10-423/623: Generative Al
Lecture 12 —
Text-to-Image Generation

Henry Chai & Matt Gormley
10/7/24

Front Matter

10/7/24

* Announcements:

* HW?2 released 9423 9/24, due 10/7 (today!) at 11:59 PM
* HW3 released 10/7 (today!), due 10/23 at 11:59 PM

* You are not expected to work on HW3 over Fall Break
* Quiz 3 on 10/9 (Wednesday)

* Will cover Lectures 9 — 12 (only the RLHF/DPO

portion of today’s lecture)

Recall:
Reinforcement
Learning from

Human
Feedback

10/7/24

Step
Collect demonstration data,
and train a supervised policy.

Source: https://arxiv.org/pdf/2203.02155

A prompt s
sampled from our r_-..-l.----- -
prompt dataset. landing 0.4 & year old
Alabeler
demonstrates the @
desired output ;
behavior. —
This data is used FT
to fine-tune GPT-3 .;::,;;ﬁ-
with supervised ‘Q;vc.a«;?
learning. 2

':‘j = [

Step 2

Collect comparison data,
and train a reward model.

A prompt and
several model R .
outputs are '-"'-5| T'-‘ toad ~":" oid
sampled. o o

e o

A labeler ranks

the outputs from @
best to worst.

0-0-0:-0
This datais used .
to train our .}ﬁﬁ‘
reward model. \T:.»s.h;?
0-0-0-0

Step 3

Optimize a policy against
the reward model using
reinforcement learning.

A new prompt
is sampled from
the dataset.

The policy
generates
an output.

The reward model
calculates a
reward for

the output.

The reward is
used to update
the policy
using PPO.

™

Write a story
about frogs

\

PPO

&

Y

Once upon a time..,

:
&

Y
r

=

https://arxiv.org/pdf/2203.02155

Reinforcement
Learning:

Object of
Interest for
Fine-tuning
LLMs

10/7/24

* The LLM to be fine-tuned, m4(a | s)

* Specifies a distribution over next tokens given any input

sequence

— plaq|ss; @) = 7T¢(a1|5t)

— plazlsy; @) = my(az|se)
Model: s; — B0 .

— p(ajqlse) = my(aa]se)

* An episode T = {x, ay, S1, a4, ..., ST} is one completion of

the prompt x, ending in an EOS token

* The LLM induces a distribution over possible completions

qu(T) — p({aOisli all ---;ST} | X = SO)
T—-1

= 1_[Ty (atlse)

t=0

Objective function: £(¢) = —Ep,(m |[Rg(T)], the negative expected reward of a response

Tot(®) =V (~Ep,lRo(D]) = V4 | = [Ro(Dpg(T) aT

Likelihood
Ratio
Method = —Ep,»)|Re(T)V4(logpg (D)]

= — f Re (T)V(pqu(T)dT - — f RQ (T)V¢(108P¢(T))p¢(T)dT

a.k.a.
Wiliarme - IRERAGORICINCD)
1992)

(where T(V = {a(()"),sfn), a&"), . S((,)l)} is a sampled completion of x)
7M1

([ao e (T?’)") z V¢logn)‘ (n))

10/7/24

* There are two high-level modifications to get from
REINFORCE to proximal policy optimization (PPO):

1. Sampled trajectories/rewards can be highly variable,

: : which leads to unstable estimates of the expectation
Proximal Policy

S . * Instead of working with Ry, PPO considers a
Optimization o W e

trajectory’s advantage over some baseline

(Schulman et
al., 2017)

* The baseline is typically defined in terms of the

value function at each state in the trajectory

10/7/24 Source: https://arxiv.org/pdf/1707.06347

https://arxiv.org/pdf/1707.06347

* There are two high-level modifications to get from
REINFORCE to proximal policy optimization (PPO):

2. Policy gradient methods are on-policy: the policy

: . being optimized is also being used to generate the
Proximal Policy

D , trajectories used in training
Optimization

* This can also lead to instability/poor convergence if

(Schulman et
al., 2017)

the policy ever becomes bad

* Intuition: ensure that the policy remains “close to”

some policy known to be good

* In RLHF, we can just use the original

(instruction fine-tuned) LLM!

