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Front Matter

 Announcements: 

 HW2 released 9/23 9/24, due 10/7 (today!) at 11:59 PM

 HW3 released 10/7 (today!), due 10/23 at 11:59 PM

 You are not expected to work on HW3 over Fall Break

 Quiz 3 on 10/9 (Wednesday)

 Will cover Lectures 9 – 12 (only the RLHF/DPO 

portion of today’s lecture)
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Recall: 
Reinforcement 
Learning from 
Human 
Feedback 

10/7/24 3Source: https://arxiv.org/pdf/2203.02155 

https://arxiv.org/pdf/2203.02155


Reinforcement 
Learning: 
Object of 
Interest for 
Fine-tuning 
LLMs

 The LLM to be fine-tuned, 𝜋𝜙 𝑎 𝑠

 Specifies a distribution over next tokens given any input 

sequence

 An episode Τ = 𝑥, 𝑎0, 𝑠1, 𝑎1, … , 𝑠𝑇  is one completion of 

the prompt 𝑥, ending in an EOS token

 The LLM induces a distribution over possible completions

𝑝𝜙 Τ = 𝑝 𝑎0, 𝑠1, 𝑎1, … , 𝑠𝑇  | 𝑥 ≔ 𝑠0

𝑝Θ Τ = ෑ

𝑡=0

𝑇−1

𝜋𝜙 𝑎𝑡 𝑠𝑡
410/7/24

𝑠𝑡 𝜙

𝑝 𝑎1|𝑠𝑡; 𝜙 ≔ 𝜋𝜙 𝑎1 𝑠𝑡

𝑝 𝑎2|𝑠𝑡; 𝜙 ≔ 𝜋𝜙 𝑎2 𝑠𝑡

𝑝 𝑎 𝒜 |𝑠𝑡; 𝜙 ≔ 𝜋𝜙 𝑎 𝒜 𝑠𝑡

⋮
Model:



Likelihood 
Ratio 
Method 
a.k.a. 
REINFORCE 
(Williams, 
1992)
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Objective function: ℓ 𝜙 = −𝔼𝑝𝜙 Τ 𝑅𝜃 Τ , the negative expected reward of a response

∇𝜙ℓ 𝜙 = ∇𝜙 −𝔼𝑝𝜙 Τ 𝑅𝜃 Τ = ∇𝜙 − න 𝑅𝜃 Τ 𝑝𝜙 Τ 𝑑Τ

∇𝜙ℓ 𝜙 = − න 𝑅𝜃 Τ ∇𝜙𝑝𝜙 Τ 𝑑Τ = − න 𝑅𝜃 Τ ∇𝜙 log 𝑝𝜙 Τ 𝑝𝜙 Τ 𝑑Τ

∇𝜙ℓ 𝜙 = −𝔼𝑝𝜙 Τ 𝑅𝜃 Τ ∇𝜙 log 𝑝𝜙 Τ

∇𝜙ℓ 𝜙 ≈ −
1

𝑁
෍

𝑛=1

𝑁

𝑅𝜃 Τ 𝑛 ∇𝜙 log 𝑝𝜙 Τ 𝑛

(where Τ 𝑛 = 𝑎0
𝑛

, 𝑠1
𝑛

, 𝑎1
𝑛

, … , 𝑠
𝑇 𝑛

𝑛  is a sampled completion of 𝑥)

∇𝜙ℓ 𝜙 = −
1

𝑁
෍

𝑛=1

𝑁

𝑟𝜃 𝑥, 𝑎0
𝑛

, … , 𝑎
𝑇 𝑛
𝑛

෍

𝑡=0

𝑇 𝑛 −1

∇𝜙 log 𝜋𝜙 𝑎𝑡
𝑛

𝑠𝑡
𝑛



Proximal Policy 
Optimization 
(Schulman et 
al., 2017) 
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 There are two high-level modifications to get from 

REINFORCE to proximal policy optimization (PPO): 

