4. during training, keep all

Transformer parameters

fixed, except for 0

Figure from http://arxiv.org/abs/2101.00190



Prefix Tuning

1. inject (dummy) prefix
tokens, indexed by P4,
before the real tokens

Also works for encoder-only 2. representi’th prefix token’s

Transformer models, but we inject activation by trainable

prefix tokens before both the source parameters:

tokens x and the target tokens 'y h, = Py[i, :]

3. foreachilet
Pl ] = MLl )

-l | | e———— because having Qg of lower

w—w T dimension than P, improves

stability during training

9 10 11 12 13 14 15 16 17

Piax = [1,2]  Xiaex = [3,4,5,6,7, 8] Pax +=[9,10]  Yiex = [11,12,13,14,15,16,17] 4. during training, keep all
Transformer parameters
fixed, except for 0

Indexing 1
L

Figure from http://arxiv.org/abs/2101.00190
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Figure inspired by He et al. (2022) https://arxiv.org/pdf/2110.04366

Prefix Tuning

Fine-tuning
Transformer (Translation)
Transformer (Summarization)
Transformer (Table-to-text)
ucks type ee ) [SEP] Starbucks serves colfee
Prefix | U1 (table-to-text) Output (table-to-text)
ﬂ!mﬂl"ﬂ)
" Profix Prefix-tuning
(Summarization)
‘ p “'952: “ ' ‘l?mtdormer (Pretrained)

ame Starbucks type ffee shop [SEP] Starbucks serves coffee
(table-to-text) Output (table-to-text)

Figure |: Fine-tuning (top) updates all Transformer
parameters (the red Transformer box) and requires stor-
ing a full model copy for each task. We propose
prefix-tuning (bottom), which freezes the Transformer
parameters and only optimizes the prefix (the red pre-
fix blocks). Consequently, we only need to store the
prefix for each task, making prefix-tuning modular and
space-efficient. Note that each vertical block denote
transformer activations at one time step.

29
Figure from http://arxiv.org/abs/2101.00190



LOW-RANK ADAPTATION (LORA)



How large are LLMs?

Comparison of some recent large language models (LLMs)

Creators Year of | Training Data (# Model Size (#
release | tokens) parameters)

GPT-2 OpenAl 2019 ~10 billion (40Gb) 1.5 billion
GPT-3 OpenAl 2020 300 billion 175 billion
(cf. ChatGPT)

PaLM Google 2022 780 billion 540 billion
Chinchilla DeepMind 2022 1.4 trillion 70 billion
LaMDA Google 2022 1.56 trillion 137 billion
(cf. Bard)

LLaMA Meta 2023 1.4 trillion 65 billion
LLaMA-2 Meta 2023 2 trillion 70 billion
GPT-4 OpenAl 2023 g 2 (1.76 trillion)
Gemini (Ultra)  Google 2023 g ? (1.5 trillion)

LLaMA-3 Meta 2024 15 trillion 405 billion .



How large are the linear layers in a Transformer?

Model Name Nparams TMlayers OGmodel Theads @head |Batch Size Learning Rate
GPT-3 Small 125M 12 768 12 64 0.5M 6.0 x 1074
GPT-3 Medium 350M 24 1024 16 64 0.5M 3.0 x 104
GPT-3 Large 760M 24 1536 16 96 0.5M 2.5 x 1074
GPT-3 XL 1.3B 24 2048 24 128 IM 2.0 x 1074
GPT-32.7B 2.7B 32 2560 32 80 IM 1.6 x 1074
GPT-36.7B 6.7B 32 4096 32 128 2M 1.2 x 1074
GPT-3 13B 13.0B 40 5140 40 128 2M 1.0 x 104
GPT-3 175B or “GPT-3"| 175.0B 96 12288 96 128 3.2M 0.6 x 1074

Table 2.1: Sizes, architectures, and learning hypcr-pammctﬁ(lbatch size in tokens and learning rate) of the models
which we trained. All models were trained for a total of 300 Aefion tokens.

Size of linear layer in GPT-3:
12k * 12k

Figure from


https://arxiv.org/pdf/2005.14165.pdf

Fine-Tuning LLMs without Regularization

Method MNLI-m (Val. Acc./%) RTE (Val. Acc./%)

GPT-3 Few-Shot 40.6 69.0

GPT-3 Fine-Tuned 89.5 85.4
Question: Hypothesis:
Why don’t LLMs They are intrinsically
overfit when we fine- low dimensional

tune them without
regularization?