10/7/24 Source: https://arxiv.org/pdf/1707.06347

https://arxiv.org/pdf/1707.06347

training loss term:

Reinforcement
Learning from

£(¢p) = —Ep, (1) |Re(T) — B log
Human

Feedback:
PPO

_y[Ex ~ Dpretrain [log ngL

10/7/24

Source: https://arxiv.org/pdf/2203.02155

* Step 3 fine-tunes the LLM'’s parameters

using the PPO objective plus a pre-

g (T)

SFT (T)
()]

Step 3

Optimize a policy against
the reward model using
reinforcement learning.

A new prompt

is sampled from mhr o
the dataset. boutfrogs
The policy PPO
generates -,
an output.
Once upon & time.

The reward model :,,
calculates a
reward for %
the output. *
The reward is

—_—
used to update e
the policy
using PPO.

https://arxiv.org/pdf/2203.02155

Alright, so

what does all
of this get us?

10/7/24

Step1

Collect demonstration data,
and train a supervised policy.

A prompt is
sampled from our
prompt dataset.

A labeler
demonstrates the
desired output
behavior.

This data is used
to fine-tune GPT-3
with supervised
learning.

@)

Explain the moon

landing to a 6 year old

'

)

74
Some people went
to the moon...

'

&
2
BEEE

Source: https://arxiv.org/pdf/2203.02155

Step 2
Collect comparison data,
and train a reward model.
A prompt and
several model - -
outputs are landing 1o a & year old
sampled.
(2] e]
Lngpas govry Lot v
] (0]
georverrgoy () vespesdeg

A labeler ranks
the outputs from
best to worst.

This data is used
to train our
reward model.

ﬁ_J

RM

&

0°0-0-0

Step 3

Optimize a policy against
the reward model using
reinforcement learning.

A new prompt
is sampled from
the dataset.

The policy
generates
an output.

The reward model
calculates a
reward for

the output.

The reward is
used to update
the policy
using PPO.

S

Write a story
about frogs

\

PPO

&

Y

Once upon a time..,

:
&

Y
r

=

https://arxiv.org/pdf/2203.02155

* Reinforcement learning from human feedback

1. increases perceived helpfulness and harmlessness

Reinforcement

. Helpfulness Scores Harmlessness Scores (52B)
- 90%
ea rn I ng rO l I I Professional Writers
—8— Context Distilled +
3009 —e— static HH RLHF
H u m a n —¥— Online HH RLHF (52B) + >|< 80% ‘Z’
—4&— Online Helpful RLHF (52B) g
200 o
g
Feedback: 7o
. S 100 <
% — - 60% %
esults g <
R,
S
E
el
S
o
(@]

. ® - 50%
- 40%
—100 A
+ - 30%
—200 A

10° 10%°
Parameters

- 20%

10/7/24 Source: http://arxiv.org/abs/2204.05862

http://arxiv.org/abs/2204.05862

Reinforcement
Learning from

Human
Feedback:
Results

10/7/24

* Reinforcement learning from human feedback

1. increases perceived helpfulness and harmlessness

2. does not (significantly) decrease zero-shot or few-

shot performance on most tasks

Mean Zero-Shot Accuracy Mean Few-Shot Accuracy

—8— Plain Language Model 0.7 1 —®— Plain Language Model
061 o RLHF —o— RLHF
0.6

0.5 A
g g
< <05
T ©
> >
@ 0.4 O
C c
o 0.4
= =

0.3 | 03

0.2 1 0.2

107 108 109 1010 107 108 10° 1010
Number of Parameters Number of Parameters
Source: http://arxiv.org/abs/2204.05862 11

http://arxiv.org/abs/2204.05862

Man,
reinforcement
learning seems

hard; couldn’t
we do
something
easier?