1. Sampled trajectories/rewards can be highly variable, 

which leads to unstable estimates of the expectation

 Instead of working with 𝑅𝜃, PPO considers a 

trajectory’s advantage over some baseline

 The baseline is typically defined in terms of the 

value function at each state in the trajectory

Source: https://arxiv.org/pdf/1707.06347 

https://arxiv.org/pdf/1707.06347


Proximal Policy 
Optimization 
(Schulman et 
al., 2017) 
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 There are two high-level modifications to get from 

REINFORCE to proximal policy optimization (PPO): 

2. Policy gradient methods are on-policy: the policy 

being optimized is also being used to generate the 

trajectories used in training

 This can also lead to instability/poor convergence if 

the policy ever becomes bad

 Intuition: ensure that the policy remains “close to” 

some policy known to be good

 In RLHF, we can just use the original 

(instruction fine-tuned) LLM! 

Source: https://arxiv.org/pdf/1707.06347 

https://arxiv.org/pdf/1707.06347


Reinforcement 
Learning from 
Human 
Feedback: 
PPO

10/7/24 8Source: https://arxiv.org/pdf/2203.02155 

• Step 3 fine-tunes the LLM’s parameters 

using the PPO objective plus a pre-

training loss term:

ℓ 𝜙 = −𝔼𝑝𝜙 Τ 𝑅𝜃 Τ − 𝛽 log
𝜋𝜙

𝑅𝐿 Τ

𝜋𝑆𝐹𝑇 Τ

ℓ 𝜙 = −𝛾𝔼𝑥 ∼ 𝐷𝑝𝑟𝑒𝑡𝑟𝑎𝑖𝑛
log 𝜋𝜙

𝑅𝐿 x

https://arxiv.org/pdf/2203.02155


Alright, so 
what does all 
of this get us?

10/7/24 9Source: https://arxiv.org/pdf/2203.02155 

https://arxiv.org/pdf/2203.02155


Reinforcement 
Learning from 
Human 
Feedback: 
Results

 Reinforcement learning from human feedback

1. increases perceived helpfulness and harmlessness

10/7/24 10Source: http://arxiv.org/abs/2204.05862 

http://arxiv.org/abs/2204.05862


Reinforcement 
Learning from 
Human 
Feedback: 
Results
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 Reinforcement learning from human feedback

1. increases perceived helpfulness and harmlessness

2. does not (significantly) decrease zero-shot or few-

shot performance on most tasks

http://arxiv.org/abs/2204.05862


Man, 
reinforcement 
learning seems 
hard; couldn’t 
we do 
something 
easier?
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 Reinforcement learning from human feedback

1. increases perceived helpfulness and harmlessness

2. does not (significantly) decrease zero-shot or few-

shot performance on most tasks

http://arxiv.org/abs/2204.05862


Direct 
Preference 
Optimization 
(Rafailov et al., 
2023) 

 Intuition: in some sense, the reinforcement learning 

problem we defined for fine-tuning LLMs to human 

preferences is very “simple”

 All of the dynamics (the state space, action space, 

transition function, reward model) are all known 

a priori and deterministic

 Idea: instead of optimizing a learned reward model, 

fine-tune the LLM using the stated preferences directly 

 Increase the likelihood of higher-ranking 

responses, 𝑦𝑤, and decrease the likelihood of 

lower-ranking responses, 𝑦𝑙.

10/7/24 13Source: https://arxiv.org/pdf/2305.18290 

https://arxiv.org/pdf/2305.18290


Direct 
Preference 
Optimization 
(Rafailov et al., 
2023) 

 Assume there exists a (universal) latent reward model, 𝑟∗, 

that is responsible for the observed preferences according to

𝑝 𝑦𝑤 ≻ 𝑦𝑙 | 𝑥 =
exp 𝑟∗ 𝑥, 𝑦𝑤

exp 𝑟∗ 𝑥, 𝑦𝑤 + exp 𝑟∗ 𝑥, 𝑦𝑙

 If we knew this true reward model, the objective function 

RLHF would try to optimize (without the pre-training loss) is

ℓ 𝜙 = −𝔼𝑝𝜙 𝑦|𝑥 𝑟∗ 𝑥, 𝑦 − 𝛽 log
𝜋𝜙 𝑦|𝑥

𝜋𝑆𝐹𝑇 𝑦|𝑥

 It can be shown that the optimal policy satisfies 

𝜋𝜙∗ 𝑦|𝑥 =
1

𝑍 𝑥
𝜋𝑆𝐹𝑇 𝑦|𝑥 exp

𝑟∗ 𝑥, 𝑦

𝛽

for some normalizing factor 𝑍 𝑥
10/7/24 14Source: https://arxiv.org/pdf/2305.18290 

https://arxiv.org/pdf/2305.18290


Direct 
Preference 
Optimization 
(Rafailov et al., 
2023) 