Figure from http://arxiv.org/abs/1804.08838

Motivation

* Maybe the number of parametersina
model is not a great measure of how
many degrees of freedom are needed

Intrinsic Dimensionality

to successfully learn some problem

How could we measure the number

of degrees of freedom you really

need?

Validation accuracy

baseline
90% baseline

600
Subspace dim d

L2000 1400

Intrinsic Dimension

Definition from Li et al. (2018):

* Learn a neural network with D
parameters in a random lower
dimensional subspace, d

* Then repeat, gradually increasing the
dimensionality, d

* Let the intrinsic dimension be the
value of d when good solutions
(above 90% threshold of full
parameterization) start to appear

For MNIST digit recognition, original
neural network has D=199,210
parameters but the intrinsic
dimension is only d=750



Intrinsic Dimensionality

y COII11M
How do we learn in a low dimensional subspace? -
Zz LLITTTIT111]
0(P) = concat(flatten(W), flatten(W5)) -
X LI TrTIgl

Standard optimization, which we will refer to hereafter as the direct method of training, entails
evaluating the gradient of a loss with respect to #(?) and taking steps directly in the space of (2).
To train in a random subspace, we instead define #(?) in the following way:

92 = '\P) 1 po(@ 2)

where P is a randomly generated D x d projection matrix! and 8(%) is a parameter vector in a gen-
erally smaller space R¢. 6'P) and P are randomly generated and frozen (not trained), so the system
0

has only d degrees of freedom. We initialize 8(%) to a vector of all zeros, so initially #(°) = 0((]D).

Figure from http://arxiv.org/abs/1804.08838
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Intrinsic Dimensionality

* Using similar techniques,
Aghajanyan et al. (2020) measure
the intrinsic dimension of LLMs

* Empirical results suggest that pre-
training finds parameters that
have low intrinsic dimensionality

* Number of parameters:

— BERT-Base: 110 million
— BERT-Large: 345 million

Figure from http://arxiv.org/abs/1804.08838

SAID DID
Model MRPC QQP MRPC QQP
BERT-Base 1608 8030 1861 9295
BERT-Large 1037 1200 2493 1389
RoBERTa-Base 896 896 1000 1389

RoBERTa-Large 207 774 322 774

Table 1: Estimated dgp intrinsic dimension for a set

of sentence prediction tasks and common pre-trained
models. We present both the SA/D and DID methods.
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LORA

Motivation #1:
“We take inspiration from Li et al. (2018a); Aghajanyan et al. (2020) which show that the
learned over-parametrized models in fact reside on a low intrinsic dimension.”

Motivation #2:

Directly optimizing the prompt, as in prefix tuning, leads to non-monotonic changes in
performance as the number of parameters increases (we want more parameters to
mean better performance!)

Motivation #3:

Adapters and related methods introduce inference latency at test time that is non-trivial!

Batch Size 32 16 1
Sequence Length 512 256 128
(5] 0.5M 1 1M 1 1M
Fine-Tune/LoRA | 1449.4+0.8 338.0+0.6 19.8+£2.7
Adapter" 1482.0+1.0 (+2.2%) 354.8+0.5 (+5.0%) 23.9£2.1 (+20.7%)
Adapter” 1492.24+1.0 (+3.0%) 366.3+0.5 (+8.4%) 25.84+2.2 (+30.3%)

Table 1: Infernece latency of a single forward pass in GPT-2 medium measured in milliseconds, av-
eraged over 100 trials. We use an NVIDIA Quadro RTX8000. “|©|” denotes the number of trainable
parameters in adapter layers. AdapterL and AdapterH are two variants of adapter tuning, which we
describe in[Section 3.1. The inference latency introduced by adapter layers can be significant in an
online, short-sequence-length scenario. See the full study in[Appendix B.
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LORA

Key Idea Standard Linear Layer z (I

* Keep the origina! pretrailjed 7 = Wox
parameters W, fixed during
fine-tuning W, € R¥*F x ¢ R* z € R?