10/7/24

Mean Eval Acc

* Reinforcement learning from human feedback

1. increases perceived helpfulness and harmlessness

2. does not (significantly) decrease zero-shot or few-

shot performance on most tasks

Mean Zero-Shot Accuracy

—8— Plain Language Model

0679 _o— RLHF

0.5
o
o)
<
H

0.4 1 w
c
©
(9]
=

0.3

0.2

107 108 10° 1010

Number of Parameters

Source: http://arxiv.org/abs/2204.05862

o
n

e
»

Mean Few-Shot Accuracy

-4 —@— Plain Language Model

—&— RLHF

107 108 10° 1010
Number of Parameters

http://arxiv.org/abs/2204.05862

* Intuition: in some sense, the reinforcement learning
problem we defined for fine-tuning LLMs to human
preferences is very “simple”

Direct * All of the dynamics (the state space, action space,

Preference transition function, reward model) are all known

Optimization a priori and deterministic
(Rafallov et al-r * ldea: instead of optimizing a learned reward model,
2023) fine-tune the LLM using the stated preferences directly

* Increase the likelihood of higher-ranking

responses, y,,, and decrease the likelihood of

lower-ranking responses, y;.

10/7/24 Source: https://arxiv.org/pdf/2305.18290 13

https://arxiv.org/pdf/2305.18290

- Assume there exists a (universal) latent reward model, 7,

that is responsible for the observed preferences according to

exp 1" (X, Y)

> =
o POw > Vi1 2) = e ey + exp 7 (x, 1)
I - If we knew this true reward model, the objective function
Preference o . -
o ! RLHF would try to optimize (without the pre-training loss) is
Optimization 1y (yx)
[* ¢
(Rafailov et al., (@) = ~Epyyix) |7 [(6 y) = Blog rsmm 1y

2023)

* It can be shown that the optimal policy satisfies

o O10) = 757 O exp (52

for some normalizing factor Z(x)
10/7/24 Source: https://arxiv.org/pdf/2305.18290

https://arxiv.org/pdf/2305.18290

- Assume there exists a (universal) latent reward model, 7,

that is responsible for the observed preferences according to

exp 1" (X, Y)

> =
o POw > Vi1 2) = e ey + exp 7 (x, 1)
I - If we knew this true reward model, the objective function
Preference o . -
o ! RLHF would try to optimize (without the pre-training loss) is
Optimization 1y (yx)
[* ¢
(Rafailov et al., (@) = ~Epyyix) |7 [(6 y) = Blog rsmm 1y

2023)

* It can be shown that the optimal policy satisfies

1 “(x,
g O10) = =TT () exp (’" (; 4))

solving this for r* and plugging it into the probability above...
10/7/24 Source: https://arxiv.org/pdf/2305.18290

15

https://arxiv.org/pdf/2305.18290

- Assume that the LLM TT gy

is responsible for the observed preferences according to

PO >y 1 x) =

Direct :

Preference e (yi|x) T+ (Yw|x)
1+exp|p 108n5FT(yl|x) plog o FT (y,, | %)

Optimization
(Rafailov et al.,
2023) - Key takeaway: we can directly optimize the LLM parameters,

* “Your language model is secretly a reward model”

¢, by maximizing this probability over samples (x, y,,, ¥,)

from the human labelled preferences dataset D!

