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Reminders

* Homework 0: PyTorch + Weights & Biases
— Out: Wed, Aug 28
— Due: Mon, Sep 9 at 11:59pm

— Two parts:

1. written part to Gradescope
2. programming part to Gradescope

— unique policy for this assignment: we will grant (essentially) any
and all extension requests, but you must request one




LARGE LANGUAGE MODELS



Noisy Channel Models

Prior to 2017, two tasks relied heavily on language models:
— speech recognition
— machine translation

Definition: a noisy channel model combines a transduction model (probability of
converting y to x) with a language model (probability of y)

A

y = argmax p(y | x) = argmax p(x | y)p(y)
Yy Yy | J J
| N\ language
Goal: to recover y from x transduction model
model

— For speech: x is acoustic signal, y is transcription
— For machine translation: x is sentence in source language, y is sentence in target language



Large (n-Gram) Language Models

. . English n-gram
The earliest (truly) large language models model is ~3 billion

were n-gram models parameters

* Google n-Grams:

— 2006: first release, English n-grams

Number of uni : 13,588,391
* trained on 1 trillion tokens of web text (95 billion umber of unigrams 3,566,39

Number of bigrams: 314,843,401
sentences) Number of trigrams: 977,069,902
* included 1-grams, 2-grams, 3-grams, 4-grams, and 5- Number of fourgrams: | 1,313,818,354
grams Number of fivegrams: 1,176,470,663

— 2009 —2010: n-grams in Japanese, Chinese,
Swedish, Spanish, Romanian, Portuguese,
Polish, Dutch, Italian, French, German, Czech
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Large (n-Gram) Language Models

. English n-gram
The earliest (truly) large language models model is ~3 billion
were n-gram models

parameters
Google n-Grams:
— 2006: first release, English n-grams _
_ . . Number of unigrams: 13,588,391
* trained on 1 trillion tokens of web text (95 billion Number of bigrams: 314,843,401
sentences) Number of trigrams: 977,069,902

* included 1-grams, 2-grams, 3-grams, 4-grams, and 5-

Number of fourgrams: 1,313,818,354
grams

Number of fivegrams: 1,176,470,663
— 2009 —2010: n-grams in Japanese, Chinese,

Swedish, Spanish, Romanian, Portuguese,
Polish, Dutch, Italian, French, German, Czech

1re Accessoi
Q: Is this a large training set? pi:xciod  Q: Is this a large model?
1re Acheter
1re Ajouter
A: Yes! - i A: Yes!
B s
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How large are LLMs?

Comparison of some recent large language models (LLMs)

Creators Year of | Training Data (# Model Size (#
release | tokens) parameters)

GPT-2 OpenAl 2019 ~10 billion (40Gb) 1.5 billion
GPT-3 OpenAl 2020 300 billion 175 billion
(cf. ChatGPT)

PaLM Google 2022 780 billion 540 billion
Chinchilla DeepMind 2022 1.4 trillion 70 billion
LaMDA Google 2022 1.56 trillion 137 billion
(cf. Bard)

LLaMA Meta 2023 1.4 trillion 65 billion
LLaMA-2 Meta 2023 2 trillion 70 billion
GPT-4 OpenAl 2023 g 2 (1.76 trillion)
Gemini (Ultra)  Google 2023 g ? (1.5 trillion)

LLaMA-3 Meta 2024 15 trillion 405 billion
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Ways of Drawing Neural Networks

(F) Loss Computation Graph
J=35(y—y*)? :

(E) Output (sigmoid) (E’) Label
. Given y* )
b= 370557

Y= Thexp(=n)
f .