* Learn an additive g x BEEEEEEEEEEE

modification to those s . ~
parameters AW LoRA Linear Layer | q

 Define AW via a low rank z = Wox + BAx
decomposition: — (W, + BA)x
AW = BA

Linear

e

where BA has rank r, which is

much less than the input W, € R4¥F (inear A
dimension k or the output . d
dimension d AcR™ aBERXT x|||||||||||||ﬂl
where r << min(d, k) Sk
- 39/

Figure inspired by He et al. (2022)



Initialization

 We initialize the trainable
parameters:

Aij ~ N(O, 02),Vi,j
B=0

* This ensures that, at the start
of fine tuning, the

parameters have their
pretrained values:

AW =BA =0
Wy + BA =W,

Figure inspired by He et al. (2022)

LORA

Standard Linear Layer yAEEREEEE

. N
W, € R>*F x ¢ R* 7z € R?

X OOTTIITTITITT]
4 LoRA Linear Layer q
z = Wox + BAx :
— (WO _I_ BA)X Linear
e
WO c Rka LinearA
AERTXk,BERdXT X (OO
1 J
where r << min(d, k) Sk
N

s/




Hot Swapping Parameters LO R A
* W, and BA have the same
dimension, so we can ”swap”

the LORA parameters in and ( Standard Linear Layer  z CIIIED )

out of a Standard Linear Layer W
 To get a Standard Linear Layer 4= WoX

with parameters W that W € RY%F x c RF 7 € R?

includes our LoRA fine tuning: 0 ’ ’ N S AREREREEE

- J
W WO T BA 4 LoRA Linear Layer q )

 Toremove the LoRA fine |

tuning from that Standard z = Wox + BAx

Linear Layer: = (WO + BA)X

Linear
W+ W-BA =W, r

* If we do LoRA training on two

’ in arA
tasks s.t. the parameters B’A’ W, € R¥*F, Hine
are for task 1and B”’A” are for y p
task 2, then we can swap back AcR™* B e R X IO
| ]
and forth between them where r << min(d, k) <%
N 4/

Figure inspired by He et al. (2022)



Transformer Language Model
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T

T

T

p(w;|h,) p(ws|h;) p(w,lh,)

>

>

L

IIII%

Transformer layer

%II/I I%I |

Transformd

r layer

0 |

%ﬂ I

Transformer layer

%)

Each layer of a Transformer LM
consists of several sublayers:

1. attention

2. feed-forward neural network
3. layer normalization

4. residual connections

Each hidden vector looks back at
the hidden vectors of the current
and previous timesteps in the
previous layer.

The language model part is just like
an RNN-LM.



Transformer Layer

transformer

[

add & layer norm

]4_

feed-forward neural net
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Figure inspired by He et al. (2022)
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LoRA for Transformer

[ add & layer norm

[ feed-forward neural net

f

[ add & layer norm
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attention

transformer
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multi-headed

Figure inspired by He et al. (2022)

LoRA linear layers could replace every linear layer in the
Transformer layer

But the original paper only applies LoRA to the attention
weights

-

\_

LoRA Linear Layer q A
z = Wyx + BAx :
— (WO —I_ BA)X Linear
e

WO c Rka LinearA
AERTXR,BERCZXT X (OO

1 J
where r << min(d, k) Sk
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LoRA for Transformer

4 [ addalayernorm  je— . LoRA linear layers could replace every linear layer in the
Transformer layer
( T E—— ] * But the original paper only applies LoRA to the attention
! weights
[ add & layer norm ]4—
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Figure inspired by He et al. (2022)
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LoRA for Transformer

/ [ add & layer norm ]4— \
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Table from http://arxiv.org/abs/2106.09685

* LoRAlinear layers could replace every linear layer in the
Transformer layer

* But the original paper only applies LoRA to the attention
weights

* Empirically, for GPT-3, they also find that it is most efficient to
include LORA only on the query and value linear layers

| # of Trainable Parameters = 18M

Weight Type H'q Wi W, W, H"'q. Wi H',,. W, H"q, Wi, W, W,
Rank r h 8 8 8 4 4 2
WikiSQL (£0.5%) | 704 70.0 73.0 73.2 71.4 73.7 73.7
MultiNLI (£0.1%) | 91.0 90.8 91.0 91.3 91.3 91.3 91.7