10/7/24 Source: https://arxiv.org/pdf/2305.18290 16

https://arxiv.org/pdf/2305.18290

Direct
Preference

Optimization
(Rafailov et al.,
2023)

10/7/24

Anthropic-HH Dialogue Win Rate vs Chosen

TL:DR Summarization Win Rate vs Reference

4= DPO =4=— Preferred-FT =—4— GPT-
—f— PPO —— SFT —f— Best of 128

0.7 1

Win rate
Win rate

1 T
0.2 1
== DPO == Preferred-FT

wf= Best of 128 === Pythia-2.8B

0.00 0.25 0.50 0.75 1.00 0.25 050 0.75 1.00

Sampling temperature Sampling temperature
* “For summarization, we use reference summaries in the test
set as the baseline; for dialogue, we use the preferred

response in the test dataset as the baseline”

* Key caveat: “we evaluate algorithms with their win rate

against a baseline policy, using GPT-4 as a proxy for human

evaluation...”
Source: https://arxiv.org/pdf/2305.18290

17

https://arxiv.org/pdf/2305.18290

Image

Generation

10/7/24

Prompt: A propaganda poster depicting
a cat dressed as french emperor

napoleon holding a piece of cheese.

* Given a text description, sample

an image that depicts the prompt

Source: https://arxiv.org/pdf/2307.01952.pdf

* Class-conditional

generation

* Super resolution
* Image Editing
* Style transfer

- Text-to-image (TTI)

generation

18

https://arxiv.org/pdf/2307.01952.pdf

Timeline: Text-

to-lmage
Generation

10/7/24

® PARTI-20B 20B

® DALLE 10B

® eDiff-l
® |magen

® GAN method
® Muse3B

Transformer method .
¢ ® Cogview2 g \11se900M

® Glide ® DALLE? 5B
. Diffusion method ® Make-a-scene ® Re-Imagen*
S Ceqnen ® PARTI-3B
@ ControlNet
® DM
® SD 1B
® GigaGAN
® PARTI-750M
® DALLE-MINI 0.5B
® VQ-Diffusion*
® PARTI-350M
® GALIP
® LAFITE 0.1B
® XMC-GAN @ VQ-Diffusion-S*
® BridgeGAN
® StackGAN ® StackGAN++ ® ObjGAN
® GAN-CLS ® StyleGAN ® AttnGAN ® DMGAN 0B
2016 2018 2020 2022

Fig. 5. Timeline of TTI model development, where green dots are GAN TTI models, blue dots are autoregressive Transformers and orange dots
are Diffusion TTI models. Models are separated by their parameter, which are in general counted for all their components. Models with asterisk are

calculated without the involvement of their text encoders.

Source: http://arxiv.org/abs/2309.00810

19

http://arxiv.org/abs/2309.00810

Appending a label embedding
to the input of both the
generator and discriminator
allows GANs to generate
specific classes of images

x = Gy(2)

real image

D,

Dg(x")
Discriminator
w /' =log(1- Dy(Gy(2)))
¢ \
D, L=]+]

Dy (x)
Discriminator
J =1log(Dy(x))

Class-conditional GANs

10/7/24

20

This flower has small, round violet

This flower has small, round violet
petals with a dark purple center

petals with a dark purple center

Discriminator Network

Generator Network

Figure 2. Our text-conditional convolutional GAN architecture. Text encoding (t) is used by both generator and discriminator. It is
projected to a lower-dimensions and depth concatenated with image feature maps for further stages of convolutional processing.

Generative adversarial text to

image synthesis

10/7/24 Source:

21

https://arxiv.org/pdf/1605.05396

Pathways

/ ViT-VQGAN
Auto re g re SS |Ve et rod Transformer Decoder S ____; |mag(;Te Def;okel;izer |
TeXt-tO- I m a ge | | . f Image Tt)kenizer i
. rain (Transformer)
(Parti 00 ohnn 0 veEES
t b s <sos> iy g fag: ot | |

Two dogs running in a field

10/7/24 Source: https://arxiv.org/pdf/2206.10789

https://arxiv.org/pdf/2206.10789

Pathways
Autoregressive

Text-to-lmage
(Parti):

Step 1. Image
Tokenization

10/7/24

ViT-VQGAN

Image Detokenizer
(Transformer)

i

Image Tokenizer
(Transformer)

https://arxiv.org/pdf/2110.04627

* ldea: treat the task of text-to-image generation
as a sequence-to-sequence task over different