?
[ (C) Hidden (sigmoid)

[ (D) Output (linear)

(C’) Parameters

T+exp(—a;)’ Given (3;,V)

\

f

[ (B) Hidden (linear)

Given x;, V1

] (A’) Parameters
Given Qg V’L,]

The diagram represents an algorithm
Nodes are rectangles

One node per intermediate variable in the
algorithm

Node is labeled with the function that it
computes (inside the box) and also the
variable name (outside the box)

Edges are directed

(since they don’t
need them)
For neural networks:
— Each intercept term should appear as a node
(if it’s not folded in somewhere)
— Each parameter should appear as a node

— Each constant, e.g. a true label or a feature
vector should appear in the graph
— It’s perfectly fine to include the loss



RNN Language Model

[The ][ bat ][made][noise][ at ][night] [ END]
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[STARTJ [ The ] [ bat ] [made] [noise] [ at ] [ night]

Key Idea:

(1) convert all previous words to a fixed length vector

(2) define distribution p(w; | fo(wy.,, -..

the vector h, = fg(wy,, ..., W,)

, W,)) that conditions on



RNNs and Forgetting

Suppose we want an RNN over binary vectors of length 2 that can
remember whether or not it has seen a value of 1in both input positions.

hy = o(Wrphi—1 + Wipex; +bp,) Wi = (1) (1)] Whn = [% 2
yr = sign(Wyphy + ) - 2
W I
y Yz Ys Ys Ys Yioo
] O O O (] L]
h h, h, h, hs hroo




RNNs and Forgetting

Suppose we want an RNN over binary vectors of length 2 that can
remember whether or not it has seen a value of 1in both input positions.

hi = o(Wrnhi—1 + Whaxt + bp) Wha = (1) (1)] Wiy = [% 8
yr = sign(Wyphy + ) - 2
was| | ee]
y Y> Y3 Y4 Ys Y100
] O O O ] U]
h h, h, h, he hroo




Long Short-Term Memory (LSTM)

Motivation:

* Standard RNNs have trouble learning long
distance dependencies

e LSTMs combat this issue

O — - a0




Long Short-Term Memory (LSTM)

Motivation:
* Vanishing gradient problem for Standard RNNs

 Figure shows sensitivity (darker = more sensitive) to the input at
time t=1

Qutputs ’ Q | I _.E . .
3 it iy § i 3
.4 ' - | - - - ‘

. \ _,.' ’ \

Figure from (Graves, 2012)
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Long Short-Term Memory (LSTM)

Motivation:
e LSTM units have arich internal structure

* The various “gates’” determine the propagation of information
and can choose to “remember” or “forget” information

TTTTYITT

— — — @) — e) —

Hidden

5 @@ @@ @@
O - - - - - O

- 8000000

Figure from (Graves, 2012)



Long Short-Term Memory (LSTM)




Long Short-Term Memory (LSTM)

\J

\

Lt—»

/

it = 0 (Waize + Whihe—1 + Weici—1 + b;)
fi=0Wysxy + Whrhi—1 +Wepci—1 + by)
ct = frci—1 + ip tanh (Weewy + Whehy—1 + be)
or = 0 (Wiomt + Whohi—1 + Weocr + bo)

h: = o tanh(c;)
Figure from (Graves et al., 2013)
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Long Short-Term Memory (LSTM)

\J \,

\

Lt —p

/

. = O (met + Whihi 1+ Weice 1 + b’i)
=0 (Wysxy + Whrhi—1 +Wepci—1 + by)
= frce—1 + i¢ftanh (Wyexy + Wiche1 + b.)
0 (Waoxs + Whohi—1 + Weoer + b,)

= o tanh(c;) y
Figure from (Graves et al., 2013)




Long Short-Term Memory (LSTM)




Deep Bidirectional LSTM (DBLSTM)

Figure from (Graves et al., 2013)



Deep Bidirectional LSTM (DBLSTM)

T T T How important is this
particular architecture?
Jozefowicz et al. (2015)
evaluated 10,000
T different LSTM-like
- . - architectures and
found several variants
that worked just as
well on several tasks.

o

T

T

g



Why not just use LSTMs for everything?

Everyone did, for a time.

But...