 Assume there exists a (universal) latent reward model, 𝑟∗, 

that is responsible for the observed preferences according to

𝑝 𝑦𝑤 ≻ 𝑦𝑙 | 𝑥 =
exp 𝑟∗ 𝑥, 𝑦𝑤

exp 𝑟∗ 𝑥, 𝑦𝑤 + exp 𝑟∗ 𝑥, 𝑦𝑙

 If we knew this true reward model, the objective function 

RLHF would try to optimize (without the pre-training loss) is

ℓ 𝜙 = −𝔼𝑝𝜙 𝑦|𝑥 𝑟∗ 𝑥, 𝑦 − 𝛽 log
𝜋𝜙 𝑦|𝑥

𝜋𝑆𝐹𝑇 𝑦|𝑥

 It can be shown that the optimal policy satisfies 

𝜋𝜙∗ 𝑦|𝑥 =
1

𝑍 𝑥
𝜋𝑆𝐹𝑇 𝑦|𝑥 exp

𝑟∗ 𝑥, 𝑦

𝛽

solving this for 𝑟∗ and plugging it into the probability above… 
10/7/24 15Source: https://arxiv.org/pdf/2305.18290 

https://arxiv.org/pdf/2305.18290


Direct 
Preference 
Optimization 
(Rafailov et al., 
2023) 
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 Assume that the LLM 𝜋𝜙∗  

that is responsible for the observed preferences according to 

𝑝 𝑦𝑤 ≻ 𝑦𝑙  | 𝑥 =

1

1 + exp 𝛽 log
𝜋𝜙∗ 𝑦𝑙|𝑥

𝜋𝑆𝐹𝑇 𝑦𝑙|𝑥
− 𝛽 log

𝜋𝜙∗ 𝑦𝑤|𝑥

𝜋𝑆𝐹𝑇 𝑦𝑤|𝑥

 “Your language model is secretly a reward model”

 Key takeaway: we can directly optimize the LLM parameters, 

𝜙, by maximizing this probability over samples 𝑥, 𝑦𝑤 , 𝑦𝑙  

from the human labelled preferences dataset 𝒟!

https://arxiv.org/pdf/2305.18290


Direct 
Preference 
Optimization 
(Rafailov et al., 
2023) 

10/7/24 17Source: https://arxiv.org/pdf/2305.18290 

• “For summarization, we use reference summaries in the test 

set as the baseline; for dialogue, we use the preferred 

response in the test dataset as the baseline” 

• Key caveat: “we evaluate algorithms with their win rate 

against a baseline policy, using GPT-4 as a proxy for human 

evaluation…”

https://arxiv.org/pdf/2305.18290


Image 
Generation

1810/7/24 Source: https://arxiv.org/pdf/2307.01952.pdf 

 Class-conditional 

generation

 Super resolution

 Image Editing

 Style transfer

 Text-to-image (TTI) 

generation
• Given a text description, sample 

an image that depicts the prompt

Prompt: A propaganda poster depicting 

a cat dressed as french emperor 

napoleon holding a piece of cheese.

https://arxiv.org/pdf/2307.01952.pdf


Timeline: Text-
to-Image 
Generation

19Source: http://arxiv.org/abs/2309.00810 10/7/24

http://arxiv.org/abs/2309.00810


Class-conditional GANs
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Generator

fake image

real image

Discriminator

Discriminator

p(real | image)

𝐷𝜙 𝒙′
𝒙′  =  𝐺𝜃(𝒛)𝐺𝜃

p(real | image)

𝐷𝜙

𝒙 ~ 𝒟

𝑦 = 1

𝑦 = 0

𝐽′ = log(1 –  𝐷𝜙(𝐺𝜃(𝒛)))