(/R
token spaces (one for text and one for images) v‘@;‘q,\.

g 12 13 <EeOS>------ | o’ - ’; :’\
Inferénce ViT-VQGANI
Pathways » Transformer Decoder . e ge Delokem =
. Transformer Encoder —I > s
Autoregressive = r . J, A
|
Text-to-Image ﬁ ﬁ ﬁ T g T .,
(Parti): ty to tn <S0S> 2 19 L M &= |
° ° ° 1 _ _ _ | "A ’:. Q !
Step pl Trammg Start with an off-the-shelf text-encoder vﬁ»‘
pretrained using a BERT-style objective - o
A q

(masked language modelling)

10/7/24 Source: https://arxiv.org/pdf/2206.10789

24

https://arxiv.org/pdf/2206.10789

* ldea: treat the task of text-to-image generation
as a sequence-to-sequence task over different

token spaces (one for text and one for images)

11 zTg ‘lTs <eos>
Pa t h WayS Transformer Decoder
: Transformer Encoder
Autoregressive Foro . H mage Tokenizer
Text-to-Image 10 [ﬁ ﬁ ﬁ ﬁ bl T
(Pa rt|) t b ty <sos> iy i bar o - .
Two dogs running in a field £) ‘

Step 2. Training

* Training data consists of (caption, image) pairs '

- Images are tokenized and the decoder is

trained to predict the next image-token
10/7/24 Source: https://arxiv.org/pdf/2206.10789

25

https://arxiv.org/pdf/2206.10789

* ldea: treat the task of text-to-image generation
as a sequence-to-sequence task over different

token spaces (one for text and one for images)

[T S
: VIiT-VQGAN
Pat h WayS {) Transformer Decoder e _____ (Image Detokenizer]
: Transformer Encoder (Transformer)

Autoregressive J
Text-to-Image ﬁ ﬁ ﬁ ﬁ ﬁ E| ﬁ
(Pa rti) : t; to tw <s0s> 1 i9 i

B. A portrait of a statue of the Egyptian god Anubis wearing avia-
St e p 3 . tor goggles, white t-shirt and leather jucket. The city of Los Ange-

lex is in the background. Hi-rex DSLR photograph.

Generation * To perform generation, tokens are sampled from the

decoder iteratively until the EOS token is generated. Then

the sequence is then passed into the trained detokenizer.
10/7/24 Source: https://arxiv.org/pdf/2206.10789

26

https://arxiv.org/pdf/2206.10789

Latent

Diffusion
Models

10/7/24

* Issue: diffusion models typically operate in pixel space

where training and inference are both incredibly slow
* Training:
* Guided Diffusion: 150 — 1000 V100 days
* Imagen: 256 TPU-v4s for 4 days = 1000 TPU days
* Inference:

* Guided Diffusion: 50k samples in 5 days on A100

27

Latent

Diffusion
Models

10/7/24

* Issue: diffusion models typically operate in pixel space

where training and inference are both incredibly slow

* Idea: instead of working in pixel space, first project the

images down to some lower-dimensional latent space,

then fit a diffusion model in this latent space
* This also makes conditioning the diffusion model on

arbitrary vector inputs y (e.g., embedded captions)

much faster

* Conditioning can be done via cross-attention in the

UNet layers

28

128 6 64 2
tput

N |+ _| |segmentation

EEEIE

Hl ﬂHI

I:LII EI-HI zomea

~+ copy and cmn
I‘“._’ E-D“l '"““Fm 22
! D 2

UNet with cross-attention

po(z7) po(Z7-1l2ZT, J’) Pe(zt|zt+1»57)

<

To

ol Jolo

y

an orange cat in

a field of grass
qd)(ZTlZT 1)

q¢(Z¢+112¢)

QW W0

pO(ZOlzliy) D

X

&

Q¢(Z1|Zo)