1. They still have difficulty with long-range dependencies

2. Their computation is inherently serial, so can’t be easily
parallelized on a GPU

3. Eventhough they (mostly) solve the vanishing gradient problem,
they can still suffer from exploding gradients



Transformer Language Models

MODEL: GPT

26
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Attention
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X; X4 Xy = E Qg V4
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attention weights

Scores

T [T [T OO values




Scaled Dot-Product Attention
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T v = WTXj values
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Scaled Dot-Product Attention
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Scaled Dot-Product Attention

/
X4 = A4,5V;j
j=1
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Scaled Dot-Product Attention
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Scaled Dot-Product Attention

/ —
Xy = A4,5V

j=1

a, = softmax(sy)attention weights
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Scaled Dot-Product Attention

X, X

2
[ 1]

ay = softmax(s4)attention weights

S4. = ijqél/w /d,. scores
q; = ngj queries
k;, = Wix, keys

_ T
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Scaled Dot-Product Attention
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Animation of 3D Convolution

Input Volume (+pad 1) (7x7x3) Filter WO (3x3x3) Filter W1 (3x3x3) Output Volume (3x3x2)
X[:,:,0] wO[:,:,0] wl[:,:,0] o[:,:,0]
0 0 0 0 0 0 O -1 1 T ([ 1 5 -3 -3
0 2 W/---‘l/ 11 [ 3 .10 7
0 0 |21 ff2]0 O 1 0 -1 11 |-1 1 -3 -2
0 1 (2 {0 |0 o[:,:,1]
0 2 [0 L] 2 -1 1
0 2 1 0 O = n
00000 o i
x[:,:,1]

0 0 0 0 O

0 1 1 2

0 2 |2 (2 |2

0 0 2o j2 0 Bjasb0 (1x1x Bias b1 (1x1x1)

0 210 ﬂfl O[:,:, [:,:,0]
001000 O L 0

0 0 0 0 0 O

X[:,:,2] toggle movement

0 0 0 O 0 0

0 0 00 2 070

0 2 |1 |1 ff1 0

0o 2 [of2l0]0 O

0o o 241 |2 0

01 2 0 0 2 O

0 0 0 0 0 0 O
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Figure from Fei-Fei Li & Andrej Karpathy & Justin Johnson (CS231N)


http://cs231n.github.io/convolutional-networks/

Multi-headed Attention

<1 head
q ead 37
ead \
Wi
multi-headed attention
I
~I
W,

X1

X,

X3

X4

Just as we can have
multiple channels in a
convolution layer, we
can use multiple heads
in an attention layer
Each head gets its own
parameters

We can concatenate all
the outputs to get a
single vector for each
time step

41



To ensure the dimension of the

nput embedding x s the same - My |ti-headed Attention

as the output embedding x,
Transformers usually choose
the embedding sizes and
number of heads appropriately:

*  dmodel = dim. of inputs

* dy=dim. of each output

* h=#of heads

e Choose dy = diodel / D X, X, X’ X,
Then concatenate the outputs (1] [ 1]
W, L] ﬁ'
W, multi-headed attention
W,
—//x1 X, X3 Xq

Just as we can have
multiple channels in a
convolution layer, we
can use multiple heads
in an attention layer
Each head gets its own
parameters

We can concatenate all
the outputs to get a
single vector for each
time step



To ensure the dimension of the
input embedding x; is the same
as the output embedding x,
Transformers usually choose
the embedding sizes and
number of heads appropriately:

*  dmodel = dim. of inputs

* dy=dim. of each output

* h=#of heads

e Choose dy = diodel / D
Then concatenate the outputs

Multi-headed Attention

)

)

)

X, X, X5 X,
T T
B B
B8 B multi-headed attention
B B
X, X3 Xq

X1

Just as we can have
multiple channels in a
convolution layer, we
can use multiple heads
in an attention layer
Each head gets its own
parameters

We can concatenate all
the outputs to get a
single vector for each
time step



RNN Language Model

[The ][ bat ][made][noise][ at ][night] [ END]

T

T

T

T

TP(W1|h1) TP(WZIhZ) TP(W3|h3) Tp(w4lh4) 'r(Wslhs) T(W6Ih6) ']‘P(W7|h7)
' > * > > > > > >

h,

h,

hs

h,

A

hy

he

h,

[ —L1

[ —>

[ —1 ]

[ —> 1]

[ > |

[1—>1

A

A

N

A

[STARTJ [ The ] [ bat ] [made] [noise] [ at ] [ night]

Key Idea:

(1) convert all previous words to a fixed length vector

(2) define distribution p(w; | fo(wy.,, -..

the vector h, = fg(wy,, ..., W,)

, W,)) that conditions on



Transformer Language Model

Important!