𝐽 = log(𝐷𝜙(𝒙))

ℒ =  𝐽 + 𝐽’

𝜃 𝜙

𝐷𝜙

𝐷𝜙 𝒙

label

Appending a label embedding 
to the input of both the 
generator and discriminator 
allows GANs to generate 
specific classes of images

𝒛 ∼ 𝑝𝑛𝑜𝑖𝑠𝑒



Generative adversarial text to 
image synthesis

10/7/24 21Source: https://arxiv.org/pdf/1605.05396 

https://arxiv.org/pdf/1605.05396


Pathways 
Autoregressive 
Text-to-Image 
(Parti)

10/7/24 22Source: https://arxiv.org/pdf/2206.10789 

https://arxiv.org/pdf/2206.10789


Pathways 
Autoregressive 
Text-to-Image 
(Parti): 
Step 1. Image 
Tokenization

10/7/24 23Source: https://arxiv.org/pdf/2110.04627 

https://arxiv.org/pdf/2110.04627


Pathways 
Autoregressive 
Text-to-Image 
(Parti): 
Step 2. Training

10/7/24 24Source: https://arxiv.org/pdf/2206.10789 

 Idea: treat the task of text-to-image generation 

as a sequence-to-sequence task over different 

token spaces (one for text and one for images) 

 Start with an off-the-shelf text-encoder 

pretrained using a BERT-style objective 

(masked language modelling)

https://arxiv.org/pdf/2206.10789


Pathways 
Autoregressive 
Text-to-Image 
(Parti): 
Step 2. Training

10/7/24 25Source: https://arxiv.org/pdf/2206.10789 

 Idea: treat the task of text-to-image generation 

as a sequence-to-sequence task over different 

token spaces (one for text and one for images) 

 Training data consists of (caption, image) pairs

 Images are tokenized and the decoder is 

trained to predict the next image-token

https://arxiv.org/pdf/2206.10789


Pathways 
Autoregressive 
Text-to-Image 
(Parti): 
Step 3. 
Generation
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 Idea: treat the task of text-to-image generation 

as a sequence-to-sequence task over different 

token spaces (one for text and one for images) 

 To perform generation, tokens are sampled from the 

decoder iteratively until the EOS token is generated. Then 

the sequence is then passed into the trained detokenizer.  

https://arxiv.org/pdf/2206.10789


Latent 
Diffusion 
Models

 Issue: diffusion models typically operate in pixel space 

where training and inference are both incredibly slow

 Training: 

 Guided Diffusion: 150 – 1000 V100 days 

 Imagen: 256 TPU-v4s for 4 days = 1000 TPU days

 Inference:

 Guided Diffusion: 50k samples in 5 days on A100
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Latent 
Diffusion 
Models
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 Issue: diffusion models typically operate in pixel space 

where training and inference are both incredibly slow

 Idea: instead of working in pixel space, first project the 

images down to some lower-dimensional latent space, 

then fit a diffusion model in this latent space

 This also makes conditioning the diffusion model on 

arbitrary vector inputs 𝑦 (e.g., embedded captions) 

much faster 

 Conditioning can be done via cross-attention in the 

UNet layers



Latent Diffusion Models
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𝒛𝑇−1 𝒛0𝒛𝑡𝒛𝑡+1… 𝒛1…𝒛𝑇

… …

Encoder

Decoder

LLM

an orange cat in 
a field of grass

𝒛𝑇−1 𝒛0𝒛𝑡𝒛𝑡+1 𝒛1𝒛𝑇

𝑞𝜙 𝒛𝑡+1 𝒛𝑡 𝑞𝜙 𝒛1 𝒛0𝑞𝜙 𝒛𝑇 𝒛𝑇−1

𝑝𝜃 𝒛0 𝒛1, ො𝑦𝑝𝜃 𝒛𝑡 𝒛𝑡+1, ො𝑦𝑝𝜃 𝒛𝑇−1 𝒛𝑇, ො𝑦

𝑦

𝜏𝜃

ො𝑦

𝑝𝜃 𝒛𝑇

UNet with cross-attention

Figure courtesy of Matt Gormley

𝑥

෤𝑥



LDMs: Autoencoder
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𝒛𝑇−1 𝒛0𝒛𝑡𝒛𝑡+1… 𝒛1…𝒛𝑇