Latent Diffusion Models

10/7/24 Figure courtesy of Matt Gormley

29

* The autoencoder projects high dimensional images (e.g.,
1024x1024 pixels) down to a lower-dimensional latent
space and faithfully projects back up to pixel space

* The original LDM paper considered two options:
1. a VAE-like model (regularizes the latent distribution

towards a Gaussian)

2. a VQGAN (performs vector quantization in the
decoder i.e., uses a discrete codebook)

* This model is trained ahead of time just on raw images
and then kept frozen while training the LDM

LDMs: Autoencoder

/ Pixel Space \

10/7/24 Source:

30

https://arxiv.org/pdf/2112.10752

10/7/24

/ Latent Space

K Q¢(ZT|ZT 1) Q¢(Zt+1|zt) CI¢(Z1|

po(zr) pe(Z7-1lZT) po(z¢|zetq) po(zylz,)

zy

LDMs: DDPM

Figure courtesy of Matt Gormley

31

<

10/7/24

~

Latent Space

___/

CI¢(ZT|ZT 1) Q¢(Zt+1|zt) CI¢(Z1|

~

po(zr) po(Z7_1lZT,P) Po(Z¢|ze 41, 9) po(zolzy,9)

zy

LDMs: Conditioning

Figure courtesy of Matt Gormley

32

<

To

y

* The prompt model is just an encoder-only transformer

po(zr) po(Z7-1lZT,P) Po(Z|zp41,9) po(Zolzq, D)

* The parameters are trained alongside the diffusion model’s parameters

|

an orange cat in * The objective is to learn representations of the text prompts that
a field of grass

meaningfully inform/guide the latent diffusion model

LDMs: Prompt Model

10/7/24 Figure courtesy of Matt Gormley

33

po(zr) po(Z7-1lZT,P) Po(Z|zp41,9) po(Zolzq, D)

-

(Learned) Reverse Process:

~

(), Xo(2t,t))
/

3
Na)
—~
N
~
—_
N
~
<
/N
<
N—"
N——"
=
=
D
VS
N
~
\.@F
N

T
po(z1.1) = po(Zr H (2e—1 | 2¢,79(y))
\ t=1

LDMs: Prompt Model

10/7/24 Figure courtesy of Matt Gormley

Recall:
Parameterizing

the Learned

Reverse Process

10/7/24

" Do (Xe—1|xp) ~ N(HG (x¢, £), Zg (e, t))

- ldea #1: Rather than learn Zy(x;, t), just use what we

know about q(x_q|x:, xg) ~ N(ﬁq (x4, %), 021) and set

Zg(xt,) — O-tI

- Idea #2: We want g (x;, t) to be close to fi, (x¢, x¢)

* Option C: Learn a network that approximates the €

that gave rise to x; from x, in the forward process:

tg(xg, t) = a(o) (O) (x¢,t) + a(t)

xe + (1 — ap)eg(xe, t)

a¢

where x,)(xt, t) =

where €g(x;,t) = UNetg(xy, t)

35

Parameterizing

the Learned
Conditional
Reverse Process

10/7/24

"Po(Xp_q]xt) ~ N (.Ue (xt» t,Tg (Y))»Ze(xt; t))

- ldea #1: Rather than learn Z4(x;, t), just use what we

know about q(x;_{|x¢, Xo) ~ N(ﬁq (x4, %), 021) and set

Zg(xtl t) — O-t'ZI

+ Idea #2: We want ug(x;,t, 7g(y)) to be close to fig(xe, x0)

* Option C: Learn a network that approximates the €

that gave rise to x; from x, in the forward process:

o (%0, t,70(1) = a V%0 (xp, t, 7o) + aVx,

Xt + (1 o C_(t)EH (xt; t,To (y))

where xgo) (x0,t,7(¥)) =

A

where €5(x;,t,79(y)) = UNetg(x,, t, 79(y))

36

* The noise model includes €6 (xt' t,Tg (3’)) = UNetg(xt, t, Te()’))