* RNN computation
graph grows
linearly with the
number of input
tokens

* Transformer-LM
computation graph
grows quadratically
with the number of
input tokens

)\

[ The [ bat ] [ made ] [ noise ]

P

T P(W1|h1) p(W2|h2)
>

>

T

p(ws|hs) 4 P(Walh,)

1
IIIIIIIIII

IPZ=

Each hidden vector looks back at
the hidden vectors of the current
and previous timesteps in the
previous layer.

The language model part is just like
an RNN-LM!



Transformer Language Model

Important!

RNN computation
graph grows
linearly with the
number of input
tokens

Transformer-LM
computation graph
grows quadratically
with the number of
input tokens

)\

[ The

[ bat ] [ made ] [ noise ]

T

T

P(W2|h2)

T

p(wslh;)

T

p(w,lh,)

Each layer of a Transformer LM
consists of several sublayers:

1. attention

2. feed-forward neural network
3. layer normalization

4. residual connections

Each hidden vector looks back at
the hidden vectors of the current
and previous timesteps in the
previous layer.

The language model part is just like
an RNN-LM!



Layer Normalization

* The Problem: internal Given input a € R”*, LayerNorm computes output b € R¥:
covariate shift occurs
during training of a deep
network when a small
change in the low layers

a_
b=v0—&70
0)

amplities into a large where we have meanu = = S0 a
. . — — k

change in the high layers H f Zf{—l ’

* One Solution: Layer standard deviation o = \/f D=1 (ar — 1)?,
normalization normalizes and parameters v € RX, 8 € RX,
:?ecnllé?q)ﬁvriggcgl;?s/rbnisas ® and & denote elementwise multiplication and addition.

* Such normalization allows 1.0 Attentive reader

LSTM
BN-LSTM

BN-everywhere
LN-LSTM

for higher learning rates
(for faster convergence)
without issues of
diverging gradients

o
©

o
@

o©
Sl

validation error rate
o
~l

s
i
3
§
{

o
ey

_ _ 0 100 200 300 400 500 600 700 800
Figure from https://arxiv.org/pdf/1607.06450.pdf training steps (thousands)



Residual Connections

Residual Connection

* The Problem: as network Plain Connection
depth grows very large, a b
performance degradation b T
occurs that is not explained
by overfitting (i.e. train / test N [b =b' + a}e
error both worsen) _

*  One Solution: Residual [ b= f(a) }
connections pass a copy of b —
the input alongside another I = f(a)
function so that information a2
can flow more directly T

a

* These residual connections
allow for effective training
of very deep networks that
perform better than their
shallower (though still deep)
counterparts <

50

30

ResNet-18 % W ANAAMAANNAAA,

—ResNet-34 34-layer

. . 0 10 20 30 20 50 0 10 20 30 40 50
Figure from https://arxiv.org/pdf/1512.03385.pdf iter. (1e4) iter. (1e4)




Residual Connections

The Problem: as network
depth grows very large, a
performance degradation
occurs that is not explained
by overfitting (i.e. train / test
error both worsen)

One Solution: Residual
connections pass a copy of
the input alongside another
function so that information
can flow more directly

These residual connections
allow for effective training
of very deep networks that
perform better than their
shallower (though still deep)
counterparts

Figure from https://arxiv.org/pdf/1512.03385.pdf

Residual Connection
Plain Connection

b

|

b= /(@]

Why are residual connections helpful?

Instead of f(a) having to learn a full
transformation of a, f(a) only needs to learn an
additive modification of a (i.e. the residual).



nsformer Layer
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Each layer of a Transformer LM
consists of several sublayers:

1.