… …

Encoder

Decoder

LLM

an orange cat in 
a field of grass

𝒛𝑇−1 𝒛0𝒛𝑡𝒛𝑡+1 𝒛1𝒛𝑇

𝑞𝜙 𝒛𝑡+1 𝒛𝑡𝑞𝜙 𝒛𝑇 𝒛𝑇−1

𝑝𝜃 𝒛𝑡 𝒛𝑡+1, ො𝑦𝑝𝜃 𝒛𝑇−1 𝒛𝑇, ො𝑦

𝑦

𝜏𝜃

ො𝑦

𝑝𝜃 𝒛𝑇

UNet with cross-attention

Pixel Space

 The autoencoder projects high dimensional images (e.g., 

1024x1024 pixels) down to a lower-dimensional latent 

space and faithfully projects back up to pixel space

 The original LDM paper considered two options:

1. a VAE-like model (regularizes the latent distribution 

towards a Gaussian)

2. a VQGAN (performs vector quantization in the 

decoder i.e., uses a discrete codebook)

 This model is trained ahead of time just on raw images 

and then kept frozen while training the LDM

Source: https://arxiv.org/pdf/2112.10752 

https://arxiv.org/pdf/2112.10752


LDMs: DDPM 
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𝒛𝑇−1 𝒛0𝒛𝑡𝒛𝑡+1… 𝒛1…𝒛𝑇

… …

Encoder

Decoder𝒛𝑇−1 𝒛0𝒛𝑡𝒛𝑡+1 𝒛1𝒛𝑇

𝑞𝜙 𝒛𝑡+1 𝒛𝑡 𝑞𝜙 𝒛1 𝒛0𝑞𝜙 𝒛𝑇 𝒛𝑇−1

𝑝𝜃 𝒛0 𝒛1𝑝𝜃 𝒛𝑡 𝒛𝑡+1𝑝𝜃 𝒛𝑇−1 𝒛𝑇𝑝𝜃 𝒛𝑇

Figure courtesy of Matt Gormley

𝑥

෤𝑥

Latent Space



LDMs: Conditioning 
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𝒛𝑇−1 𝒛0𝒛𝑡𝒛𝑡+1… 𝒛1…𝒛𝑇

… …

Encoder

Decoder𝒛𝑇−1 𝒛0𝒛𝑡𝒛𝑡+1 𝒛1𝒛𝑇

𝑞𝜙 𝒛𝑡+1 𝒛𝑡 𝑞𝜙 𝒛1 𝒛0𝑞𝜙 𝒛𝑇 𝒛𝑇−1

𝑝𝜃 𝒛0 𝒛1, ො𝑦𝑝𝜃 𝒛𝑡 𝒛𝑡+1, ො𝑦𝑝𝜃 𝒛𝑇−1 𝒛𝑇, ො𝑦

ො𝑦

𝑝𝜃 𝒛𝑇

Figure courtesy of Matt Gormley

𝑥

෤𝑥

Latent Space



LDMs: Prompt Model
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… …

LLM

an orange cat in 
a field of grass

𝒛𝑇−1 𝒛0𝒛𝑡𝒛𝑡+1 𝒛1𝒛𝑇

𝑝𝜃 𝒛0 𝒛1, ො𝑦𝑝𝜃 𝒛𝑡 𝒛𝑡+1, ො𝑦𝑝𝜃 𝒛𝑇−1 𝒛𝑇, ො𝑦

𝑦

𝜏𝜃

ො𝑦

Figure courtesy of Matt Gormley

𝑝𝜃 𝒛𝑇

 The prompt model is just an encoder-only transformer

 The parameters are trained alongside the diffusion model’s parameters 

 The objective is to learn representations of the text prompts that 

meaningfully inform/guide the latent diffusion model



LDMs: Prompt Model
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… …𝒛𝑇−1 𝒛0𝒛𝑡𝒛𝑡+1 𝒛1𝒛𝑇