1 64 64
cross attention (yellow Ti1
_input utput
boxes) between the UNet image oo S i b e entation
. 2l & = = map
layers and the representation SEE ‘EEE
of the prompt text Vo
256 128
* During training we optimize
. 3 E E
both the parameters of the : }
256 256 512 256
UNet noise model and the g) a1 1) | conv3a,Rel
T s s 1024 512 C =+ copy and crop
parameters of the LLM %|M|—.g e § max pool 2x2
i > S — i # up-conv 2x2
simultaneously L = conv 1x1

LDM: Noise Model

10/7/24 Figure courtesy of Matt Gormley

QK7
Vi

X' = AV = softmax
softmax(S)

A
S
Q

v

4
Asoftmax ‘ / / //\]

IIIIII/I\IIIIIIII

-
O
e

-

Q
=
<
)

@

-
e

O

S
al
o

O
O
®)
i

(O

O
V)
(O

O

Q
oC

38

10/7/24

QK7
Vi

(

X' = AV = softmax
softmax(S)

A=

QK"

Vi
W,

v

r 1
softmax / / /|

(T1T11 COIT] CO117

N

-
O
)

-

Q
=
<
e

Q
V)

39

10/7/24

Y' = AV = softmax (—) |74

A = softmax(S)

KT
g = 9K
V di
W —
i =YW,
ke,
([T
w, v,

Xq X X3 Xy
LTI bt ry bty £l

Cross Attention

10/7/24 40

QKT
Y' = AV = softmax| — |V

I

A = softmax(S)

KT
5= Y8
vV dx
Wi Q=YW,
ky
| []
w, v,

X4 X, X5 X4
(1) ity ety tirfl

| ome](on] [}

LDMs: Cross Attention

10/7/24 41

* The cross-attention in the UNet is

placed within a larger Transformer block

T
Attention(Q, K, V) = softmax (225) - V/, with input Rhxwxe
| . . LayerNorm RAXwXc
Q= Wé—;) coi(ze), K=WY -19(y), V=W m(y). Convlxl Rhxwxdny
Reshape RA-wXdnp
i . . : hwxdn
Here, ;(z;) € RV*X9¢ denotes a (flattened) intermediate SelfAttention % o d.nz
representation of the UNet implementing €y and W‘(,“) € xT'q MLP RA-wxd-ny,
; (i) (i) CrossAttention
R e, W, € R4 & W, € R™ % are learnable pro- Reshape RhXwxd-np
Convlixl RAXwXc

jection matrices [36,97].

10/7/24

x1 xz x3 x4

Y1 Y2 Y3
[1]

[T L] L]

on [omae | et | [0
LDMs: Cross Attention

Source:

42

https://arxiv.org/pdf/2112.10752

Text-to-Image Synthesis on LAION. 1.45B Model.

‘A street sign that reads ‘A zombie in the ‘An image of an animal ‘An illustration of a slightly ‘A painting of a "A watercolor painting of a ‘A shirt with the inscription:

“Latent Diffusion™ "’ style of Picasso’ half mouse half octopus’ conscious neural network’ squirrel eating a burger’ chair that looks like an octopus’ “I love generative models!” '

LATENT
DIFFUSION

Generative
Models!

IFFUSION _

i . R 2 ’

Figure 5. Samples for user-defined text prompts from our model for text-to-image synthesis, LDM-8 (KL), which was trained on the
LAION [7#] database. Samples generated with 200 DDIM steps and 7 = 1.0. We use unconditional guidance [5”] with s = 10.0.