Table 5: Validation accuracy on WikiSQL and MultiNLI after applying LoRA to different types of
attention weights in GPT-3, given the same number of trainable parameters. Adapting both I/, and
W, gives the best performance overall. We find the standard deviation across random seeds to be
consistent for a given dataset, which we report in the first column.
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LoRA for Transformer

) . : :
4 [ addalayernorm  je—  LoRA linear layers could replace every linear layer in the
Transformer layer
( P —"— ] * But the original paper only applies LoRA to the attention
! weights
[ add & layer norm ]4—
* Empirically, for GPT-3, they also find that it is most efficient to

v 8 include LoRA only on the query and value linear layers

‘E [ attention ] * During training only the new LoRA parameters are fine-tuned,

i Q K v all the other parameters are kept fixed

E

- ~

Table from http://arxiv.org/abs/2106.09685



LoRA Results

Takeaways

* Applied to GPT-3, LORA
achieves performance
almost as good as full fine-
tuning, but with far fewer
parameters

e On some tasks it even
outperforms full fine-
tuning

e For some datasets a rank
of r=1is sufficient

* LoRA performs well when
the dataset is large or
small

Validation Accuracy

©
~
w

o
~
o

o
o)l
%)

o
o)
o

0.55

0.92

0.90

0.88

0.86

0.84

WikiSQL

* I Method

e Fine-Tune
PrefixEmbed

% PrefixLayer
Adapter(H)
LoRA

7 8 9 10 11
log.o # Trainable Parameters

MultiNLI-matched

6 7 8 9 10 11
log.p # Trainable Parameters



LoRA Results

Takeaways
* Applied to GPT-3, LORA
achieves performance | WeightType |r=1 r=2 r=4 r=8 r=064
almost as gOOd as full fine- WikiSOL(+0.5% W, 68.8 69.6 705 704 700
tuning. but with far f kISQL(E0.5%) W,, W, 734 733 737 138 735
uning, but wi ar rewer W, Wi, W, W, | 741 737 740 740 739
parameters W, 9.7 909 91.1 907  90.7
: MultiNLI (£0.1%) w,, W, 913 914 913 916 914
* On some tasks it even W, Wy, W,, W, | 912 917 917 915 914
outperforms full fine-
tuning
° For some datasets 3 rank Method . \ MNLI(m)-100 MNLI(m)-1k MNLI(m)-10k MNLI(m)-392K
. o« o GPT-3 (Fine-Tune) 60.2 85.8 88.9 89.5
of r=1is sufficient GPT-3 (PrefixEmbed) 37.6 75.2 79.5 88.6
GPT-3 (PrefixLayer) 483 82.5 85.9 89.6
* LoRA performs well when GPT-3 (LoRA) 63.8 85.6 89.2 91.7
the dataset is large or
small
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PEFT for Transformer
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Figure inspired by / copied from He et al. (2022)



PEFT FOR VISION TRANSFORMER



PEFT for Vision Transformer

* Since Vision Transfomer is just another transformer model, we can apply LoRA directly to it
* (LNLoRA s just a variant that includes LayerNorm in the LoRALinear module.)

MLP Head
w/ LNLoRA

Class: Church) 4

Feature h € RNxd

) ] Transformer Encoder
\B € R¥*"4/ T —
+
rxk
/A€ R™KA\ Embedding —»1 2 )66 EL L6
LayerNorm &

2

Feature x € RV*k

[ Embedded |
Patches

Figure from https://arxiv.org/pdf/2401.01752.pdf



PEFT for Vision Transformer

* For various computer

19-Task Average Accuracy on VTAB-1k e o
J d vision tasks, parameter

~l
00
I

i e efficient transfer-learning
76 - A+ BitFit . -
¥ K o @ VPT (PETL) is sometimes better
%) v Adapter I _ I !
R7a- # e mer than full.ﬂne tunmg.
O ¥ LoRA  VTAB-1k is a collection of 19
< 72 ° R e different vision tasks; here
O - - FacT-TT (Ours) y .
D 70 - .- FacT-TK (Ours) we’'re seeing average
g , v performance across tasks
z % 4 * (FacT is another low-rank
o6 - method capable of
0 dramatically reducing the
64 - e L number of parameters
10 10 10 10 10
tuned.)

# trainable param (M)

53
Figure from https://ojs.aaai.org/index.php/AAAl/article/view/25187