𝑝𝜃 𝒛0 𝒛1, ො𝑦𝑝𝜃 𝒛𝑡 𝒛𝑡+1, ො𝑦𝑝𝜃 𝒛𝑇−1 𝒛𝑇, ො𝑦

Figure courtesy of Matt Gormley

𝑝𝜃 𝒛𝑇

(Learned) Reverse Process:



Recall: 
Parameterizing 
the Learned 

Reverse Process

 𝑝𝜃 𝒙𝑡−1 𝒙𝑡 ∼ 𝒩 𝜇𝜃 𝒙𝑡 , 𝑡 , Σ𝜃 𝒙𝑡 , 𝑡

 Idea #1: Rather than learn Σ𝜃 𝒙𝑡 , 𝑡 , just use what we 

know about 𝑞 𝒙𝑡−1 𝒙𝑡 , 𝒙0 ∼ 𝒩 ෤𝜇𝑞 𝒙𝑡 , 𝒙0 , 𝜎𝑡
2𝐼  and set

Σ𝜃 𝒙𝑡 , 𝑡 = 𝜎𝑡
2𝐼

 Idea #2: We want 𝜇𝜃 𝒙𝑡 , 𝑡  to be close to ෤𝜇𝑞 𝒙𝑡 , 𝒙0  

 Option C: Learn a network that approximates the 𝝐 

that gave rise to 𝒙𝑡 from 𝒙0 in the forward process:

𝜇𝜃 𝒙𝑡 , 𝑡 = 𝛼𝑡
0

𝒙𝜃
0

𝒙𝑡 , 𝑡 + 𝛼𝑡
𝑡

𝒙𝑡

where 𝒙𝜃
0

𝒙𝑡 , 𝑡 =
𝒙𝑡 + 1 − ത𝛼𝑡 𝝐𝜃 𝒙𝑡 , 𝑡

ത𝛼𝑡

where 𝝐𝜃 𝒙𝑡 , 𝑡 = UNet𝜃 𝒙𝑡 , 𝑡
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 𝑝𝜃 𝒙𝑡−1 𝒙𝑡 ∼ 𝒩 𝜇𝜃 𝒙𝑡 , 𝑡, 𝜏𝜃 𝑦 , Σ𝜃 𝒙𝑡 , 𝑡

 Idea #1: Rather than learn Σ𝜃 𝒙𝑡 , 𝑡 , just use what we 

know about 𝑞 𝒙𝑡−1 𝒙𝑡 , 𝒙0 ∼ 𝒩 ෤𝜇𝑞 𝒙𝑡 , 𝒙0 , 𝜎𝑡
2𝐼  and set

Σ𝜃 𝒙𝑡 , 𝑡 = 𝜎𝑡
2𝐼

 Idea #2: We want 𝜇𝜃 𝒙𝑡 , 𝑡, 𝜏𝜃 𝑦  to be close to ෤𝜇𝑞 𝒙𝑡 , 𝒙0  

 Option C: Learn a network that approximates the 𝝐 

that gave rise to 𝒙𝑡 from 𝒙0 in the forward process:

𝜇𝜃 𝒙𝑡 , 𝑡, 𝜏𝜃 𝑦 = 𝛼𝑡
0

𝒙𝜃
0

𝒙𝑡 , 𝑡, 𝜏𝜃 𝑦 + 𝛼𝑡
𝑡

𝒙𝑡

where 𝒙𝜃
0

𝒙𝑡 , 𝑡, 𝜏𝜃 𝑦 =
𝒙𝑡 + 1 − ത𝛼𝑡 𝝐𝜃 𝒙𝑡 , 𝑡, 𝜏𝜃 𝑦

ത𝛼𝑡

where 𝝐𝜃 𝒙𝑡 , 𝑡, 𝜏𝜃 𝑦 = UNet𝜃 𝒙𝑡 , 𝑡, 𝜏𝜃 𝑦
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𝝐𝜃 𝒙𝑡 , 𝑡, 𝜏𝜃 𝑦 = UNet𝜃 𝒙𝑡 , 𝑡, 𝜏𝜃 𝑦
 The noise model includes 

cross attention (yellow 

boxes) between the UNet 

layers and the representation 

of the prompt text

 During training we optimize 

both the parameters of the 

UNet noise model and the 

parameters of the LLM 

simultaneously 



Recall: Scaled Dot-Product Attention
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𝒒1 𝒒2 𝒒3 𝒒4