LDMs: Results

10/7/24 Source: h :/larxiv.or f/2112.10752

https://arxiv.org/pdf/2112.10752

10/7/24

ours (f = 4) DALL-E (f = 9) VQGAN (f = 16)
PSNR: 27.4 R-FID: 0.58 ,. PSNR: 22.8 R-FID: 32.01 PSNR: 19.9 R-FID: 4.98

Source:

LDMs: Results

44

https://arxiv.org/pdf/2112.10752

- Key takeaway: LDMs can

Text-Conditional Image Synthesis

generate very high-quality

Method FID | ISt Nparams

ima ges (i n terms of FID / IS CogViewT [17] 27.10 18.20 4B self-ranking, rejection rate 0.017
LAFITET [109] 26.94 26.02 75M

SCO res) Wlth m a ny fewer GLIDE* [59] 12.24 - 6B 277 DDIM StEpS, G.f.g. [32] s =43
Make-A-Scene* [26] 1184 - 4B c.f.g for AR models [V5] s = 5

parameters than competing LDM-KL-8 2331 20.03+03 145B 250 DDIM steps
LDM-KL-8-G* 1263 30.29+0.02 145B 250 DDIM steps, c.f.g. [32] s = 1.5

models because the most
Table 2. Evaluation of text-conditional image synthesis on the

computationally intensive step 956 956.sized MS-COCO [51] dataset: with 250 DDIM [5-]
happens in low dimensional steps our model is on par with the most recent diffusion [5Y] and

autoregressive [20] methods despite using significantly less pa-

latent space, instead of high rameters. '/*:Numbers from [109]/ [26]

dimensional pixel space

LDMs: Results

10/7/24 Source:

45

https://arxiv.org/pdf/2112.10752

	Slide 1: 10-423/623: Generative AI Lecture 12 – Text-to-Image Generation
	Slide 2: Front Matter
	Slide 3: Recall: Reinforcement Learning from Human Feedback
	Slide 4: Reinforcement Learning: Object of Interest for Fine-tuning LLMs
	Slide 5: Likelihood Ratio Method a.k.a. REINFORCE (Williams, 1992)
	Slide 6: Proximal Policy Optimization (Schulman et al., 2017)
	Slide 7: Proximal Policy Optimization (Schulman et al., 2017)
	Slide 8: Reinforcement Learning from Human Feedback: PPO
	Slide 9: Alright, so what does all of this get us?
	Slide 10: Reinforcement Learning from Human Feedback: Results
	Slide 11: Reinforcement Learning from Human Feedback: Results
	Slide 12: Man, reinforcement learning seems hard; couldn’t we do something easier?
	Slide 13: Direct Preference Optimization (Rafailov et al., 2023)
	Slide 14: Direct Preference Optimization (Rafailov et al., 2023)
	Slide 15: Direct Preference Optimization (Rafailov et al., 2023)
	Slide 16: Direct Preference Optimization (Rafailov et al., 2023)
	Slide 17: Direct Preference Optimization (Rafailov et al., 2023)
	Slide 18: Image Generation
	Slide 19: Timeline: Text-to-Image Generation
	Slide 20: Class-conditional GANs
	Slide 21: Generative adversarial text to image synthesis
	Slide 22: Pathways Autoregressive Text-to-Image (Parti)
	Slide 23: Pathways Autoregressive Text-to-Image (Parti): Step 1. Image Tokenization
	Slide 24: Pathways Autoregressive Text-to-Image (Parti): Step 2. Training
	Slide 25: Pathways Autoregressive Text-to-Image (Parti): Step 2. Training
	Slide 26: Pathways Autoregressive Text-to-Image (Parti): Step 3. Generation
	Slide 27: Latent Diffusion Models
	Slide 28: Latent Diffusion Models
	Slide 29: Latent Diffusion Models
	Slide 30: LDMs: Autoencoder
	Slide 31: LDMs: DDPM
	Slide 32: LDMs: Conditioning
	Slide 33: LDMs: Prompt Model
	Slide 34: LDMs: Prompt Model
	Slide 35: Recall: Parameterizing the Learned Reverse Process
	Slide 36: Parameterizing the Learned Conditional Reverse Process
	Slide 37: LDM: Noise Model
	Slide 38: Recall: Scaled Dot-Product Attention
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45