2.
3.
4.

attention

feed-forward neural network
layer normalization

residual connections



Transformer Layer

||||| |||4\|| |||¢|| III4\ﬂ
: —1 ! Each layer of a Transformer LM
[ layer normalization ] ]
consists of several sublayers:

[T OIL1 O] O 1. attention

2. feed-forward neural network
[ residual connections ]4— . .
3. layer normalization

O [OTT0 O [T 4. residual connections

feed forward neural network

J 1 l | - — 1 1 1]

Igyer alg
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residual connections ]4—

11 OO0 O1T1 I

A

2
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Transformer Layer

I1IIIII2IIIII3IIIII4III_I
A A A

A
Each layer of a Transformer LM
/ \ consists of several sublayers:
1. attention

2. feed-forward neural network
3. layer normalization
4. residual connections

Transformer
Layer

U




Transformer Layer

Each layer of a Transformer LM
consists of several sublayers:

1. attention

2. feed-forward neural network
3. layer normalization

4. residual connections

x, X, X, x,’

1 2 3 4
[(ITT111 L) et trerr
[ Transformer layer

I O




Transformer Language Model

[ The

[ bat ] [ made ] [ noise ]

T

T

T

p(w;|h,) p(ws|h;) p(w,lh,)

>

>

L

IIII%

Transformer layer

%II/I I%I |

Transformd

r layer

0 |

%ﬂ I

Transformer layer

%)

Each layer of a Transformer LM
consists of several sublayers:

1. attention

2. feed-forward neural network
3. layer normalization

4. residual connections

Each hidden vector looks back at
the hidden vectors of the current
and previous timesteps in the
previous layer.

The language model part is just like
an RNN-LM.



In-Class Exercise

Question:

Suppose we have the following input
embeddings and attention weights:

X, =[1,0,0,0]a,, = 0.1

* X,=[0,1,0,0]a,,=0.2
x;=[0,0,2,0]a,;=0.6

* x,=[0,0,0,1]a,,=0.1

And W, = I. Then we can compute x,’.

Now suppose we swap the
embeddings x, and x; such that

* X,=[0,0,2,0]
* X,=[0,1,0,0]
What is the new value of x4’?

4
/ —
X4 = 4,5V
[ 11 ] -
, j=1

o & f a4 = softmax(s,) attention weights
[ softmax/ / / ]
” " % S4j = ijq4/\/dk scores
{]
A T i
' ’ < 'I. q; = Wq X; queries
ki k, k k _ T
o/ OO 1] oo k; = Wi x; keys
i e v3 V4 v; = Wlx; values
X1 X2 X3 X4
(I [OI0O O O™

Answer:
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[ The [ bat ] [ made ] [ noise ]

Position Embeddings | | |

. . L p(w,|h,) p(w,|h,) p(ws|hs) Ap(wslhy)
* The Problem: Because attention is position T
invariant, we need a way to learn about positions > > > >
* The Solution: Use (or learn) a collection of position h, T h, T s T h, T
|

specific embeddings: p; represents what it means [T | L1 [T |

[ |
to be in position t. And add this to the word
embedding W;. [ Transformer layer l ]

The key idea is that every word that appears in l_l_% L~
position t uses the same position embedding p; 7 | '/IH I l%l I %rul
* There are a number of varieties of position [ Transformer layer ]
embeddings: % IENZey .
— Some are fixed (based on sine and cosine), whereas '_'_% = |4\r| /pﬂ A
others are learned (like word embeddings) [ Transformér layer )
— Some are absolute (as described above) but we can
also use relative position embeddings (i.e. relative
to the position of the query vector) , [ . ] [ . ] (. ]
majiesReslls:
P T P: T Ps T P4 T
(0 o

IIIIII\I/\IIII_@TI_II_



GPT-3

e GPT stands for Generative Pre-trained Transformer

* GPTisjust a Transformer LM, but with a huge number of
parameters

# layers dimension | dimension |# attention |# params
of states of inner heads
states

GPT (2018) 12 4%768 117M
GPT-2 48 1600 4*1600 12 1542M
(2019)

GPT-3 96 12288 4%12288 96 175000M

(2020)