𝒗1 𝒗2 𝒗3 𝒗4

softmax

𝒌1 𝒌2 𝒌3 𝒌4

𝒙1 𝒙2 𝒙3 𝒙4

𝑾𝑘

𝑾𝑞

𝑾𝑣

𝑆 =
𝑄𝐾𝑇

𝑑𝑘

𝐴 = softmax 𝑆

𝑉 = 𝑋𝑾𝑣

𝐾 = 𝑋𝑾𝑘

𝑄 = 𝑋𝑾𝑞

𝑋′ = 𝐴𝑉 =  softmax
𝑄𝐾𝑇

𝑑𝑘

𝑉
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𝒒1 𝒒2 𝒒3 𝒒4

𝒗1 𝒗2 𝒗3 𝒗4

softmax

𝒌1 𝒌2 𝒌3 𝒌4

𝒙1 𝒙2 𝒙3 𝒙4

𝑾𝑘

𝑾𝑞

𝑾𝑣

𝑆 =
𝑄𝐾𝑇

𝑑𝑘

𝐴 = softmax 𝑆

𝑉 = 𝑋𝑾𝑣

𝐾 = 𝑋𝑾𝑘

𝑄 = 𝑋𝑾𝑞

𝑋′ = 𝐴𝑉 =  softmax
𝑄𝐾𝑇

𝑑𝑘

𝑉

Self Attention
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𝒒1 𝒒2 𝒒3

𝒗1 𝒗2 𝒗3 𝒗4

softmax

𝒌1 𝒌2 𝒌3 𝒌4

𝒙1 𝒙2 𝒙3 𝒙4

𝑾𝑘

𝑾𝑞

𝑾𝑣

𝑆 =
𝑄𝐾𝑇

𝑑𝑘

𝐴 = softmax 𝑆

𝑉 = 𝑋𝑾𝑣

𝐾 = 𝑋𝑾𝑘

𝑄 = 𝑌𝑾𝑞

𝑌′ = 𝐴𝑉 =  softmax
𝑄𝐾𝑇

𝑑𝑘

𝑉

𝒚1 𝒚2 𝒚3

Cross Attention
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𝒒1 𝒒2 𝒒3

𝒗1 𝒗2 𝒗3 𝒗4

softmax

𝒌1 𝒌2 𝒌3 𝒌4

𝒙1 𝒙2 𝒙3 𝒙4

𝑾𝑘

𝑾𝑞

𝑾𝑣

𝑆 =
𝑄𝐾𝑇

𝑑𝑘

𝐴 = softmax 𝑆

𝑉 = 𝑋𝑾𝑣

𝐾 = 𝑋𝑾𝑘

𝑄 = 𝑌𝑾𝑞

𝑌′ = 𝐴𝑉 =  softmax
𝑄𝐾𝑇

𝑑𝑘

𝑉

𝒚1 𝒚2 𝒚3

LDMs: Cross Attention

an orange cat in … …
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𝒙1 𝒙2 𝒙3 𝒙4 𝒚1 𝒚2 𝒚3

LDMs: Cross Attention

an orange cat in … …

 The cross-attention in the UNet is 

placed within a larger Transformer block

Source: https://arxiv.org/pdf/2112.10752 

https://arxiv.org/pdf/2112.10752
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LDMs: Results
Source: https://arxiv.org/pdf/2112.10752 

https://arxiv.org/pdf/2112.10752
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LDMs: Results
Source: https://arxiv.org/pdf/2112.10752 

https://arxiv.org/pdf/2112.10752


10/7/24 45

LDMs: Results
Source: https://arxiv.org/pdf/2112.10752 

 Key takeaway: LDMs can 

generate very high-quality 

images (in terms of FID / IS 

scores) with many fewer 

parameters than competing 

models because the most 

computationally intensive step 

happens in low dimensional 

latent space, instead of high 

dimensional pixel space

https://arxiv.org/pdf/2112.10752
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